
CMSC 202 Midterm Exam 2 Spring 2015

1. (15 points) There are at least six errors or omissions in the following class definition. Find
five errors and write the the line numbers and corrections in the space provided below.

 1 class Train {
 2 public:
 3 Train() : m_cars = NULL, m_numCars = 0, m_diesel = false {}
 4
 5 Train(TrainCar *cars, int numCars)
 6 : m_numCars(numCars), m_diesel(false) {
 7 m_cars = new TrainCar[numCars];
 8 for (int i = 0; i < numCars; i++)
 9 m_cars[i] = cars[i];
 10 }
 11
 12 Train(const Train &t)
 13 : m_numCars(t.m_numCars), m_diesel(t.m_diesel) {
 14 m_cars = t.m_cars;
 15 }
 16
 17 ~Train() {
 18 delete m_cars;
 19 }
 20
 21 int setDiesel() const {
 22 m_diesel = true;
 23 }
 24
 25 ostream& operator<<(ostream& sout, const Train& t) {
 26 cout << "The train has " << t.m_length << " cars.";
 27 return sout;
 28 }
 29
 30 private:
 31 Car *m_cars;
 32 int m_numCars;
 33 bool m_diesel;
 34 };

Line Number Correction

3 m_cars(NULL), m_numCars(0), m_diesel(false)

14 Replace shallow copy of t.m_cars with deep copy

18 delete [] m_cars

21 change int to void

21 delete const

25 add friend

26 change cout to sout

26 change t.m_length to t.m_numCars

Page � of �1 6

CMSC 202 Midterm Exam 2 Spring 2015

2. (24 points) Complete the code:
a. I want to append the value of the int variable numCars to the int vector trains:

trains. ;

b. I want to call the Abides() function of the Dude object pointed to by dPtr:

Dude = new Dude;

dPtr Abides();

c. The function buggy() may throw an exception of type BuggyDataEx, which has a
what() function. I want my code to handle the exception should it occur:

{  
 buggy();

 } catch () {  
 out << ex.what() << endl;  
 // handle the exception  
 }

d. I am overloading the assignment operator. I need to be sure I handle self-assignment
(e.g. x = x) properly and that I return the appropriate value:

Train& Train::operator=(const Train& t) {

 if (this !=) {

 // execute only if NOT self-assignment

 }

 return ;

}

e. I am writing the FreightTrain class which is derived from the Train class:

class FreightTrain ! {
 // class declaration goes here

 };

push_back(numCars)

*dPtr

 ->

try

BuggyDataEx &ex

&t

*this

 : public Train

Page � of �2 6

3 points each

CMSC 202 Midterm Exam 2 Spring 2015

3. The class Car has two private class variables, defined in Car.h: 
 Seat *m_seats;  
 unsigned int m_numSeats;  
 The following constructor is defined in Car.cpp:
 1 Car::Car(unsigned int numSeats) : m_numSeats(numSeats) {
 2 if (numSeats == 0)
 3 m_seats = NULL;
 4 else
 5 m_seats = new Seat[m_numSeats];
 6 }  

a. (5 points) Why should the programmer define a copy constructor rather than rely on the
default copy constructor provided by the compiler? 

(12 points) Complete the implementation of the Car assignment operator: 

 

Car& Car::operator=(const Car& c) {

 if (this != &c) {

 if (m_seats != NULL) {

 delete [] m_seats;
 m_seats = NULL;  

 }  

 if (c.m_numSeats > 0 {  

 m_seats = new Seat[c.m_numSeats];

 for (int i = 0; i < c.m_numSeats;i++)
 m_seats[i] = c.m_seats[i];

 }
 m_numSeats = c.m_numSeats;
 }
 return *this;
}

Page � of �3 6

The default copy constructor provides a shallow copy and will not copy the m_seats array.
The programmer must write a deep copy constructor.

CMSC 202 Midterm Exam 2 Spring 2015

 

4. (14 points) True or False?

a. The data members of an object are accessed using the "." operator.

b. Overloading implements the "was a" relationship.

c. A derived class object can call a protected member function of a base class.

d. Redefining (or overriding) is when a derived class implements a function with
the same signature (name and parameter types) as a function in the base class.

e. Overloaded operators must never return a const value.

f. When a derived class object is destroyed, the base class destructor is called
before the derived class destructor.

g. An object may be used as the return value of a function.

h. A shallow copy will copy data in dynamically allocated arrays so long as the
arrays aren't too long.

i. Exceptions allow low-level code to handle errors so that high-level code
doesn't have to.

j. Inheritance implements the "is a" relationship.

k. Elements of a vector can only be accessed using the at() function.

l. A const member function can be called on a const or non-const object.

m. A friend function can access the private functions and variables of the class.

n. For every new there should be a delete.

Page � of �4 6

True
True

True

True

True
True

True

True

False

False
False

False

False

False

CMSC 202 Midterm Exam 2 Spring 2015

5. (10 points) Consider the following program consisting of the classes Vehicle and Tractor
and a main() function:

 1 #include <iostream>
 2 using namespace std;
 3
 4 class Vehicle {
 5 public:
 6 void move(){ cout << "The vehicle is moving." << endl; }
 7 };
 8
 9 class Tractor : public Vehicle {
 10 public:
 11 Tractor() : Vehicle(), m_make("John Deere"){}
 12 Tractor(string make) : Vehicle(), m_make(make){}
 13 void move(){ cout << m_make << " tractor is moving." << endl; }
 14 void plow(){
 15 cout << m_make << " tractor is plowing the field." << endl; }
 16 private:
 17 string m_make;
 18 };
 19
 20 int main() {
 21 Vehicle vehicle;
 22 Tractor tractor("Massey-Ferguson");
 23
 24 vehicle.move();
 25 tractor.move();
 26
 27 vehicle.plow();
 28
 29 return 0;
 30 }

a. Line 27 causes an error when the program is compiled. Why?  

�  

b. If Line 27 is deleted and the program is compiled and run, what output will it produce?

�

�

Page � of �5 6

plow() is a method of the derived class; it can not be called on a Vehicle object.

The vehicle is moving.

Massey-Ferguson tractor is moving.

CMSC 202 Midterm Exam 2 Spring 2015

6. A linked list is used to store integers in increasing order. The nodes of the linked list have two
public variables: int m_value and Node *m_next. The first node of the list is a "dummy
node" and the pointer variable m_head points to the dummy node.

a. (12 points) The program must insert a new node with value val into the list: 

 1 Node *current = m_head;

 2 while(!) {
 3 if(current->m_next->m_value > val) {
 4 Node* ptr = new Node(val);

 5 ptr->m_next = ! ;
 6 current->m_next = ptr;
 7 return;
 8 }
 9 current = current->m_next;
 10 }

 11 current->next = ! ;

b. (8 points) The program must remove all nodes with a given value val:  

 1 Node *current = m_head;
 2 while(current->m_next != NULL) {

 3 if(! == val) {
 4 Node *ptr = current->m_next;
 5 current->m_next = current->m_next->m_next;

 6 ! ;
 7 }
 8 current = current->m_next;
 9 }

current->m_next != NULL

current->m_next

new Node(val)

current->m_next->m_value

delete ptr

Page � of �6 6

