GUI Programming

CMSC 202

Why Java GUI Development?

e After all CMSC 202 is is about Object Oriented
Programming, not GUIs

 GUIs are a good example of OOP
 GUIs are another example of containers

Java and GUIs

 There are two primary built-in packages that provide
GUI components in Java

— java.awt.*

— java.swing.*
 The Abstract Window Toolkit (AWT)

— Java's original GUI toolkit

— Leverages native toolkits to draw widgets
* Swing

— Offers a more complete set of widgets

— System or Java look and feel

— Leverages AWT throughout APIs

Containers

* |nJava, all GUI components go into a
Container - which is simply a widget that can

contain other widgets

* Atop-level container can stand alone in a
window environment
—e.g. JFrame

 Some containers may only be added to other
containers
— e.g. JPanel

Components

* A componentis simply an object that has a
graphical representation that can be displayed
on screen

A component acts as a base class for all swing
components, except top level containers

 Examples of components include:

— JButton, JComboBox, JLabel, JList, IMenuBar,
JPanel, JSlider, JSpinner, JTable, etc...

JFrame

* A JFrame is often the highest-level widget in
your application in which all other widgets will
get packed

* JFrames are usually constructed using the
following constructor:

public JFrame(String title);

Common JFrame Methods

add(Component c)
— adds objects to the frame
setVisible(boolean b)
— makes the frame visible
setLocation(int x, int y)
— aligns top left corner of frame with coordinates on screen
setSize(int width, int height)
— sets size of frame in pixels

setDefaultCloseOperation(int operation)

— defines what should happen when the window is closed,
usually call with the constant
WindowConstants.EXIT _ON_CLOSE

JFrame Example

import javax.swing.JFrame;
import javax.swing.WindowConstants;

public class UpperCaseConverter extends JFrame {

public UpperCaseConverter() {
super("Upper Case Converter");
setLocation(100, 100);
setSize (480, 320);
setDefaultCloseOperation(WindowConstants.EXIT _ON_CLOSE);
I3

public static void main(String[] args) {
UpperCaseConverter ucc = new UpperCaseConverter();
ucc.setVisible(true);

JFrame Example

Layout Managers

* Every container has an underlying default
LayoutManager

* The LayoutManager determines:
— The size of the objects in the container and
— How the objects will be laid out

 The default LayoutManager for a JFrame is a
BorderLayout

BorderLayout

The BorderLayout manager divides container into five
regions

— BorderLayout.NORTH
— BorderLayout.SOUTH
— BorderLayout.CENTER
— BorderLayout.EAST
— BorderLayout.WEST

One component per region

Component takes size of region

Center region is greedy

Components are added to center by default

JButton

* A JButton provides a basic button that a user can
interact with

* A JButton may consist of a combination of label
and/or icon and is typically constructed using one
of the following constructors:

— JButton(lcon icon)

* Creates a button with an icon
— JButton(String text)

e Creates a button with text

— JButton(String text, Icon icon)
* Creates a button with initial text and an icon

BorderLayoutExample

import java.awt.BorderLayout;

import javax.swing.JButton;
import javax.swing.JFrame;

public class BorderLayoutExample extends JFrame {

public BorderLayoutExample(String name) {
super(name);
setSize(300, 300);
add(new JButton("North"), BorderLayout.NORTH);

(
add(new JButton("South"), BorderLayout.SOUTH);
add(new JButton("East"), BorderLayout.EAST);
add(new JButton("West"), BorderLayout.WEST);
add(new JButton("Center"), BorderLayout.CENTER);

}

public static void main(String argsl[]) {
BorderLayoutExample b = new BorderLayoutExample("BorderLayoutExample");
b.setVisible(true);

}
}

BorderLayoutExample

West Center East

(South)

JPanel

* Say we want to put several buttons in the
North region of the GUI, but BorderLayout
only allows one component per region...

e Add a second level container like a JPanel

* JPanels have a FlowLayout manager by default

FlowLayout

Lays components in a fluid direction as
determined by its orientation

By default, orientationisL—> R, T - B

Possible to set the horizontal and vertical
width between components

Components take preferred size

— For buttons, preferred size is the size of the text
within them

FlowLayout

/] e

public UpperCaseConverter() {

// code from previous slides ...

JPanel topPanel = new JPanel();
JButton upperButton = new JButton("To Upper");
JButton clearButton = new JButton("Clear");
topPanel.add(upperButton);
topPanel.add(clearButton);

add (topPanel, BorderLayout.NORTH);

[/ «an

FlowLayout

JLabel

The JLabel represents a static label

Like buttons, they can consist of text and/or images and are
usually constructed using one of the following
constructors...

— JLabel()

* Creates a JLabel instance with no image and with an empty string for
the title.

— JLabel(lcon image)

* Creates a JLabel instance with the specified image.
— JLabel(String text)

* Creates a JLabel instance with the specified text.

— JLabel(String text, Icon icon, int horizontalAlignment)

* Creates a JLabel instance with the specified text, image, and
horizontal alignment

JTextField

A JTextField provides an entry for a single line of text

* A JTextField may be constructed with a set width or with
default text and is usually constructed using one of the
following constructors:

— JTextField()

e Constructs a new TextField

— JTextField(int columns)

e Constructs a new empty TextField with the specified number of
columns

— JTextField(String text)
e Constructs a new TextField initialized with the specified text
— JTextField(String text, int columns)

* Constructs a new TextField initialized with the specified text and
columns

Overriding a Panel’s Layout Manager

* You can also over-ride the layout manager for
most containers

* For example, we can change a JPanel’s layout
from a flow layout to a border layout if that’s
more appropriate for what we’re laying out

Overriding a Panel’s Layout Manager

/] e

public UpperCaseConverter() {

// code from previous slides ...

JPanel bottomPanel = new JPanel();
bottomPanel.setLayout(new BorderLayout());

JLabel enterTextLabel = new JLabel("Enter text: ");
JTextField textField = new JTextField(20);
bottomPanel.add(enterTextLabel, BorderLayout.WEST);
bottomPanel.add(textField, BorderLayout.CENTER);
add(bottomPanel, BorderLayout.SOUTH);

/] e

Overriding a Panel’s Layout Manager

eNO Upper Case Converter

(ToUpper) (Clear)

Enter text:

JTextArea

A JTextArea is similar to a JTextField, except that it is
capable of displaying multiple lines of text

* A JTextArea can be constructed with a given size and/or
default text and is typically constructed using one of the
following constructors:

— JTextArea()
* Constructs a new TextArea.
— JTextArea(int rows, int columns)

e Constructs a new empty TextArea with the specified number of rows
and columns.

— JTextArea(String text)
* Constructs a new TextArea with the specified text displayed.
— JTextArea(String text, int rows, int columns)

* Constructs a new TextArea with the specified text and number of
rows and columns.

JTextArea

/] eus

public UpperCaseConverter() {
// code from previous slides ...
JTextArea textArea = new JTextArea();

textArea.setEditable(false);
add(textArea, BorderLayout.CENTER);

/]«

JTextArea

Responding to Actions

* Currently our button doesn't do anything when
pressed, to respond to this action we need to add
an ActionlListener

* An ActionListener can be added to a button using
the following method:

— public void addActionListener(ActionListener |);

* The ActionListener interface is quite simple, in
that it only requires one to implement a single
method:

— void actionPerformed(ActionEvent e)

Letting our class implement
ActionListener

* One approach to implementing an
ActionListener is to have “this” class
implement it

button.addActionListener(this);

Implementing ActionListener as an
Anonymous Class
* Another approach is to actually define an
inline anonymous class to handle the actions

e The class is considered inline as it is declared
in the context of another class

* |tis also considered anonymous, as the new
class is not given a name

Simple Action Listeners

/] au
public UpperCaseConverter() {

// code from previous slides ...
upperButton.addActionListener(new ActionListener() A
public void actionPerformed(ActionEvent e) {

System.out.println("button pressed");
s

});
clearButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
System.out.println("button pressed");
¥

});

/] e

Manipulating Widgets

* Rather than simply printing “button pressed”
let’s modify our ActionListener to read the
value of the JTextField and write to the

JTextArea
* As such we're going to need to references to
those widgets — we have 2 options
— Store the widgets as members of the class
— Mark the widget references as final

More Interesting Action Listeners

/] v
public UpperCaseConverter() {

// code from previous slides...
// with upperButton and clearButton declared final

upperButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
textArea.setText(textField.getText().toUpperCase());
¥

});

clearButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
textArea.setText("");
textField.setText("");
textField. requestFocus();

More Interesting Action Listeners

e NO Upper Case Converter

(To Upper Y (Clear)

o

ASDF FOO BAR BAZ QWERTY

Enter text: asdf Foo Bar Baz qwerty

Look and Feel

* By default, Java uses its own Look and Feel

* |f you'd like to use the native look and feel for
your OS, simply perform the following before
displaying any windows:

try {
UIManager.setLookAndFeel (
UIManager.getSystemLookAndFeelClassName()
);
} catch (Exception e) {
// handle or ignore
I3

Scratching the Surface

* What we've looked at here is really just the tip
of the iceberg, there a lot to swing

e Some selected references...
— A Visual Guide to Layout Managers

— Swing Features

— A Visual Guide to Swing Components
— Trail: Creating a GUI With JFC/Swing

