
CMSC 202

Exceptions

11/2010 2

Error Handling

l  In the ideal world, all errors would occur when
your code is compiled. That won’t happen.

l  Errors which occur when your code is running
must be handled by some mechanism that
allows the originator (detector) of the error to
pass information to the recipient of the error
who will know how to deal with the error.

11/2010 3

Procedural Error Handling

l  In procedural languages, error handling was usually by
convention. Programmers simply agreed on some
standard way to report errors.

l  Usually a function returned a value which had to be
checked by the caller
l  Not part of the language
l  Completely unenforceable
l  Programmers tended to ignore them

-  Did you even know that C’s printf() has a return
value?

l  Checking all return values would result in unreadable code

4

Bank Account Deposit Example
public static void main(String[] args){

 BankAccount account = new BankAccount(100.00);

 Scanner input = new Scanner(System.in);
 // get amount to deposit
 System.out.println("Enter a Number: ");
 int amt = input.nextInt();

 if(amt > 0){
 account.deposit(amt);
 }
 else{
 // reprompt the user?
 // exit the system?
 // user a default amount?
 }

}

11/2010 5

Bank Account Deposit Example

 In a banking application written in a procedural approach, we might write a
function that verifies that the amount to deposit is acceptable. This function
returns an int which must be interpreted by the calling code.

public static final int BAD_AMOUNT = 1;
public static final int OK_AMOUNT = -1;

private static int verifyAmount(double amount){
 if(amount < 0){
 return BAD_AMOUNT;
 }
 return OK_AMOUNT;

}

11/2010 6

Errors By Convention
In main, the code calls the function and checks the return value

if(verifyAmount(amt) == BankAccount.OK_AMOUNT){
 account.deposit(amt);
}
else{
 // reprompt the user?
 // exit the sytem?
 // user a default amount?

}

public void deposit(double amount){
 this.balance += amount;
}

11/2010 7

Better Error Handling
l  Separation of error detection from

error handling
l  Class implementer detects the error
l  Class user decides what to do about the error

-  Exit the program
-  Output a message and continue the program
-  Retry the function that had the error
-  Ask the user what to do
-  Many other possibilities

l  Reduces complexity of code
-  Code that works when nothing unusual happens is separated from

the code that handles exceptional situations
l  Enforced by language

11/2010 8

“Exceptional”

l  What’s an exceptional situation?
l  As defined in the Sun Java tutorial:

l  An exception is an event, which occurs during the execution of
a program, that disrupts the normal flow of the program's
instructions.

l  The program encounters a situation it doesn’t know how

to handle

l  Different than a “normal problem”

l  Program has enough information to know what to do next

11/2010 9

Exception Handling

l  Removes error handling code from the code that caused
the error

l  Makes it possible to catch all kinds of errors, errors of a
certain type, or errors of related types

l  Is used in situations in which the system cannot recover.
l  Is used when the error will be dealt with by a different part

of the program (i.e., different scope) from that which
detected the error

l  Can be slow, but we don't care because errors occur very
infrequently

11/2010 10

Introduction to Exception Handling

l  Java library software (or programmer-defined code)
provides a mechanism that signals when something
unusual happens
l  This is called throwing an exception

l  In another place in the program, the programmer must
provide code that deals with the exceptional case
l  This is called handling the exception

Copyright	
 ©	
 2008	
 Pearson	
 Addison-­‐Wesley.	

	
 All	
 rights	
 reserved	

11/2010 11

try-throw-catch

l  The basic way of handling exceptions in Java
consists of the

 try-throw-catch trio

11/2010 12

try-throw-catch example
public void deposit(double amount){
 try{
 if(amount < 0)
 throw new Exception("Deposit Negative Amount");
 this.balance += amount;
 }
 catch(Exception e){
 // do something about the exception
 }
}

l  This example is essentially a if-else expression, but to see the true separation of
error detection from error handling we should look at how the try-throw-catch
mechanism works.

11/2010 13

The try block
l  Code which calls a method that might throw an

exception is placed inside a try block
l  The try block contains the code for the basic

algorithm
l  It tells what to do when everything goes smoothly
l  It is called a try block because it "tries" to execute

the case where all goes as planned
l  Code which handles the exception is placed into

a catch block
l  Catch block immediately follows the try block

11/2010 14

Better Bank Account Deposit Code
public static void main(String[] args){

 BankAccount account = new BankAccount(100.00);
 try{
 Scanner input = new Scanner(System.in);
 // get amount to deposit
 System.out.println("Enter a Number: ");
 double amt = input.nextDouble();
 account.deposit(amt);
 }
 catch(Exception e){

 // do something with the exception
 }
}

11/2010 15

try-throw-catch Mechanism
l  When an exception is thrown, the execution of the

surrounding try block is stopped
l  Normally, the flow of control is transferred to another

portion of code known as the catch block
l  The value thrown is the argument to the throw operator,

and is always an object of some exception class
l  The execution of a throw statement is called throwing

an exception

Copyright	
 ©	
 2008	
 Pearson	
 Addison-­‐Wesley.	

	
 All	
 rights	
 reserved	

11/2010 16

try-throw-catch Mechanism
l  When an exception is thrown, the catch block begins

execution
l  The catch block has one parameter
l  The exception object thrown is plugged in for the catch block

parameter
l  The execution of the catch block is called catching the

exception, or handling the exception
l  Whenever an exception is thrown, it should ultimately be

handled (or caught) by some catch block

Copyright	
 ©	
 2008	
 Pearson	
 Addison-­‐Wesley.	

	
 All	
 rights	
 reserved	

11/2010 17

try-throw-catch Mechanism
catch(Exception e) { . . . }

n  The identifier e in the above catch block heading is called the catch
block parameter

n  The catch block parameter does two things:
1.  It specifies the type of thrown exception object that the catch block

can catch (e.g., an Exception class object above)
2.  It provides a name (for the thrown object that is caught) on which it can

operate in the catch block
–  Note: The identifier e is often used by convention, but any non-

keyword identifier can be used

Copyright	
 ©	
 2008	
 Pearson	
 Addison-­‐Wesley.	
 	

All	
 rights	
 reserved	

11/2010 18

try-throw-catch Mechanism

l  When a try block is executed, two things can
happen:
1. No exception is thrown in the try block

–  The code in the try block is executed to the end of the
block

–  The catch block(s) is (are) skipped
–  The execution continues with the code placed after the
catch block(s)

Copyright	
 ©	
 2008	
 Pearson	
 Addison-­‐Wesley.	
 	

All	
 rights	
 reserved	

11/2010 19

try-catch Control Flow

try
{
 // code that might throw an Exception
 // more code
}

catch(Exception e)
{
 // handle error here
}

// Method continues here

Case 1
The try block does NOT
throw an Exception.

When the try block
completes, the catch block
is skipped

11/2010 20

try-throw-catch Mechanism

2. An exception is thrown in the try block and
caught in the catch block
–  The rest of the code in the try block is skipped
–  Control is transferred to a following catch block (in

simple cases)
–  The thrown object is plugged in for the catch block

parameter
–  The code in the catch block is executed
–  The code that follows that catch block is executed (if

any)

Copyright	
 ©	
 2008	
 Pearson	
 Addison-­‐Wesley.	
 	

All	
 rights	
 reserved	

11/2010 21

try-catch Control Flow

try
{
 throw new Exception(“message”);
 // more code
}

catch(Exception e)
{
 // handle error here
}

// Method continues here

Case 2
The try block
throws an Exception.

The try block terminates,
the catch block executes,
code following the catch
block executes

11/2010 22

Exception Classes
l  The Java language defines a basic Exception class

l  There are more exception classes in the standard Java libraries
l  New exception classes can be defined like any other class

l  All predefined exception classes have the following
properties:
l  There is a constructor that takes a single argument of type
String

l  The class has an accessor method getMessage that can
recover the string given as an argument to the constructor when
the exception object was created

l  All programmer-defined classes should have the same
properties

Copyright	
 ©	
 2008	
 Pearson	
 Addison-­‐Wesley.	
 	

All	
 rights	
 reserved	

11/2010 23

Exception Classes from Standard Packages

l  The predefined exception class Exception is
the root class for all exceptions
l  Every exception class is a descendent class of the

class Exception
l  Although the Exception class can be used

directly in a class or program, it is most often used
to define a derived class

l  The class Exception is in the java.lang
package, and so requires no import statement

Copyright	
 ©	
 2008	
 Pearson	
 Addison-­‐Wesley.	

	
 All	
 rights	
 reserved	

11/2010 24

Using the getMessage Method
. . . // method code
try
{
 . . .
 throw new Exception(StringArgument);
 . . .
}
catch(Exception e)
{
 String message = e.getMessage();
 System.out.println(message);
 System.exit(0);
} . . .

Copyright	
 ©	
 2008	
 Pearson	
 Addison-­‐Wesley.	

	
 All	
 rights	
 reserved	

11/2010 25

Using the getMessage Method
l  Every exception has a String instance variable that

contains some message
l  This string typically identifies the reason for the exception

l  In the previous example, StringArgument is an
argument to the Exception constructor

l  This is the string used for the value of the string instance
variable of exception e
l  Therefore, the method call e.getMessage() returns this string

Copyright	
 ©	
 2008	
 Pearson	
 Addison-­‐Wesley.	
 	

All	
 rights	
 reserved	

Where does it start?

Baz()
Called from Bar()
Generates the

exception

Bar()
Called from Foo()

Foo()
Called from Main()

main()

Regular modular programming will
cause the call stack to grow.

Each frame of the stack will execute a
series of statements that will
eventually lead to the program to
terminate successfully.

Any time an Exception is generated the
series of operations that would
normally occur in sequential
ordering is halted at that statement.

Why does my program crash?
The exception will be generated in a

method.

Throw will throw the Exception
Object down the stack to a catch
block.

When no catch block is present in
the previous stack frame, it
thrown down until it is caught.

If nothing catches that exception,
your program will crash.

Method where error
occurred

Method without a
catch statement

Method without a
catch statement

main() without a
catch statement

?????

11/2010 28

Why does my program crash?

If every method up to and including the main method simply includes a
throw an exception, that exception may be thrown but never caught
In a GUI program (i.e., a program with a windowing interface), nothing
happens - but the user may be left in an unexplained situation, and the
program may be no longer be reliable
In non-GUI programs, this causes the program to terminate with an error
message giving the name of the exception class
Every well-written program should eventually catch every exception by a
catch block in some method

Copyright	
 ©	
 2008	
 Pearson	
 Addison-­‐Wesley.	

	
 All	
 rights	
 reserved	

