
University of Maryland
Baltimore County

CMSC 202 – Computer Science II

Fall 2004

Mid-Term Exam

Sections 0201 – 0206

Lecture Hours: Monday – Wednesday 5:30 PM – 6:45 PM

Exam Date: Wednesday 10/20/2004

Exam Duration: 5:30 PM – 6:45 PM

Instructor: Sa’ad Raouf

Name:

SSN:

Score:

Section:
(Circle your Section Number below)

Section TA Day Time Room
0201 Patrick & Carrie Monday 7:30 - 8:20pm ECS 104 A
0202 Patrick & Carrie Wednesday 7:30 - 8:20pm ECS 104 A
0203 Patrick & Ryan Monday 2:00 - 2:50pm ECS 104 A
0204 Patrick & Ryan Wed 2:00 - 2:50pm ECS 104 A
0205 Patrick & Carrie Monday 11:00 - 11:50am ECS 104 A
0206 Patrick & Carrie Wed 11:00 - 11:50am ECS 104 A

Notes:

1. This exam is a closed book, and a closed notes exam.
2. All answers are to be written on the enclosed exam sheets. Scratch

sheets are not allowed. If necessary, you can use the back of the exam
sheets.

3. You will need to present your Photo ID when handing in the exam. No
exceptions.

4. Please hand in your exam with your section number circled. If your
section number is not circled, your exam will not be graded.

 UMBC - CMSC 202 - Fall 2002 - Exam 1

Instructor: Sa'ad Raouf 10/18/2005 1

1) (2 points each) Write True or False in the TRUE/FALSE column:

 TRUE/FALSE
a) argv[1] is always the name of the executable program

b) Class mutator methods can only be declared as const methods

c) If a mutator method receives invalid data, then the mutator should
terminate the program.

d) The following vector declaration causes the constructor for the Student
class to be invoked:
vector <Student> myStudents;

e) In the method for the post increment operator for the Money class:
 Money operator++(int dummy);
the value of the dummy parameter is zero.

f) In C++, the stream extraction operator is defined as operator>>.

g) endl and \n are the same, there is no difference between using endl
and \n in a cout statement

h) A static data member of a class is considered a “global” data member
for all instances of the class

i) Class methods cannot be declared as static methods.

j) Mr. Raouf mentioned in the lecture that operator overloading is an
example of Syntactic Sugar

 UMBC - CMSC 202 - Fall 2002 - Exam 1

Instructor: Sa'ad Raouf 10/18/2005 2

2. (6 points) List 3 issues where vectors are superior to arrays. Give an
example for each issue. Use the array declaration int myArray[10]; for
your examples.

Answer:

1. The size of the array must be declared at compile time and cannot be changed
(without using dynamic memory allocation).

2. We must use a separate variable to keep track of the number of elements in the
array that are actually used.

3. If we use an array index that's out-of-bounds, our program crashes.
4. The name of an array is like a pointer which can be very confusing (e.g. when

passed to a function).
5. Elements of an array are not automatically initialized.
6. We can't assign one array to another unless we write code to do so.

3. (4 points) Show the output from the following code snippet:

• What will the value of i be after the for loop has completed?
• What will the size of the vector be after the for loop has completed?

Answer:
Infinite loop

vector < int > integers (5);
for (unsigned int i = 0; i < integers.size(); i++)
{
 cout << integers.at(i) << endl;
 integers.push_back(i);
}

 UMBC - CMSC 202 - Fall 2002 - Exam 1

Instructor: Sa'ad Raouf 10/18/2005 3

4. (4 points) Rewrite the following code to use call by reference parameters

instead of pointers.
// function prototype
void add1 (int * pMyInteger);

//function definition
void add1 (int * pMyInteger)
{
 (* pMyInteger)++;

}

Answer:

5. (6 points) Write the C++ statements for the following:
• Create a vector of Bicycle objects called myBicycles
• Create an instance of a Bicycle class called someBicycle, using the

default constructor.
• Insert the someBicycle object at the end of the myBicycles vector.

void add1 (int & MyInteger);

void add1(int & MyInteger)
{

 MyInteger++;

}

vector <Bicycle> myBicycles;

Bicycle someBicycle;

myBicycles.push_back(someBicycle);

 UMBC - CMSC 202 - Fall 2002 - Exam 1

Instructor: Sa'ad Raouf 10/18/2005 4

6. (5 points) Given that Circle is a class that contains a Point class, and you

noticed the following constructor for the Circle class during your visit to the
C++ Country Club:

Circle (Point center, float radius);

Explain if you should speak out, or remain silent, and why?

ANSWER:

I would speak out and suggest that passing Point by value is

inefficient. I would suggest that the following be used

Circle (const Point & center);

7. (5 points) Given the following function header for a class accessor called

GetDayOfYear, explain the significance of each const listed below:

 const DayOfYear & Vacation::GetDayOfYear () const

answer:
const DayOfYear & returns a const reference

const ensures that the method does not alter any of the data members of the
class.

 UMBC - CMSC 202 - Fall 2002 - Exam 1

Instructor: Sa'ad Raouf 10/18/2005 5

8. (6 points) What will the following declarations do:

a. vector <Tractor * > machineShed;

b. vector < vector < string> > Words;

c. vector <char> WordsInAlphabet(26);

Answer:
a.
b.
c

9. (4 points) Given the following class definition, write the statement to
initialize static data member m_turn to 0;

class Server
{
 public:

 private:

 static int m_turn;
};

Answer:

int Server::m_turn = 0;

 UMBC - CMSC 202 - Fall 2002 - Exam 1

Instructor: Sa'ad Raouf 10/18/2005 6

10. (5 points) Rewrite the following constructor to use a member initialization

list
someClass::someClass(string someName, float someMoney)
{

m_Name = someName;
m_Money= someMoney;

}
Answer:

someClass::someClass(string someName, float someMoney):
m_Name (someName) ,
m_Money(someMoney)

{
}

11. (5 points) Since there is no way to prevent the user of a class from

passing invalid parameter values to a constructor, define a mechanism
that can indicate to the user of the class if invalid parameters were passed
to the constructor.

ANSWER:

Create a private Boolean data member that is set to true if the
parameter data is correct, and set to false otherwise. Create a public
accessor method to return the value of the Boolean data member

12. (5 points) Given that Toy is a user defined data type, explain each of the
following statements:

• Toy myToy();
• Toy myToy;

ANSWER:

• Toy myToy(); is a function prototype for a function that returns a
Toy object, and is not passed any parameters (void)

• Toy myToy; calls the default constructor for the Toy class to
create an object called myToy

 UMBC - CMSC 202 - Fall 2002 - Exam 1

Instructor: Sa'ad Raouf 10/18/2005 7

13. During one of the lectures where object oriented concepts were first introduced to you,
we discussed a conceptual design for a Command Line class. The following is a class
definition for CCommandLine class:

The class CCommandLine is used to model argc, and argv as defined in main(). The class
designer has decided to use 2 private data members:

• int m_argc: used to represent the number of arguments, same as the argc in main
• vector < string > m_argv: used to store the command line parameters, where each

parameter is a string, same as the char * argv[] in main.

Given the above class definition, write the code for the following methods:
• (5 points) CCommandLine(): default constructor, use a member initialization list where

applicable

CCommandLine::CCommandLine()
: m_argc(0)
{
}

• (5 points) CCommandLine(int argc, char * argv[]): constructor, use a member
initialization list where applicable

CCommandLine::CCommandLine(int argc, char * argv[])
: m_argc(argc)
{
 for (int i = 0; i < m_argc; i++)
 m_argv.push_back(argv[i]);

}

class CCommandLine
{
public:
 CCommandLine();
 CCommandLine(int argc, char * argv[]);
 CCommandLine(int argc, const vector <string> & argv);
 string getParameter(unsigned int index);
 bool findParameter(string parameter);
 unsigned int getParameterCount();
 vector <string> getAllParameters();
 const CCommandLine operator+(const string & LHS);
private:
 int m_argc;
 vector <string> m_argv;

};

 UMBC - CMSC 202 - Fall 2002 - Exam 1

Instructor: Sa'ad Raouf 10/18/2005 8

• (5 points) CCommandLine(int argc, const vector <string> & argv): constructor, use a

member initialization list where applicable

CCommandLine::CCommandLine(int argc, const vector <string> & char argv)
: m_argc(argc)
{
 for (int i = 0; i < m_argc; i++)
 m_argv.push_back(argv[i]);
}

• (5 points) bool findParameter(string parameter): a method that returns true if the
parameter is found in the parameter list, else returns false

bool CCommandLine::findParameter(string parameter)
{
 unsigned int i = 0;
 unsigned int size = m_argv.size();
 while (i < size)
 {
 if (parameter == m_argv[i])
 return true;
 i++;
 }
 return false;
}

• (5 points) const CCommandLine operator+(const string & LHS): overloaded + operator
to add a string to the m_argv, and to increment m_argc;

const CCommandLine CCommandLine::operator+(const string & LHS)
{

 m_argc++;
 m_argv.push_back(LHS);
 return CCommandLine(m_argc, m_argv);
}

