
11/16/15

1

Iterators and STL Containers

CMSC 202

STL
Standard Template Library

Why use it?

Good programmers know what to write.
Great ones know what to reuse.

Paraphrase from “The Cathedral and the Bazaar”

STL provides reusable code

Linked list, vector, map, multimap, pair, set, multiset, queue, stack,
…

Don’t reinvent the wheel…

List
Linked List container

No random access (does not support operator[] or at())

Essential operations
insert()
push_back()
push_front()
pop_front()
pop_back()
erase()

11/16/15

2

Set and Multiset
Set

Sorted collection of unique elements
Cannot change value of an element
No random access

Multiset
Allows duplicate elements

Essential operations
insert()
erase()
count(element)
find(element)

Pair
Pair

Connects two items into a single object

Essential data
first

gets the first member of pair
second

gets the second member of pair

Example
pair<int, string> hello(5, “Hello”);
cout << hello.second << endl; // Hello

Map and Multimap
Map

Stores key/value pairs, sorted by key
Value is modifiable, key is not
Key must be unique

Multimap
Allows duplicate keys

Essential operations
insert()
erase()
count(key)
find(key)

11/16/15

3

Iterators
Problem

Not all STL classes provide random access
How do we do “for each element in X”?

Solution
Iterators
“Special” pointers
“Iterate” through each item in the collection
Several types

Bidirectional
Const bidirectional

Why is this
necessary?

Why can’t we
just use a

normal
pointer?

Where have
we seen these

before???

What does
const mean?

Iterators
Essential operations

begin()
Returns an iterator to first item in collection

end()
Returns an iterator ONE BEYOND the last item in

collection
How does this simplify things?

If the collection is empty, begin() == end()

Set Example
int main ()

{

 set<int> iSet;

 iSet.insert(4);

 iSet.insert(12);

 iSet.insert(7);

 // this looping construct works for all containers

 set<int>::const_iterator position;

 for (position = iSet.begin(); position != iSet.end(); ++position)

 {

 cout << *position << endl;

 }

 return 0;

}

11/16/15

4

Map Example
int main ()

{

 // create an empty map using strings

 // as keys and floats as values

 map<string, float> stocks;

 // insert some stock prices

 stocks.insert(make_pair("IBM", 42.50));

 stocks.insert(make_pair("XYZ", 2.50));

 stocks.insert(make_pair("WX", 0.50));

 // instantiate an iterator for the map

 map<string, float>::iterator position;

 // print all the stocks

 for (position = stocks.begin(); position != stocks.end(); ++position)

 cout << "(" << position->first << ", " << position->second << ")\n";

 return 0;

}

Iterators - Overloaded Operators

* Dereferences the iterator
++ Moves forward to next element
-- Moves backward to previous element
== True if two iterators point to same element
!= False if two iterators point to different elements
= Assignment, makes two iterators point to same element

Iterators and Collection Methods
erase(iterator)

Parameter is an iterator
Can have as many iterators into a collection

as necessary

11/16/15

5

Practice
Create a vector of integers
Using an iterator and a loop

Change each integer to be the value of its square
Using an iterator and a second loop

Print each item in reverse order

Challenge
Using a map, create a collection of student grades

Key
Student ID

Value
Grade they want in this course

Store 10 students and their desired grade
Iterate through the map

Print each key/value pair in the map
What sorting mechanism did the map use?

How would we specify that we wanted it sorted another way?

