
4/7/2014

1

Inheritance II

CMSC 202

Warmup

Define a class called Giraffe that inherits 
publicly from a class called Mammal

Inheritance Review

Base class

More general class

Derived class

More specific class

Uses, adds, extends, or replaces base-class functionality

class BaseClass

{ };

class DerivedClass : public BaseClass

{ };



4/7/2014

2

Inherited Functionality
Derived class

Has access to all public methods of base class

“Owns” these public methods

Can be used on derived class objects!

BaseClass b;

b.BaseClassMethod();

b.DerivedClassMethod();

DerivedClass d;

d.BaseClassMethod();

d.DerivedClassMethod();

Protection Mechanism

Public

Anything can access these methods/data

Private

Only this class can access these methods/data

Protected

Only derived classes (and this class) can access 
these methods/data

Trip to the Zoo
class Animal

{

public:

void Print() { cout << “Hi, my name is” << m_name; }

protected:

string m_name;

};

class Lion : public Animal

{

public:

Lion(string name) { m_name = name; }

};

void main()

{

Lion lion(“Fred”);

lion.Print();

}

Animal

Lion

Hi, my name is Fred



4/7/2014

3

Constructors and Destructors

Constructors

Not inherited

Base class constructor is called before Derived class 
constructor

Use initializer-list to call non-default base-class constructor

Similar for copy constructor

Destructors

Not inherited

Derived class destructor is called before Base class

We’ll look more carefully at these next week

Constructor and Destructor

class Animal

{

public:

Animal() { cout << “Base constructor” << endl; }

~Animal() { cout << “Base destructor” << endl; }

};

class Lion : public Animal

{

public:

Lion() { cout << “Derived constructor” << endl; }

~Lion() { cout << “Derived destructor” << endl; }

};

int main()

{

Lion lion;

return 0;

}

Will print:

Base constructor

Derived constructor

Derived destructor

Base destructor

Non-default Constructor
class Animal

{

public:

Animal(string name) { m_name = name; }

protected:

string m_name;

};

class Lion : public Animal

{

public:

Lion(string name) : Animal(name) { }

};

What’s 

going on 

here?



4/7/2014

4

operator=

operator=

Not inherited

Well, at least not exactly

Need to override this!

Can do:
Base base1 = base2;

Base base1 = derived1;

Cannot do:
Derived derived1 = base1;

Why won’t this work??

Operator=

class Animal

{

public:

Animal(string name) 

{ m_name = name; }

Animal& operator=(Animal& a) 

{ m_name = a.m_name; }

protected:

string m_name;

};

class Lion : public Animal

{

public:

Lion(string name) 

: Animal(name) { }

};

int main()

{

Lion lion(“Fred”);

Animal animal1(“John”);

Animal animal2(“Sue”);

animal1 = animal2;

animal2 = lion;

lion = animal1;

// Uh Oh!!!

return 0;

}
Compiler looks for 

an operator= that 

takes a Lion on 

the left-hand side 

– doesn’t find 

one!!!

Method Overriding

Overriding

Use exact same signature

Derived class method can

Modify, add to, or replace base class method

Derived method will be called for derived objects

Base method will be called for base objects

Pointers are special cases

More on this next week!



4/7/2014

5

Method Overriding
class Animal

{

public:

void Eat() { cout << “I eat stuff” << endl; }

};

class Lion : public Animal

{

public:

void Eat() { cout << “I eat meat” << endl; }

};

void main()

{

Lion lion;

lion.Eat();

Animal animal;

animal.Eat();

}

I eat meat

I eat stuff

Method Overloading

Overloading

Use different signatures

Derived class has access to both…

Not usually thought of as an inheritance topic

Pointers are tricky

More on this next week!

Method Overloading
class Animal

{

public:

void Eat() { cout << “I eat stuff” << endl; }

};

class Lion : public Animal

{

public:

void Eat(string food) { cout << “I ate a(n) ” << food << endl; }

};

void main()

{

Lion lion;

lion.Eat(“steak”);

lion.Eat();

}

I ate a(n) steak

I eat stuff



4/7/2014

6

Challenge

Complete the Giraffe and Mammal classes

Implement at least one overloaded method

Implement at least one protected data member

Implement a constructor

Implement a destructor

Implement a non-default constructor


