Exceptions

CMSC 202

10/12/15

Outline

» Dynamic memory and classes
» Destructors

» Call by reference

» Exceptions

Dynamic Memory and Classes

Types of memory from Operating System

Stack — local variables and pass-by-value parameters are
allocated here

Heap — dynamic memory is allocated here
C
malloc() — memory allocation
free() — free memory
C++
new — create space for a new object (allocate)
delete — delete this object (free)

New Objects

new
Works with primitives
Works with class-types
Syntax:
type* ptrName = new type;
type* ptrName = new type(params) ;

10/12/15

New Examples

int* intPtr = new int;

int*: intPtr int:

Car* carPtr = new Car(“Nissan”, “Pulsar”);
Car*: carPtr Car:

=

Customer:

Customer™: custPtr

Customer* custPtr = new Custome

Deletion of Objects

delete
Called on the pointer to an object
Works with primitives & class-types
Syntax:
delete ptrName;
Example:
delete intPtr;
intPtr = NULL;

delete carPtr;
carPtr = NULL;

delete custPtr;
custPtr = NULL;

Video!

Pointer Fun with Binky
http://cslibrary.stanford.edu/104/

10/12/15

Practice

Assume you have a
Shoe class: Shoe* shoePtr;
Create a pointer to a Shoe

Connect the pointertoa shoePtr = new Shoe;
new Shoe object

Delete your Shoe object
Set pointer to null delete shoePtr;

shoePtr = NULL;

Destructors

Constructors
Construct or create the object
Called when you use
Destructors
Destroy the object
Called when you use
Why is this needed?
Dynamic memory WITHIN the class!

Syntax:
class ClassName

{

public:
ClassName () ; // Constructor
~ClassName () ; // Destructor

// other stuff..

Destructor Example

class Car
{
public:
Car (const strings make,

Car

{

::Car(const string& make,

int year)

m_make = new string (make) ;
m_year = new int(year);

10/12/15

int year); }

~Car(); // Destructor
Car::~Car()

private: {
string* m_make; delete m_make;

int* m_year; m_make = NULL; // cleanup

delete m_year;
m_year = NULL; // cleanup

Dynamic Memory Rules

Classes

If dynamic data
MUST have constructor
MUST have destructor

Delete
After delete — always set pointer to NULL
Security
“For every , there must be a ”

Practice

Dynamically create an array of 50 Shoes
Delete your array of shoes
“Clear” the pointer

Shoe* shoeArray = new Shoe[50];

delete [] shoeArray;
shoeArray = NULL;

Call by Reference

“Call by reference” is a parameter-passing
scheme where a reference to the original
caller’'s argument is passed to a function
This allows caller’s variable to be modified by

called function

Originally, C (and earliest versions of C++)
implemented this with pointers

So we pass in the address of, i.e., a usable
reference to, the caller’s variable

10/12/15

Call by Reference

C++ has true call by reference
Changes to the parameter change the argument
Function declares that it will change argument
Share memory
Essentially a pointer
Syntax:

retType funcName (typrName, R I G

Look familiar?

Call by Reference Example

void mystery(int &b)
{

bt++; Use th

cout << b << endl; :satcés
}
N N b:
int main() Allocate |_|
{ a:7

int a = 7;
mystery(a) ;

cout << a << endl;
return 0;

Value versus Reference?

Why choose value or reference?
Value
Data going in, nothing coming out
Only one piece of data coming out (return it!)
Reference
Need to modify a value
Need to return more than one piece of data
Pass an array (by default are by reference, no ‘&’
needed)

Pass a large object (efficiency); use const to protect
from modification

10/12/15

Call-by-Reference — Issue!

What happens in the following?

void mystery(int &b)
{

bt+;

cout << b << endl;
}

int main()
{
mystery (6) ;

return 0;

Exceptions

Common runtime errors:

» Memory allocation error when using new
» File open error

» Out of bounds array subscript

+ Division by zero

* Function PreConditions not met

Error Handling Techniques

assert (condition)
if the condition is false, the program terminates

Ignore the error or try to handle the error internally
devastating for real products, but maybe okay for your

own software

Set an indicator for other code to detect (e.g., return

a flag)
Issue an error message and exit

10/12/15

Error Handling, Currently

Commonly, error handling is interspersed
Advantage
Error processing close to error
Disadvantage
Code cluttered from error processing
Application cannot handle error as it wants to
Layering, Encapsulation
Low-level code should not process errors
Low-level code should alert high-level code
High-level code should handle errors

Fundamental Issue

Class user may handle error in any way
Exit program
Output message & continue
Retry function
Ask user what to do

Class implementer can’ t know which the user of

class wants

Exception Handling

New Strategy
Low-level code detects error
“Throws” error to higher level code
High-level code processes error
Positives
Code that caused error loses control
Catch all kinds of errors
Usually used in recoverable situations

10/12/15

Exception Syntax

Three primary components:
Try/catch block
try {
// some code to try
}
catch (ObjectType& obj) {
// handle the error, if any
}
Throwing an exception
throw ObjectType (parameters) ;
Specifying which exceptions a function throws
void funcName (parameter) throw ObjectType { }

Simple Throw

double quotient(int num, int den) {
if (den == 0)
throw “Error: Divide by Zero”;
return static_cast<double>(num) / den;

}

int main() {
try {
cout << quotient(7, 0) << endl;
}
catch (string& e) {
cout << e << endl;
}
return 0;

10/12/15

Throwing an Exception

class DivByZeroEx
{
public:

DivByZercEx () : m_message ("divide by 0") { /* no code */ }

const strings what () const { return m message; }

private:
const string m_message;

}i

double quotient(int num, int den)

1{
if (den == 0)
throw DivByZeroEx () ;
return static_cast<double>(num) / den;
}
Catching an Exception
int main()

{
int numerator, denominator;
double result;

cout << "Input numerator and denominator" << endl;

cin >> numerator >> denominator;

try (
result = quotient (numerator, denominator);

cout << "The quotient is: " << result << endl;

}
catch (DivByZeroExs ex) { // exception handler

cerr << "Exception occurred: " << ex.what() << endl;
}

// code continues here

' ;
Exception Classes
Name?
Reflects error, not code that throws error
Data?

Basic information or a message
Parameter value
Name of function that detected error
Description of error

Methods?
Constructor (one or more)
Accessor (one or more)

Exception Examples

Good example of an Exception Class [~ —~ T T~ 7= = === -
/i N ivep P r Code that catches this
class NegativeParameter : exception gets the parameter
{ name and its value
public: L I

NegativeParameter(const string& parameter,
int value);
int GetValue () const;
const string& GetParameter() const;
private:
int m_value;
string m_paramName;

Yy mmmmemee === 1

Code that catches this
exception gets no other
information — just the “type”
of exception thrown

1
1
// Trivial example of an Exception Class |
class MyException { }; 1

10/12/15

Exception Specification

Functions/Methods can specify which exceptions they throw (or
that they don’ t throw any)

Syntax:

// Throws only 1 type of exception
retType funcName(params) throw (exception);

// Throws 2 types of exceptions (comma separated list.

retType funcName(params) throw (exceptionl, exception2);

// Promises not to throw any exceptions

retType funcName(params) throw ();

// Can throw any exceptions [backwards compatibility]

retType funcName(params);

Specification Example

// Divide() throws only the DivideByZero exception
void Divide (int dividend, int divisor) throw (DivideByZero) ;

// Throws either DivideByZero or AnotherException

void Divide (int dividend, int divisor) throw (DivideByZero,
AnotherException) ;

// Promises not to throw any exception
void Divide (int dividend, int divisor) throw ();

// This function may throw any exception it wants
void Divide (int dividend, int divisor);

10

Multiple Catch Blocks...Yes!

// code that might throw an exception
}

catch (ExceptionObjectls exl)

i

Most Specific

// exception handler code
)
Multiple catch
blocks — catch

// exception handler code dlfferem types of
) exceptions!
catch (ExceptionObjectN& exN)
«

catch (ExceptionObject2s ex2)
[§

// exception handler code
}
cateh (...)
{

// default exception handler code

i Least Specific

10/12/15

\

Nested Functions?

// function2 throws an exception // main calls functionl,
void function2() // with try/catch
1 int main()
cout << "function2" << endl; {
throw int(42); try {
Vo functionl() ;
- }
// functionl calls function2, catch (int)
// but with no try/catch i
void functionl() 1 cout << "Exception *
N /’ << “occurred”
funltion2() ; —_——-_— << endl;
cout << "functionl" << endl; }
}
return 0;

Stack is unwound until something
catches the exception OR until
unwinding passes main

What happens then?

Rethrowing Exceptions

What if current scope shouldn’t or can’ t
handle error?

Re-throw error to next scope up the stack

try {
// code that could throw an exception
}
catch (someException &e) {
throw; // rethrow the exception to the next

} // enclosing try block

1

Rethrow Example

Application program
/I handles exception if full

Add item to inventory
/I rethrows exception if full

Insert item in list
/I rethrows exception if full

Is list full?
/I throws exception if full

How might we have used this in one of our past projects?

10/12/15

Exceptions in Constructors

Best way to handle Constructor failure
Replaces Zombie objects!

Any sub-objects that were successfully created are destroyed (destructor is not
called!)

Example:

// MyClass constructor
MyClass: :MyClass (int value)
{

m_pValue = new int(value);

// pretend something bad happened
throw NotConstructed();

Exceptions in Destructors

Bad, bad idea...

What if your object is being destroyed in
response to another exception?

Should runtime start handling your exception or the
previous one?

General Rule...
Do not throw exceptions in destructor

12

Standard Library Exceptions

#include <stdexcept>
bad_alloc
Thrown by new when a memory allocation error occurs
out_of _range
Thrown by vector's at() function for an bad index parameter.

invalid_argument
Thrown when the value of an argument (as in vector< int >
intVector(-30);) is invalid

Derive from std: :exception
Define own classes that derive...

Exceptions and Pointers

void myNewlstFunction()

{

// dynamically allocate a Fred object rWTlaTh;p;e;sTo-]
Fred *pFred = new Fred; 1 the Fred object? |
try {

// call some function of Fred
}
catch(...) // for all exceptions
{
throw; // rethrow to higher level
}

// destroy the Fred object
// if no exception and normal termination
delete pFred;

One Solution...

void myNewlstFunction()

¢ e ———— 1
// dynamically allocate a Fred object | What'’ s not so good
Fred *pFred = new Fred; | about this solution?
try {

// call some function of Fred

}

catch(...) // for all exceptions

{
delete pFred; // delete the object
throw; // rethrow to higher level

[l |
) Duplicated)
Code!

// destroy the Fred object
// if no tion and normal

delete pFred;

10/12/15

13

Exception-Safe Code

Fundamentals

Exception-safe code

Leaves the object (or program) in a consistent and
valid state

Hard to do well
Think through even simple code thoroughly...

10/12/15

Exception-UNsafe Example

// unsafe assignment operator implementation
F F i (const FredArrays rhs)
{

if (this != &rhs) // this points to current object
{

// free existing Freds

delete [] m_data; /71

// now make a deep copy of the right-hand object

m_size = rhs.m_size; /12
m_data = new Fred [m_size]; /13
for (int j = 0; j < m_size; j++) /] 4

m datal j] = rhs.m data [j 1; //'5

}

return *this;

Exception-safe Example

// Better assignment operator implementation

(const F rhs)

{

if (this != &rhs) r Rule of Thumb:

(|

// code that may throw an exception first 1

// make a local temporary deep copy 1

Fred *tempArray = new Fred[rhs.m_size]; !

for (int j = 0; j < rhs.m_size; j++) !
tempArray[j] = rhs.m data [j 1; : variables

I

1

|

I

THEN change the
object’ s state using

// now code that does not throw exceptions

:e::: =“ meata oo methods that
data = How could we ! DON’ T throw
, mdara = improve this? } = = —egeEptoNT — —
[i,

return *this;

Do any work that
may throw an
exception off “to the
side” using local

14

Exception Guarantees

Each function/method can guarantee one of the following when an exception
occurs:
Weak Guarantee
Program/Object will not be corrupt
No memory is leaked
Object is usable, destructible
Strong Guarantee
Function has no effect
Program/Object state is same as before
NoThrow Guarantee
Function ensures no exceptions will be thrown
Usually: destructors, delete and delete]]
Which should you follow?
C++ library:

A function should always support the strictest guarantee that it can support
without penalizing users who don't need it

10/12/15

Practice

Write a function to Sort a vector of integers
If the vector has no elements

Throw an exception
Use the message “Error: The vector is empty”

Write a main function that will:
Create a vector
Catch the error

15

