
CMSC 202 Project 1 Fall 2015

Project 1: Breaking Zendian Ciphers

Introduction
The Zendians send encrypted messages to their spies and operatives by reading the letters of
the messages over a radio. We are able to intercept the radio messages and, fortunately, the
Zendians are poor cryptographers, so we are able to break the messages. However, they send
so many encrypted messages that we need to be able to quickly decipher a message and
determine whether it is interesting. In this project, you will be working with a sample of ten
encrypted Zendian messages and a list of five cribs, words that are known to occur at the start
of interesting messages. For each message, you will compute all possible decipherments; if
you find one that starts with a crib, print the deciphered message to the console. If no
decipherment of a particular message starts with a crib, then the message is not interesting.

The cipher used by the Zendians is called a Caesar Cipher. Many of you are already familiar
with the Caesar cipher: it is one of the oldest and simplest encipherment algorithms. It is named
after Julius Caesar and does in fact date to the Roman Empire.

The process for enciphering with the Caesar cipher is:

1. Write down the message to be enciphered. To keep things simple, we will only use
uppercase letters and spaces for our messages, with no punctuation or lowercase
letters. Spaces will be treated as word delimiters and will not be enciphered. The
letters of a message are naturally identified with the integers 0 - 25. 

2. Choose a key from the letters A - Z. The key is also identified with an integer in the
range 0 - 25. 

3. For each letter in the message, add the key modulo 26 to produce the cipher character.

Example: Encipher the message "ATTACK AT DAWN" with key "R".

Exercise: How do you decrypt a Caesar-enciphered message? The following cipher message
was Caesar-enciphered using key "D". Decipher it.

PHHWPHRQWKHEHQFKLQWKHVTXDUH

Message A T T A C K A T D A W N

Message as Integers 0 19 19 0 2 10 0 19 3 0 22 13

Key R R R R R R R R R R R R

Key as Integer 17 17 17 17 17 17 17 17 17 17 17 17

Message + Key mod 26 17 10 10 17 19 1 17 10 20 17 13 4

Cipher R K K R T B R K U R N E

Page � of �1 4

CMSC 202 Project 1 Fall 2015

If you completed the exercise, you have seen that it is easy to decipher a message if you know
the key. What if you do not know the key? Since there are only 26 possible keys, it is easy to try
them all; for each putative decryption, you can check whether the message begins with a crib,
and if it does, you can assume that the key is correct. 
 
The Wikipedia article provides additional background and examples.

Assignment
Your assignment is to write a program that can decipher Caesar-enciphered messages with
each of the 26 possible keys, and for each decipherment determine whether it begins with one
of several cribs. If a decipherment is found to start with one of the cribs, then print the value of
the key and the deciphered message; if not of the decipherments begin with a crib, indicate that
the the message is not “interesting.” To test your program, you are provided with 10 cipher
messages and five cribs.

To begin, copy the the project header file to your working directory:

linux2[12]% cp /afs/umbc.edu/users/c/m/cmarron/pub/cmsc202/proj1.h .
linux2[13]% ls
proj1.h

Note: Do not omit the '.' at the end of the cp command.
 
Read the comments in the the interface file proj1.h carefully. It is essential that your
implementation function as described in the comments and in accordance with any additional
requirements described in this document.

The enciphered messages and cribs are defined in two arrays, cipher and cribs, in
proj1.h. The arrays are two-dimensional arrays of characters, but can be thought of as one-
dimensional arrays of C-strings. Remember that a C-string is an array of characters, so
individual characters can be accessed using subscript notation.

Your program will be tested using a suite of tests written in the Google Test framework. A
subset of the tests will be made available to you prior to submitting your project, but you are
responsible for fully testing your program. In particular, it must work correctly with data other
than that provided in cipher and cribs.

In addition to passing functional tests, your project submission must satisfy the following general
requirements:

1. Your submission must include the following files: a main program (proj1.cpp), the header
file (proj1.h), and a functioning Makefile.  

2. The main program must contain main()and must implement the functions Decipher()
and SolveCipher() following their prototypes and descriptions in the header file. It is not
necessary to use additional helper functions with main(), but if additional functions are
used, their prototypes must be added at the top of proj1.cpp (after all #includes but
before main()) and their definitions must follow main().

Page � of �2 4

https://en.wikipedia.org/wiki/Caesar_cipher
http://umbc.edu/users/c/m/cmarron/pub/cmsc202/proj1.h

CMSC 202 Project 1 Fall 2015

3. You may not change the header file proj1.h,

4. Running make with your Makefile must produce the executable file proj1 (not Proj1 or
proj1.out, etc.).

Helpful Tips
There are a number of string manipulation functions defined in the cstring library that you
may find useful:

• strncpy(destination, source, max) — copies the source string to the
destination string, but will copy at most max characters. max would typically be set to
the length of the destination array. 

• strncmp(string1, string2, max) — compares the first max bytes of string1 and
string2; returns 0 if they are equal, -1 if string1 < string2, and +1 if string1 >
string2. 

• strnlen(string, max) — returns the length of string, up to max characters.

Recall that '%' is the C/C++ modulo operator. For example, to compute the sum of x and y
modulo 15, you would use the expression (x + y) % 15.

Sample Program Build and Execution
linux3[10]% make
g++ -c proj1.cpp
g++ proj1.o -o proj1
linux3[11]% ./proj1
Message #1 was not interesting.
Message #2, Key H
 DROP THE PACKAGE BEHIND THE DUMPSTER
Message #3 was not interesting.
Message #4 was not interesting.
Message #5, Key N
 AGENT BRAVO WILL GATHER THE PACKAGE
Message #6 was not interesting.
Message #7, Key D
 ATTACK TO BEGIN AT NOON
Message #8, Key L
Message #9, Key V
 WEATHER CLOUDY MODERATE WINDS
Message #10 was not interesting.

Page � of �3 4

CMSC 202 Project 1 Fall 2015

Project Submission
To submit your project, you need to copy the required files to your submit directory on GL. If
you followed the instructions in Lab 1, you will have a directory called cs202proj in your home
directory, in which case you can copy the files from your working directory with the command

linux2[14]% cp proj1.cpp proj1.h Makefile ~/cs202proj/proj1

Once the files have been copied, you may test your submitted files in the submit directory:

linux2[15]% cd ~/cs202proj/proj1

then build and execute the program as shown above.

Page � of �4 4

