
11/9/15

1

Templates I

CMSC 202

Warmup
•  Define a class that represents an index out

of bounds exception
•  Your class should have:

•  Data member that is the index requested
•  Data member that is the function name that throws

the exception
•  Data member that is the vector/array that the index

was out of bounds on

Recall…
•  Polymorphism

•  “Many shapes”
•  Types seen so far?

•  Ad-hoc
•  Functional overloading

•  Dynamic (true)
•  Virtual member functions, dynamic binding

•  What’s left?
•  Parameterized

•  Parameter-based (type based), static binding
•  Function & class-based templates

11/9/15

2

Problem?
•  Common algorithms/actions for all/many

types
•  Swap
•  findMax/Min/Worst/Better
•  Sort
•  search

Imagine…
float max (const float a, const float b);
int max (const int a, const int b);
Rational max (const Rational& a, const Rational& b);
myType max (const myType& a, const myType& b);

Code for each looks the same…

if (a < b)

return b;
else

return a;
We want to reuse
this code for ALL

types!

Templates
Fundamental idea

Write one implementation
Use for any type
Compiler generates appropriate code

Syntax

template <class T>
retType funcName (…, T varName, …)
{

// some code…

}

Important!

Wherever you would
usually use the type

of the templating
object, you use T

instead!

T can be any identifier
you want

11/9/15

3

Template Example
Function Template

template <class T>
T max (const T& a, const T& b)

{
if (a < b)

return b;
else

return a;
}

Compiler generates code based on the argument type
 cout << max(4, 7) << endl;

Generates the following:

int max (const int& a, const int& b)
{

if (a < b)
return b;

else
return a;

}

Notice how ‘T’ is
mapped to ‘int’

everywhere in the
function…

A Closer Look…
Function Template

template <class T>
T max (const T& a, const T& b)
{

if (a < b)
return b;

else
return a;

}

•  Notice
•  Types that you want to use with this function must

support the operator<
•  Compiler will give you an error if this operator is not

supported

New variables of type T?
•  Let’s think about Swap()

•  There is a templated swap() already defined for your
use…

•  What might it look like?
template <class T>

void Swap (T& a, T& b)

{

T temp;
temp = a;
a = b;

b = temp;

}

Assuming the code:
double x = 7.0;
double y = 5.4;
Swap(x, y);

Compiler generates:
void Swap (double & a, double & b)
{

 double temp;
 temp = a;
 a = b;
 b = temp;

}

11/9/15

4

What’s wrong here?
template <class T>
T max (const T& a, const T& b)
{

if (a < b)
return b;

else
return a;

}

•  Assume the code:
char* s1 = “hello”;

char* s2 = “goodbye”;
cout << max(s1, s2);

Compiler generates:

char* max (const char*& a,
 const char*& b)

{
 if (a < b)
 return b;
 else
 return a;

}

Is this what we want?

How can we fix this?
•  Create an explicit version of max to handle char*’s

•  Compiler will match this version and not use the template…

char* max(char *a, char *b)

{
if (strcmp(a,b) < 0)

return b;
else

return a;

}

Compiling Templates
•  First trick…

•  Since compiler generates code based on function
call…

•  If you don’t actually CALL a templated function, it
MIGHT not get compiled!
•  Or it might only get a general syntax check without strong

type-checking…

•  As you create templated functions…
•  Create a “dummy” main to call the function
•  Similarly with templated classes…

11/9/15

5

Practice
•  Implement a templated function that

•  Searches a vector of some type
•  Finds the minimum element

•  You may assume the operator< is defined
•  Returns that element

Challenge
•  Create a templated function

•  Sorts a vector of a templated type
•  Use any style of sort you like

•  Quicksort
•  Linear
•  Insertion
•  Merge
•  Bubble

•  Assume that operator> and operator< are overloaded
•  (so that you can use either…)

•  Try and do it in the fewest lines of code!

