
1/28/16

1

C++ Primer
Part 1

CMSC 202

Topics Covered
•  Our first “Hello world” program
•  Basic program structure
•  main()
•  Variables, identifiers, types
•  Expressions, statements
•  Operators, precedence, associativity

2

1-3	

A	Sample	C++	Program	

Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

1/28/16

2

Display	1.1			
A	Sample	C++	Program	(2	of	2)	

1-4	Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

1-5	

C++	Variables	

•  C++	IdenGfiers	
–  Keywords/reserved	words	vs.	IdenGfiers	
–  Case-sensiGvity	and	validity	of	idenGfiers	
– Meaningful	names!	

•  Variables	
–  A	memory	locaGon	to	store	data	for	a	program	
– Must	declare	all	data	before	use	in	program	

Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

Variable Declaration

•  Syntax: <type> <legal identifier>;
•  Examples:

int sum;
float average;
double grade = 98;

–  Must be declared before being used
–  May appear in various places and contexts (described later)
–  Must be declared of a given type (e.g. int, float, char, etc.)

Semicolon required!

6

1/28/16

3

7

Variable Declarations (con’t)

When we declare a variable, we tell the
compiler:
•  When and where to set aside memory space for

the variable
•  How much memory to set aside
•  How to interpret the contents of that memory: the

specified data type
•  What name we will be referring to that location by:

its identifier

8

Naming Conventions
•  Naming conventions are rules for names of

variables to improve readability
•  CMSC 202 has its own standards, described in

detail on the course website
Ø Start with a lowercase letter
Ø  Indicate "word" boundaries with an uppercase letter
Ø Restrict the remaining characters to digits and

lowercase letters

topSpeed bankRate1 timeOfArrival

•  Note: variable names are case sensitive!

Data	Types:		
Display	1.2		Simple	Types	(1	of	2)	

1-9	Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

1/28/16

4

Data	Types:		
Display	1.2		Simple	Types	(2	of	2)	

1-10	Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

1-11	

Assigning	Data	

•  IniGalizing	data	in	declaraGon	statement	
–  Results	"undefined"	if	you	don’t!	

•  int	myValue	=	0;	

•  Assigning	data	during	execuGon	
–  Lvalues	(le\-side)	&	Rvalues	(right-side)	

•  Lvalues	must	be	variables	
•  Rvalues	can	be	any	expression	
•  Example:	
distance	=	rate	*	Gme;	
Lvalue:		"distance"	
Rvalue:	"rate	*	Gme"		

Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

1-12	

Data	Assignment	Rules	

•  CompaGbility	of	Data	Assignments	
–  Type	mismatches	

•  General	Rule:	Cannot	place	value	of	one	type	into	variable	of	
another	type	

–  intVar	=	2.99; 	//	2	is	assigned	to	intVar!	
•  Only	integer	part	"fits",	so	that’s	all	that	goes	
•  Called	"implicit"	or	"automaGc	type	conversion"		

–  Literals	
•  2,	5.75,	"Z",	"Hello	World"	
•  Considered	"constants":	can’t	change	in	program	

Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

1/28/16

5

1-13	

Escape	Sequences	

•  "Extend"	character	set	
•  Backslash,	\		preceding	a	character	

–  Instructs	compiler:	a	special	"escape	
character"	is	coming	

– Following	character	treated	as	
"escape	sequence	char"	

– Display	1.3	next	slide	

Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

Display	1.3			
Some	Escape	Sequences	(1	of	2)	

1-14	Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

Display	1.3			
Some	Escape	Sequences	(2	of	2)	

1-15	Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

1/28/16

6

1-16	

Literal	Data	

•  Literals	
–  Examples:	

•  2 	//	Literal	constant	int	
•  5.75 	//	Literal	constant	double	
•  'Z' 	//	Literal	constant	char	
•  "Hello	World\n" 	//	Literal	constant	string	

•  Cannot	change	values	during	execuGon	
•  Called	"literals"	because	you	"literally	typed"	
them	in	your	program!	

Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

Constants	

•  You	should	not	use	literal	constants	directly	in	
your	code	
–  It	might	seem	obvious	to	you,	but	not	so:	

•  “limit	=	52”:	is	this	weeks	per	year…	or	cards	in	a	deck?	

•  Instead,	you	should	use	named	constants	
– Represent	the	constant	with	a	meaningful	name	
– Also	allows	you	to	change	mulGple	instances	in	a	
central	place	

1-17	Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

Constants	

•  There	are	two	ways	to	do	this:	
– Old	way:	preprocessor	definiGon:	

	

#define WEEKS_PER_YEAR 52

(Note:	there	is	no	“=“)	
– New	way:	constant	variable:	

•  Just	add	the	keyword	“const”	to	the	declaraGon	

const float PI = 3.14159;

1-18	Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

1/28/16

7

1-19	

ArithmeGc	Operators:	
Display	1.4		Named	Constant	(1	of	2)	

•  Standard	ArithmeGc	Operators	
– Precedence	rules	–	standard	rules	

Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

ArithmeGc	Operators:	
Display	1.4		Named	Constant	(2	of	2)	

1-20	Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

Operators,	Expressions	

•  Recall:	most	programming	languages	have	a	
variety	of	operators:	called	unary,	binary,	and	
even	ternary,	depending	on	the	number	of	
operands	(things	they	operate	on)	

•  Usually	represented	by	special	symbolic	
characters:	e.g.,	‘+’	for	addiGon,	‘*’	for	
mulGplicaGon	

1-21	Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

1/28/16

8

Operators,	Expressions	

•  There	are	also	relaGonal	operators,	and	
Boolean	operators	

•  Simple	units	of	operands	and	operators	
combine	into	larger	units,	according	to	strict	
rules	of	precedence	and	associa-vity		

•  Each	computable	unit	(both	simple	and	larger	
aggregates)	are	called	expressions	

1-22	Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

Binary	Operators	

•  What	is	a	binary	operator?	
–  An	operator	that	has	two	operands	

<operand>	<operator>	<operand>	

–  ArithmeGc	Operators	
+			-			*				/			%	

–  RelaGonal	Operators	
	<					>					==					<=					>=	

–  Logical	Operators	
&&					||	

23

RelaGonal	Operators	
•  In	C++,	all	relaGonal	operators	evaluate	to	a	boolean	
value	of	either	true	or	false	.	
 x = 5;
 y = 6;

 x	>	y	will	always	evaluate	to	false	.	

•  C++	has	a	ternary	operator	–	the	general	form	is:	
	(condiGonal	expression)	?	true	case	:	false	case	;	

•  Ternary	example:	
Cout << ((x > y) ? "X is greater" : "Y is greater");

24

1/28/16

9

Unary	Operators	
•  Unary	operators	only	have	one	operand.	

!					++					--	
	

!		is	logical	negaGon,	!true	is	false,	!false	is	true	
	
++		and		--		are	the	increment	and	decrement	operators	
x++				a	post-increment	(pos|ix)	operaGon	
++x				a	pre-increment	(prefix)	operaGon	

•  ++	and	--	are	“shorthand”	operators.	More	on	these	
later…

25

Precedence,	AssociaGvity	
•  Order	of	operator	applicaGon	to	operands:	

•  Pos|ix	operators:		++			--			(right	to	le\)	
•  Unary	operators:		+			-			++			--			!			(right	to	le\)	
•  *			/			%		(le\	to	right)	
•  +			-			(le\	to	right)	
•  <				>				<=				>=	
•  ==				!=	
•  &&	
•  ||	
•  ?	:	
•  Assignment	operator:		=				(right	to	le\)	

26

AssociaGvity	

•  What	is	the	value	of	the	expression?	
	3	*	6		/	9	
	(3	*	6)	/	9	
	18	/	9	
	2	

•  What	about	this	one?	
	int	x,	y,	z;	
	x	=	y	=	z	=	0;	

	 		
1-27	Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

1/28/16

10

1-28	

ArithmeGc	Precision	

•  Precision	of	CalculaGons	
– VERY	important	consideraGon!	

•  Expressions	in	C++	might	not	evaluate	as		
you’d	"expect"!	

– "Highest-order	operand"	determines	type	
of	arithmeGc	"precision"	performed	

– Common	pi|all!	

Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

1-29	

ArithmeGc	Precision	Examples	

•  Examples:	
–  17	/	5		evaluates	to	3	in	C++!	

•  Both	operands	are	integers	
•  Integer	division	is	performed!	

–  17.0	/	5	equals	3.4	in	C++!	
•  Highest-order	operand	is	"double	type"	
•  Double	"precision"	division	is	performed!	

–  int	intVar1	=1,	intVar2=2;	
intVar1	/	intVar2;	

•  Performs	integer	division!	
•  Result:	0!	

Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

1-30	

Individual	ArithmeGc	Precision		

•  CalculaGons	done	"one-by-one"	
–  1	/	2	/	3.0	/	4		performs	3	separate	divisions.	

•  Firstà		1	/	2				equals	0	
•  Thenà	0	/	3.0	equals	0.0	
•  Thenà	0.0	/	4	equals	0.0!	

•  So	not	necessarily	sufficient	to	change	
just	"one	operand"	in	a	large	expression	
– Must	keep	in	mind	all	individual	calculaGons	
that	will	be	performed	during	evaluaGon!	

Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

1/28/16

11

1-31	

Type	CasGng		

•  CasGng	for	Variables	
–  Can	add	".0"	to	literals	to	force	precision	
arithmeGc,	but	what	about	variables?	

•  We	can’t	use	"myInt.0"!	
–  staGc_cast<double>intVar	 		
–  Explicitly	"casts"	or	"converts"	intVar	to		
double	type	

•  Result	of	conversion	is	then	used	
•  Example	expression:	
doubleVar	=	staGc_cast<double>intVar1	/	intVar2;	

–  CasGng	forces	double-precision	division	to	take	place	
among	two	integer	variables!	

Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

1-32	

Type	CasGng		

•  Two	types	
–  Implicit—also	called	"AutomaGc"	

•  Done	FOR	you,	automaGcally	
17	/	5.5	
This	expression	causes	an	"implicit	type	cast"	to	
take	place,	casGng	the	17	à	17.0	

–  Explicit	type	conversion	
•  Programmer	specifies	conversion	with	cast	operator	
staGc_cast<double>17	/	5.5	

	Same	expression	as	above,	using	explicit	cast	
staGc_cast<double>myInt	/	myDouble	

	More	typical	use;	cast	operator	on	variable	

Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

1-33	

Shorthand	Operators	

•  Increment	&	Decrement	Operators	
–  Just	short-hand	notaGon	
–  Increment	operator,	++	
intVar++;		is	equivalent	to	
intVar	=	intVar	+	1;	

– Decrement	operator,	--	
intVar--;			is	equivalent	to	
intVar	=	intVar	–	1;	

Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

1/28/16

12

1-34	

Shorthand	Operators:	Two	OpGons	

•  Post-Increment	
intVar++	
–  Uses	current	value	of	variable,	THEN	increments	it	

•  Pre-Increment	
++intVar	
–  Increments	variable	first,	THEN	uses	new	value	

•  "Use"	is	defined	as	whatever	"context"	
variable	is	currently	in	

•  No	difference	if	"alone"	in	statement:	
intVar++;	and	++intVar;	à	idenGcal	result	

Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

1-35	

Post-Increment	in	AcGon	

•  Post-Increment	in	Expressions:	
int	 	n	=	2,	

	valueProduced;	
valueProduced	=	2	*	(n++);	
cout	<<	valueProduced	<<	endl;	
cout	<<	n	<<	endl;	
–  This	code	segment	produces	the	output:	
4	
3	

–  Since	post-increment	was	used	

Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

1-36	

Pre-Increment	in	AcGon	

•  Now	using	Pre-increment:	
int	 	n	=	2,	

	valueProduced;	
valueProduced	=	2	*	(++n);	
cout	<<	valueProduced	<<	endl;	
cout	<<	n	<<	endl;	
–  This	code	segment	produces	the	output:	
6	
3	

–  Because	pre-increment	was	used	

Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

1/28/16

13

1-37	

Assigning	Data:	Shorthand	NotaGons	

•  Display,	page	14	

Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

1-38	

Console	Input/Output	

•  I/O	objects	cin,	cout,	cerr	
•  Defined	in	the	C++	library	called	
<iostream>	

•  Must	have	these	lines	(called	pre-	
processor	direcGves)	near	start	of	file:	
–  #include	<iostream>	
using	namespace	std;	

–  Tells	C++	to	use	appropriate	library	so	we	can	
use	the	I/O	objects	cin,	cout,	cerr	

Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

1-39	

Console	Output	

•  What	can	be	outpu�ed?	
–  Any	data	can	be	outpu�ed	to	display	screen	

•  Variables	
•  Constants	
•  Literals	
•  Expressions	(which	can	include	all	of	above)	

–  cout	<<	numberOfGames	<<	"	games	played.";	
2	values	are	outpu�ed:	

	"value"	of	variable	numberOfGames,	
	literal	string	"	games	played."	

•  Cascading:	mulGple	values	in	one	cout	

Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

1/28/16

14

1-40	

SeparaGng	Lines	of	Output	

•  New	lines	in	output	
–  Recall:	"\n"	is	escape	sequence	for	the		
char	"newline"	

•  A	second	method:	object	endl	

•  Examples:	
cout	<<	"Hello	World\n";	

•  Sends	string	"Hello	World"	to	display,	&	escape	
sequence	"\n",	skipping	to	next	line		

cout	<<	"Hello	World"	<<	endl;	
•  Same	result	as	above	

Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

Forma�ng	Output	

•  Forma�ng	numeric	values	for	output	
– Values	may	not	display	as	expected	
 cout << "The price is $" << price << endl;

•  If	price	(declared	a	double)	has	the	value	78.5,	you	
might	get	

–  The	price	is	$78.5000000	
–  The	price	is	$78.5	

•  Neither	is	what	you	want	
– Have	to	tell	C++	how	to	output	numbers.	

	

	
1-41	Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

1-42	

Forma�ng	Numbers	

•  "Magic	Formula"	to	force	decimal	sizes:	
	cout.setf(ios::fixed);
 cout.setf(ios::showpoint);
 cout.precision(2);

•  These	statements	force	all	future	cout’ed	values	to	
have	exactly	two	digits	a\er	the	decimal	place:	
–  Example:	
cout	<<	"The	price	is	$"	<<	price	<<	endl;	

•  Now	results	in	the	following:	
The price is $78.50

•  Can	modify	precision	"as	you	go"	as	well.	

Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

1/28/16

15

Forma�ng	Integers	

•  Field	width	and	fill	characters	
– Must	#include <iomanip>
–  setw(n)	sets	field	width	to	n	
–  cout.fill(c)sets	“fill”	character	to	c	

•  Example:	
int x = 7;

cout.fill('0'); // set fill character to zero

cout << setw(3) << x << endl;

Outputs	007 	(le\-pads	with	zeros)	

1-43	Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

C-strings	

•  C++	has	two	different	kinds	of	“string	of	characters”:	
–  the	original	C-string:	array	of	characters	
–  The	object-oriented	string	class	

•  C-strings	are	terminated	with	a	null	character	(‘\0’)	
	char myString[80];

declares	a	variable	with	enough	space	for	a	string	
with	79	usable	characters,	plus	null.	

1-44	Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

C-strings	

•  You	can	iniGalize	a	C-string	variable:	
	char	myString[80]	=	“Hello	world”;	

This	will	set	the	first	11	characters	as	given,	make	
the	12th	character	‘\0’,	and	the	rest	unused	for	now.	

1-45	Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

1/28/16

16

String	type	
•  C++	added	a	data	type	of	“string”	

– Not	a	primiGve	data	type;	disGncGon	will	be	made	
later	

– May	need	#include <string> at	the	top	of	the	
program	

– The	“+”	operator	on	strings	concatenates	two	
strings	together	

– cin	>>	str	where	str	is	a	string	only	reads	up	to	the	
first	whitespace	character	

1-46	Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

String	Equality	

•  In	Python,	you	can	use	the	simple	“==“	
operator	to	compare	two	strings:	

	if	name	==	“Fred”:	
•  In	C++,	you	can	use	“==“	to	compare	two	
string	class	items,	but	not	C-strings!	

•  To	compare	two	C-strings,	you	have	to	use	the	
funcGon	strcmp();	it	is	not	syntacGcally	
incorrect	to	compare	two	C-strings	with	“==“,	
but	it	does	not	do	what	you	expect…	

1-47	Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

1-48	

Input	Using	cin	

•  cin	for	input,	cout	for	output	
•  Differences:	

–  ">>"	(extracGon	operator)	points	opposite	
•  Think	of	it	as	"poinGng	toward	where	the	data	goes"	

–  Object	name	"cin"	used	instead	of	"cout"	
–  No	literals	allowed	for	cin	

•  Must	input	"to	a	variable"	

•  cin	>>	num;	
– Waits	on-screen	for	keyboard	entry	
–  Value	entered	at	keyboard	is	"assigned"	to	num	

Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

1/28/16

17

1-49	

PrompGng	for	Input:	cin	and	cout	

•  Always	"prompt"	user	for	input	
	cout	<<	"Enter	number	of	dragons:	";	
	cin	>>	numOfDragons;	

–  Note	no	"\n"	in	cout.		Prompt	"waits"	on	same	
line	for	keyboard	input	as	follows:	
	Enter	number	of	dragons:	____	

–  Underscore	above	denotes	where	keyboard	entry	
is	made	

•  Every	cin	should	have	cout	prompt	
– Maximizes	user-friendly	input/output	

Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

Input/Output	(1	of	2)	

1-50	Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

Input/Output	(2	of	2)	

1-51	Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

1/28/16

18

1-52	

Error	Output	

•  Output	with	cerr	
– cerr	works	almost	the	same	as	cout	
– Provides	mechanism	for	disGnguishing	
between	regular	output	and	error	output	

•  Re-direct	output	streams	
– Most	systems	allow	cout	and	cerr	to	be		
"redirected"	to	other	devices	

•  e.g.,	line	printer,	output	file,	error	console,	etc.	

Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

1-53	

Program	Style	
•  Bo�om-line:	Make	programs	easy	to	read	and	modify	

•  Comments,	two	methods:	
–  //	Two	slashes	indicate	enGre	line	is	to	be	ignored	
–  /*Delimiters	indicates	everything	between	is	ignored*/	
–  Both	methods	commonly	used	

•  IdenGfier	naming	
–  ALL_CAPS	for	constants	
–  lowerToUpper	for	variables	
–  Most	important:	MEANINGFUL	NAMES!	

Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

1-54	

Libraries	

•  C++	Standard	Libraries	
•  #include	<Library_Name>	

– DirecGve	to	"add"	contents	of	library	file	to	
your	program	

– Called	"preprocessor	direcGve"	
•  Executes	before	compiler,	and	simply	"copies"	
library	file	into	your	program	file	

•  C++	has	many	libraries	
–  Input/output,	math,	strings,	etc.	

Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

1/28/16

19

1-55	

Namespaces	
•  Namespaces	defined:	

–  CollecGon	of	name	definiGons	
•  For	now:	interested	in	namespace	"std"	

–  Has	all	standard	library	definiGons	we	need	
•  Examples:	
#include	<iostream>	
using	namespace	std; 		

•  Includes	enGre	standard	library	of	name	definiGons	

•  					#include	<iostream>using	std::cin; 		
using	std::cout;	

•  Can	specify	just	the	objects	we	want	

Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

1-56	

Summary	1	

•  C++	is	case-sensiGve	
•  Use	meaningful	names	

– For	variables	and	constants	
•  Variables	must	be	declared	before	use	

– Should	also	be	iniGalized	
•  Use	care	in	numeric	manipulaGon	

– Precision,	parentheses,	order	of	operaGons	
•  #include	C++	libraries	as	needed	

Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

1-57	

Summary	2	

•  Object	cout	
–  Used	for	console	output	

•  Object	cin	
–  Used	for	console	input	

•  Object	cerr	
–  Used	for	error	messages	

•  Use	comments	to	aid	understanding	of	
your	program	
–  Do	not	overcomment	

Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

1/28/16

20

58

Using	the	C	Compiler	at	UMBC	

•  Invoking	the	compiler	is	system	dependent.	
	

– At	UMBC,	we	have	two	C	compilers	available,	cc	
and	gcc.			

– For	this	class,	we	will	use	the	gcc	compiler	as	it	is	
the	compiler	available	on	the	Linux	system.	

59

Invoking	the	gcc	Compiler	

   At	the	prompt,	type	

   	g++ -Wall program.cpp –o program.out

   	where	program.cpp	is	the	C++	program	source	file	
(the	compiler	also	accepts	“.cc”	as	a	file	extension	for	
C++	source)	

•  -Wall		is	an	opGon	to	turn	on	all	compiler	warnings	
(best	for	new	programmers).		

60

The	Result	:			a.out	

•  If	there	are	no	errors	in	program.cpp,	this	command	
produces	an	executable	file,	which	is	one	that	can	be	
executed	(run).	

•  If	you	do	not	use	the	“-o”	opGon,	the	compiler	names	
the	executable	file	a.out	.	

•  To	execute	the	program,	at	the	prompt,	type	
	 	 		./program.out	

•  Although	we	call	this	process	“compiling	a	program,”	
what	actually	happens	is	more	complicated.	

1/28/16

21

UNIX	Programming	Tools	

•  We	will	be	using	the	“make”	system	to	
automate	what	was	shown	in	the	previous	
few	slides	

•  This	will	be	discussed	in	lab	

1-61	Copyright	©	2012	Pearson	Addison-Wesley.	All	rights	reserved.		

