
2/4/16	

1	

C++	Primer	
Part	2	

CMSC	202	

Topics	Covered	
•  Expressions,	statements,	blocks	
•  Control	flow:	if/else-if/else,	while,	do-while,	
for,	switch	

•  Booleans,	and	non-bools	as	bools	
•  FuncJons	

2	

•  An	expression	is	a	construct	made	up	of	
variables,	operators,	and	method	invocaJons,	
that	evaluates	to	a	single	value.	

•  For	example:	

Expressions	

3	

int cadence = 0; 
 
anArray[0] = 100; 
 
cout << "Element 1 at index 0: " << anArray[0]); 
 
int result = 1 + 2; 
 
cout << (x == y ? "equal" :"not equal"); 



2/4/16	

2	

Statements	
•  Statements	are	roughly	equivalent	to	sentences	
in	natural	languages.		A	statement	forms	a	
complete	unit	of	execuJon.	

•  Two	types	of	statements:	
–  Expression	statements	–	end	with	a	semicolon	‘;’	

•  Assignment	expressions	
•  Any	use	of	++	or	--	
•  Method	invocaJons	
•  Object	creaJon	expressions	

–  Control	Flow	statements	
•  SelecJon	&	repeJJon	structures	

4	

If-Then	Statement	
•  The	if-then	statement	is	the	most	basic	of	all	
the	control	flow	statements.	

if (x == 2) 
 cout << "x is 2"; 

cout << "Finished"; 

if x == 2: 
    print "x is 2" 
print "Finished" 

Python	 C++	

Notes	about	C++’s	if-then:	
	

• 	CondiJonal	expression	must	be	in	parentheses	
• 	CondiJonal	expression	has	various	interpretaJons	of	
		“truthiness”	depending	on	type	of	expression	

5	

A	brief	digression…	
If-then	raises	quesJons	about	

– MulJ-statement	blocks	
– Scope	
– Truth	in	C++	

6	



2/4/16	

3	

MulJple	Statements	
•  What	if	our	then	case	contains	mulJple	
statements?	

if(x == 2) 
 cout << "even"; 
 cout << "prime"; 

cout << "Done!"; 

if x == 2: 
    print "even" 
    print "prime" 
print "Done!" 

Python	 C++	(but	incorrect!!)	

Notes:	
• 	Unlike	Python,	spacing	plays	no	role	in	C++’s	selecJon/
repeJJon	structures	
• 	The	C++	code	is	syntac/cally	fine	–	no	compiler	errors	
• 	However,	it	is	logically	incorrect	

7	

Blocks	
•  A	block	is	a	group	of	zero	or	more	statements	
that	are	grouped	together	by	delimiters.	

•  In	C++,	blocks	are	denoted	by	opening	and	
closing	curly	braces	‘{’	and	‘}’	.	

if(x == 2) { 
 cout << "even"; 
 cout << "prime"; 

} 
cout << "Done!"; 

Note:	
• 	It	is	generally	considered	a	good	pracJce	to	include	the	curly	
braces	even	for	single	line	statements.	

8	

Variable	Scope	
•  You	can	define	new	variables	in	many	places	in	your	code,	

so	where	is	it	in	effect?	
•  A	variable’s	scope	is	the	set	of	code	statements	in	which	

the	variable	is	known	to	the	compiler.	
•  Where	a	variable	can	be	referenced	from	in	your	program	
•  Limited	to	the	code	block	in	which	the	variable	is	defined	
•  For	example:	

if(age >= 18) { 
 bool adult = true; 

} 
/* couldn't use adult here */ 

9	



2/4/16	

4	

Scope	Example	

10	

#include <iostream> 
using namespace std; 
 
int main() { 
  int x = 3, y = 4; 
 
  { 
    int x = 7; 
    cout << "x in block is " << x << endl; 
    cout << "y in block is " << y << endl; 
  } 
 
  cout << "x in main is " << x <<  endl; 
   
return 0; 
} 

What	will	this	code	do?	

				“Truthiness”**	
•  What	is	“true”	in	C++?	
•  Like	some	other	languages,	C++	has	a	true	Boolean	
primiJve	type	(bool),	which	can	hold	the	constant	
values	true	and	false	

•  Assigning	a	Boolean	value	to	an	int	variable	will	
assign	0	for	false,	1	for	true	

11	
**	kudos	to	Stephen	Colbert	

“Truthiness”	
•  For	compaJbility	with	C,	C++	is	very	liberal	
about	what	it	allows	in	places	where	Boolean	
values	are	called	for:	
– bool	constants,	variables,	and	expressions	have	
the	obvious	interpretaJon	

– Any	integer-valued	type	is	also	allowed	
•  0	is	interpreted	as	“false”,	all	other	values	as	
“true”	

•  So,	even	-1	is	considered	true!	

12	



2/4/16	

5	

13 

Gotcha!		=		versus		==			

int a = 0; 
 
if (a = 1) { 
    printf (“a is one\n”) ; 
} 

If-Then-Else	Statement	
•  The	if-then-else	statement	looks	much	like	it	
does	in	Python	(aside	from	the	parentheses	
and	curly	braces).	

if(x % 2 == 1) { 
    cout << "odd"; 
} else { 
    cout << "even"; 
} 

if x % 2 == 1: 
    print "odd" 
else: 
    print "even" 

Python	 C++	

14	

If-Then-Else	If-Then-Else	Statement	
•  Again,	very	similar…	

if (x < y) { 
    cout << "x < y"; 
} else if (x > y) { 

  cout << "x > y"; 
} else { 

  cout << "x == y"; 
} 

if x < y: 
    print "x < y" 
elif x > y: 
    print "x > y" 
else: 
    print "x == y" 

Python	 C++	

15	



2/4/16	

6	

Switch	Statement	
•  Unlike	if-then	and	if-then-else,	the	switch	
statement	allows	for	any	number	of	possible	
execuJon	paths.	

•  Works	with	any	integer-based	(e.g.,	char,	int,	
long)	or	enumerated	type	(covered	later)	

16	

Switch	Statement	

int cardValue = /* get value from somewhere */; 
switch(cardValue) { 

 case 1: 
  cout << "Ace"; 
  break; 
 case 11: 
  cout << "Jack"; 
  break; 
 case 12: 
  cout << "Queen"; 
  break; 
 case 13: 
  cout << "King"; 
  break; 
 default: 
  cout << cardValue; 

} 

Notes:	
• 	break	statements	are	typically	
used	to	terminate	each	case.	
• 	It	is	usually	a	good	pracJce	to	
include	a	default	case.	

17	

Switch	Statement	
switch (month) { 

 case 1: case 3: case 5: case 7: 
 case 8: case 10: case 12: 
  cout << "31 days"; 
  break; 
 case 4: case 6: case 9: case 11: 
  cout << "30 days"; 
  break; 
 case 2: 
  cout << "28 or 29 days"; 
  break; 
 default: 
  cout << "Invalid month!"; 
  break; 

} 

Note:	
• 	Without	a	break	statement,	cases	“fall	through”	to	the	next	statement.	

18	



2/4/16	

7	

Switch	Statement	
•  To	repeat:	the	switching	value	must	evaluate	
to	an	integer	or	enumerated	type	(some	other	
esoteric	class	types	also	allowed—not	covered	
in	class)	

•  The	case	values	must	be	constant	or	literal,	or	
enum	value	

•  The	case	values	must	be	of	the	same	type	as	
the	switch	expression	

19	

While	Loops	
•  The	while	loop	executes	a	block	of	statements	
while	a	parJcular	condiJon	is	true.	

•  Prety	much	the	same	as	Python…	

int count = 0; 
while(count < 10) { 
    cout << count; 
    count++; 
} 
cout << "Done!"; 

count = 0; 
while(count < 10): 
    print count 
    count += 1 
print "Done!" 

Python	 C++	

20	

Do-While	Loops	
•  In	addiJon	to	while	loops,	Java	also	provides	a	
do-while	loop.	
– The	condiJonal	expression	is	at	the	botom	of	the	
loop.	

– Statements	within	the	block	are	always	executed	
at	least	once.	

– Note	the	trailing	semicolon!	
int count = 0; 
do { 

 cout << count; 
 count++; 

} while(count < 10); 
cout << "Done!"; 

21	



2/4/16	

8	

For	Loop	
•  The	for	statement	provides	a	compact	way	to	iterate	
over	a	range	of	values.	

•  The	ini/aliza/on	expression	iniJalizes	the	loop	–	it	is	
executed	once,	as	the	loop	begins.	

•  When	the	termina/on	expression	evaluates	to	false,	
the	loop	terminates.	

•  The	increment	expression	is	invoked	awer	each	
iteraJon	through	the	loop.	

for (initialization; termination; increment) { 
    /* ... statement(s) ... */ 
} 

22	

For	Loop	
•  The	equivalent	loop	writen	as	a	for	loop	

– CounJng	from	start	value	(zero)	up	to	(excluding)	
some	number	(10)	

for (int count = 0; count < 10; count++) { 
 cout << count; 

} 
cout << "Done!";  

for count in range(0, 10): 
    print count 
print "Done!" 

Python	

C++	

23	

For	Loop	
•  CounJng	from	25	up	to	(excluding)	50	in	steps	
of	5	

for (int count = 25; count < 50; count += 5){ 
 cout << count; 

} 
cout << "Done!";  

for count in range(25, 50, 5): 
    print count 
print "Done!" 

Python	

C++	

24	



2/4/16	

9	

25 

The	break	Statement	

•  The	break	statement	can	be	used	in	while,	
do-while,	and	for	loops	to	cause	premature	
exit	of	the	loop.			
	

•  THIS	IS	NOT	A	RECOMMENDED	CODING	
TECHNIQUE.	

26 

Example	break	in	a	for	Loop	

#include <iostream> 
using namespace std; 
 
int main( ) { 
   int i; 
 
   for (i = 1; i < 10; i++) { 
      if (i == 5) { 
         break; 
      } 
      cout << i << “ “; 
   } 
   cout << “\nBroke out of loop at i = “        << i; 
   return 0 ; 
} 
 

OUTPUT:    
 
 1 2 3 4 
 
Broke out of loop at i = 5. 

27 

The	con;nue	Statement	

•  The	con1nue	statement	can	be	used	in	
while,	do-while,	and	for	loops.	

•  It	causes	the	remaining	statements	in	the	
body	of	the	loop	to	be	skipped	for	the	
current	iteraJon	of	the	loop.	

•  THIS	IS	NOT	A	RECOMMENDED	CODING	
TECHNIQUE.	



2/4/16	

10	

28 

Example	conJnue	in	a	for	Loop	

#include <iostream> 
Using namespace std; 

 
int main( ) { 
   int i; 
 
   for (i = 1; i < 10; i++) { 
      if (i == 5) { 
         continue; 
      } 
      cout << i << “ “; 
   } 
   cout << “\nDone.\n”; 
   return 0 ; 
} 
 
 

OUTPUT: 
 
1 2 3 4 6 7 8 9 
 
Done. 

Predefined	FuncJons	
•  C++	has	standard	libraries	full	of	funcJons	for	
our	use!	

•  Must	"#include"	appropriate	library	
– e.g.,	

•  <cmath>,	<cstdlib>	(Original	"C"	libraries)	
•  <iostream>	(for	cout,	cin)		

3-32	
Copyright	©	2012	Pearson	
Addison-Wesley.	All	rights	

reserved.	

The	FuncJon	Call	
•  Sample	funcJon	call	and	result	assignment:	

	theRoot = sqrt(9.0); 

–  The	expression	"sqrt(9.0)"	is	known	as	a	
funcJon	call,	or	funcJon	invoca;on	

–  The	argument	in	a	funcJon	call	(9.0)	can	be	a	
literal,	a	variable,	or	a	complex	expression	

–  A	funcJon	can	have	an	arbitrary	number	of	arguments	

–  The	call	itself	can	be	part	of	an	expression:	
•  bonus	=	sqrt(sales	*	commissionRate)/10;	
•  A	funcJon	call	is	allowed	wherever	it’s	legal	to	use	
an	expression	of	the	funcJon’s	return	type	

3-33	
Copyright	©	2012	Pearson	
Addison-Wesley.	All	rights	

reserved.	



2/4/16	

11	

More	Predefined	FuncJons	
•  #include	<cstdlib>	

–  Library	contains	funcJons	like:	
•  abs() 	//	Returns	absolute	value	of	an	int	
•  labs() 	//	Returns	absolute	value	of	a	long	int	
•  *fabs() 	//	Returns	absolute	value	of	a	float	

–  *fabs()	is	actually	in	library	<cmath>!	
•  Can	be	confusing	
•  Remember:	libraries	were	added	awer	C++	was	
"born,"	in	incremental	phases	

•  Refer	to	appendices/manuals	for	details	

3-34	
Copyright	©	2012	Pearson	
Addison-Wesley.	All	rights	

reserved.	

Even	More	Math	FuncJons:		
Display	3.2		Some	Predefined		

FuncJons	(1	of	2)	

3-35	Copyright	©	2012	Pearson	Addison-Wesley.	
All	rights	reserved.	

Even	More	Math	FuncJons:		
Display	3.2		Some	Predefined		

FuncJons	(2	of	2)	

3-36	Copyright	©	2012	Pearson	Addison-Wesley.	
All	rights	reserved.	



2/4/16	

12	

Programmer-Defined	FuncJons	
•  Write	your	own	funcJons!	
•  Building	blocks	of	programs	

– Divide	&	Conquer	
– Readability	
– Re-use	

•  Your	"definiJon"	can	go	in	either:	
– Same	file	as	main()	
– Separate	file	so	others	can	use	it,	too	

3-40	
Copyright	©	2012	Pearson	
Addison-Wesley.	All	rights	

reserved.	

Components	of	FuncJon	Use	
•  3	Pieces	to	using	funcJons:	

– FuncJon	DeclaraJon/prototype	
•  InformaJon	for	compiler	
•  To	properly	interpret	calls	

– FuncJon	DefiniJon	
•  Actual	implementaJon/code	for	what		
funcJon	does	

– FuncJon	Call	
•  Transfer	control	to	funcJon		

3-41	
Copyright	©	2012	Pearson	
Addison-Wesley.	All	rights	

reserved.	

FuncJon	DeclaraJon	

•  Also	called	funcJon	prototype	
•  An	informaJonal	declaraJon	for	compiler	
•  Tells	compiler	how	to	interpret	calls	

–  Syntax:	
<return_type>	FnName(<formal-parameter-list>);	

–  Example:	
double	totalCost(	int	numberParameter,	

	double	priceParameter);	
•  Placed	before	any	calls	

–  In	declaraJon	space	of	main()	
–  Or	above	main()	in	global	space	

•  Detail:	parameter	types	are	mandatory,	but	names	
are	opJonal	

3-42	
Copyright	©	2012	Pearson	
Addison-Wesley.	All	rights	

reserved.	



2/4/16	

13	

FuncJon	DefiniJon	
•  ImplementaJon	of	funcJon	
•  Just	like	implemenJng	funcJon	main()	
•  Example:	

	
double totalCost(int numberParameter, 
                 double priceParameter) 
{ 
    const double TAXRATE = 0.05; 
    double subTotal; 
    subtotal = priceParameter * numberParameter; 
    return (subtotal + subtotal * TAXRATE); 
} 

3-43	
Copyright	©	2012	Pearson	
Addison-Wesley.	All	rights	

reserved.	

FuncJon	DefiniJon	Placement	
•  Placed	awer	funcJon	main()	

–  NOT	inside	funcJon	main()!	

•  FuncJons	are	equals;	no	funcJon	is	ever	
part	of	another	(well,	almost	never)	

•  Formal	parameters	in	definiJon	
–  Placeholders	for	data	passed	to	funcJon	
–  Variable	name	used	to	refer	to	data	in	definiJon	

•  return	statement	
–  Sends	data	back	to	caller	

3-44	
Copyright	©	2012	Pearson	
Addison-Wesley.	All	rights	

reserved.	

FuncJon	Call	
•  Just	like	calling	predefined	funcJon	
bill	=	totalCost(number,	price);	

•  Recall:	totalCost	returns	double	value	
–  Assigned	to	variable	named	"bill"	

•  Arguments	here:	number,	price	
–  Recall	arguments	can	be	literals,	variables,	
expressions,	or	combinaJon	

–  In	funcJon	call,	arguments	owen	called		
"actual	arguments"	

•  Because	they	contain	the	"actual	data"	being	sent	

3-45	
Copyright	©	2012	Pearson	
Addison-Wesley.	All	rights	

reserved.	



2/4/16	

14	

FuncJon	Example:		
Display	3.5		A	FuncJon	to	Calculate	Total	Cost	(1	of	2)	

3-46	Copyright	©	2012	Pearson	Addison-Wesley.	
All	rights	reserved.	

FuncJon	Example:		
Display	3.5		A	FuncJon	to	Calculate	Total	Cost	(1	of	2)	

3-47	Copyright	©	2012	Pearson	Addison-Wesley.	
All	rights	reserved.	

Declaring	Void	FuncJons	
•  “void”	funcJons	are	called	for	side	effects;	
they	don’t	return	any	usable	value	

•  DeclaraJon	is	similar	to	funcJons	returning	a	
value,	but	return	type	specified	as	"void"	

•  Example:	
– FuncJon	declaraJon/prototype:	
void	showResults(double	fDegrees,		
	 	 	 	 	 		double	cDegrees);	
•  Return-type	is	"void"		
•  Nothing	is	returned	

3-48	
Copyright	©	2012	Pearson	
Addison-Wesley.	All	rights	

reserved.	



2/4/16	

15	

More	on	Return	Statements	
•  Transfers	control	back	to	calling	funcJon	

–  For	return	type	other	than	void,	MUST	have	
return	statement	

–  Typically	the	LAST	statement	in		
funcJon	definiJon	

•  return	statement	opJonal	for	void	funcJons	
–  Closing	“}”	would	implicitly	return	control	from	
void	funcJon	

3-49	
Copyright	©	2012	Pearson	
Addison-Wesley.	All	rights	

reserved.	

main():	"Special"	
•  Recall:	main()	IS	a	funcJon	

•  "Special"	in	that:	
–  One	and	only	one	funcJon	called	main()	
will	exist	in	a	program	

•  Who	calls	main()?	
–  OperaJng	system	
–  TradiJon	holds	it	should	have	return	statement	

•  Value	returned	to	"caller"	à	Here:	operaJng	system	
–  Should	return	"int"	or	"void"	

3-50	
Copyright	©	2012	Pearson	
Addison-Wesley.	All	rights	

reserved.	

Parameters	
•  Two	methods	of	passing	arguments		
as	parameters	

•  Call-by-value	
– "copy"	of	value	is	passed	

•  Call-by-reference	
– "address	of"	actual	argument	is	passed	

4-52	
Copyright	©	2012	Pearson	
Addison-Wesley.	All	rights	

reserved.		



2/4/16	

16	

Call-by-Value	Parameters	
•  Copy	of	actual	argument	passed	

•  Considered	"local	variable"	inside	funcJon	
•  If	modified,	only	"local	copy"	changes	

–  FuncJon	has	no	access	to	"actual	argument"	
from	caller	

•  This	is	the	default	method	
–  Used	in	all	examples	thus	far	

4-53	
Copyright	©	2012	Pearson	
Addison-Wesley.	All	rights	

reserved.		

Call-by-Value	Example:		
Display	4.1		Formal	Parameter	Used		

as	a	Local	Variable	(1	of	3)		

4-54	Copyright	©	2012	Pearson	Addison-Wesley.	
All	rights	reserved.		

Call-by-Value	Example:		
Display	4.1		Formal	Parameter	Used		

as	a	Local	Variable	(2	of	3)		

4-55	Copyright	©	2012	Pearson	Addison-Wesley.	
All	rights	reserved.		



2/4/16	

17	

Call-by-Value	Example:		
Display	4.1		Formal	Parameter	Used		

as	a	Local	Variable	(3	of	3)		

4-56	Copyright	©	2012	Pearson	Addison-Wesley.	
All	rights	reserved.		

Call-by-Value	Pi�all	
•  	Common	Mistake:	

–  Declaring	parameter	"again"	inside	funcJon:	
double	fee(int	hoursWorked,	int	minutesWorked)	
{	
	int	quarterHours; 	 	//	local	variable	
	int	minutesWorked 	 	//	NO!	
}	

–  Compiler	error	results	
•  "RedefiniJon	error…"	

•  Value	arguments	ARE	like	"local	variables"	
–  But	funcJon	gets	them	"automaJcally"	

4-57	
Copyright	©	2012	Pearson	
Addison-Wesley.	All	rights	

reserved.		

Call-By-Reference	Parameters	
•  Used	to	provide	access	to	caller’s	
actual	argument	

•  Caller’s	data	can	be	modified	by	called	funcJon!	
•  Typically	used	for	input	funcJon	

–  To	retrieve	data	for	caller	
–  Data	is	then	"given"	to	caller	

•  Specified	by	ampersand,	&,	awer	type		
in	formal	parameter	list	

4-58	
Copyright	©	2012	Pearson	
Addison-Wesley.	All	rights	

reserved.		



2/4/16	

18	

Call-By-Reference	Example:		
Display	4.1		Call-by-Reference	Parameters	(1	of	3)	

4-59	Copyright	©	2012	Pearson	Addison-Wesley.	
All	rights	reserved.		

Call-By-Reference	Example:		
Display	4.1		Call-by-Reference	Parameters	(2	of	3)	

4-60	Copyright	©	2012	Pearson	Addison-Wesley.	
All	rights	reserved.		

Call-By-Reference	Example:		
Display	4.1		Call-by-Reference	Parameters	(3	of	3)	

4-61	Copyright	©	2012	Pearson	Addison-Wesley.	
All	rights	reserved.		



2/4/16	

19	

Call-By-Reference	Details	
•  What’s	really	passed	in?	
•  A	"reference"	back	to	caller’s	
actual	argument!	
– Refers	to	memory	locaJon	of		
actual	argument	

– Called	"address",	which	is	a	unique	number	
referring	to	disJnct	place	in	memory	

4-62	
Copyright	©	2012	Pearson	
Addison-Wesley.	All	rights	

reserved.		

Constant	Reference	Parameters	
•  Reference	arguments	inherently	
"dangerous"	
–  Caller’s	data	can	be	changed	
–  Owen	this	is	desired,	someJmes	not	

•  To	"protect"	data,	&	sJll	pass	by	reference:	
–  Use	const	keyword	

•  void	sendConstRef(	const	int	&par1,	
	 	 	const	int	&par2);	

•  Makes	arguments	"read-only"	by	funcJon	
•  No	changes	allowed	inside	funcJon	body	

4-63	
Copyright	©	2012	Pearson	
Addison-Wesley.	All	rights	

reserved.		

Parameters	and	Arguments	
•  Confusing	terms,	owen	used	interchangeably	
•  True	meanings:	

–  Formal	parameters	
•  In	funcJon	declaraJon	and	funcJon	definiJon	

–  Arguments	
•  Used	to	"fill-in"	a	formal	parameter	
•  In	funcJon	call	(argument	list)	

–  Call-by-value	&	Call-by-reference	
•  Simply	the	"mechanism"	used	in	plug-in	process	

4-64	
Copyright	©	2012	Pearson	
Addison-Wesley.	All	rights	

reserved.		



2/4/16	

20	

Mixed	Parameter	Lists	
•  Can	combine	passing	mechanisms	
•  Parameter	lists	can	include	pass-by-value	
and	pass-by-reference	parameters	

•  Order	of	arguments	in	list	is	criJcal:	
void	mixedCall(int	&	par1,	int	par2,	double	&	par3);	
–  FuncJon	call:	
mixedCall(arg1,	arg2,	arg3);	

•  arg1	must	be	integer	type,	is	passed	by	reference	
•  arg2	must	be	integer	type,	is	passed	by	value	
•  arg3	must	be	double	type,	is	passed	by	reference	

4-65	
Copyright	©	2012	Pearson	
Addison-Wesley.	All	rights	

reserved.		

Choosing	Formal	Parameter	Names	

•  Same	rule	as	naming	any	idenJfier:	
– Meaningful	names!	

•  FuncJons	as	"self-contained	modules"	
–  Designed	separately	from	rest	of	program	
–  Assigned	to	teams	of	programmers	
–  All	must	"understand"	proper	funcJon	use	
–  OK	if	formal	parameter	names	are	same	
as	argument	names	

•  Choose	funcJon	names	with	same	rules	

4-66	
Copyright	©	2012	Pearson	
Addison-Wesley.	All	rights	

reserved.		


