Classes
Part 2

CMSC 202

Section Goals

Abstraction
Provide a simple interface to other classes/functions
Information Hiding
Hide details of data storage and implementation
Encapsulation
Control access to data
Private versus Public
Definition...
Classes describe user-defined ADTs

Abstract Data Types

Class Member Access

Public

Any code can access this member
Private

Only members of the class can access this member
Default? If access mode unspecified, members are private

Syntax:
class Class Name
{
public:
// public functions
// public data

private:
// private functions
// private data

Improved DayOfYear Class

class DayOfYear
{
public:
void Imput();
void Output() ;
void Set(int newMonth, int newday);
void Set(int newMonth) ;
int GetMonthNumber() ;
int GetDay();
private:
int m_month;
int m_day;
Y

Using DayOfYear Class
int main()
{
DayOfYear today;

// Attempt to use private data..

today.m month = 2; // ERROR!
today.m day = 23; // ERROR!
cout << “Today: “ << m_mmth << “/”

<< m day << endl; // ERROR!

// Instead, use public methods..

today.Set(2, 23);

cout << “Today: “ << today.GetMonth() << “/”
<< today.GetDay() << endl;

return 0;

Improved DayOfYear Class

class DayOfYear
{
public:
void Imput();
void Output();
void Set(int newMonth, int newday);

void Set(int newMonth) ; Yx:saé are
int GetMonthNumber () ; methods?

int GetDay();
private:
int m_mnth;
int m_day;
Y

Class Methods

Accessors
Allow outside code toinspect a private data member
Start with “Get” (usually)
Mutators
Allow outside code to modify a private data member’
Start with “Set” (usually)
Facilitators (Services)
Provide some service for outside code
Print all class data
Retrieve data from user
Format data into a string
Calculate something

Accessors, Mutators, Facilitators?

class DayOfYear
{
public:
void Input();
void Output();

Facilitators
void Set (int newMonth, int newDay) ; Mutators
void Set (int newMonth);
int GetMonthNumber(); Accessors

int GetDay();
private:

int m_month;
int m_day;

}i

Class Implementation (Simple...)

void DayOfYear::Set(int newMonth, int newday)
{

m_month = newMonth;

m_day = newDay;

}
void DayOfYear::Set(int newMonth)
{

m_month

= newMonth;
m day = 1;

}

int DayOfYear::GetMonthNumber()
{

}

return m_month;

int DayOfYear::GetDay()
{
return m_day;

}

Class Implementation (Improved)

] e e e e
// set

// PreConditions:

" 1 <= newMonth <= 12

" 1 <= newDay <= 31

// PostConditions:

" day of year changed to user supplied values
// if an error, exit program

/] == e e e e e e e e

void DayOffear: :Set(int newMonth, int newday)
{
if ((newMonth >= 1) & (newMonth <= 12))
m month = newMonth;
else
{
cout << "Illegal month value! Program aborted.\n";
exit (1);

}

if ((newDay >= 1) & (newDay <= 31))
m day = newDay;

else

{
cout << "Illegal day value! Program aborted.\n";
exit (1);

1

More Improvements

How else could this be improved?
Valid day for each month
Ex: April has 30 days
Valid day for month and year
Ex: February has 28 or 29 days, depending on year
Bad data?
Set to “safe” value (ex: 1 for month or day)
Print an error & keep data
Retumn “false” to indicate illegal state
Set flag to “invalid object” (Zombie objects)

DayOfYear Input

void DayOfYear: :Input()

{
cout << "Enter the month as a number: ";
cin >> m_month;
cout << "Enter the day of the month: ";
cin >> m_day;

if ((m_month < 1) || (m_month > 12)
|| (m_day < 1) || (m_day > 31))
{
cerr << "Illegal date! Program aborted.\n";
exit(l);

{

DayOfYear Output

void DayOfYear: :Output ()

switch (m_month)

{

case 1: cout << "Jamuary ; break;
case 2: cout << "February

case 3: cout << "March

case 4: cout << "April

case 5: cout << "May

case 6: cout << "June

case 7: cout << "July

case 8: cout << "August

case 9: cout << "September

case 10: cout << "October

case 11: cout << "November

case 12: cout << "December

default: cout << "Error in DayOfYear::Output."; break;

}

cout << m_day;

Using DayOfYear Class

int main ()
{
DayofYear today, bachBirthday;

// imput and echo today's date
cout << "Enter today's date:\n";
today. Input ();

cout << "Today's date is ";
today.Output() ; cout << endl;
// set and cutput
bachBirthday.Set (3, 21);
cout << "J. S.

JSB's birthday

Bach's birthday is ";
bachBirthday. Output() ;
cout << endl;

Using DayOfYear Class

// coNT.

// output special message

((today.GetMonthNumber ()

if bachBirthday. GetMonthNumber ())

&6 (today.GetDay() == bachBirthday.GetDay()))
cout << "Happy Birthday Jchann Sebastian!\n";
else
cout << "Happy Urbirthday Jchann Sebastian!\n";

retum 0;

Class Design

Ask yourself:
What properties must each object have?
What data-types should each of these be?
Which should be private? Which should be public?
What operations must each object have?
What accessors, mutators, facilitators?
Whatparameters musteachofthese have?
Const,by-value, by-reference, default?
Whatreturn value shouldeachofthese have?
Const,by-value, by-reference?
Which should be private? Which should be public?
Rules of thumb:
Data should be private (usually)
Operations should be public (usually)
At least 1 mutator and 1 accessor per data member (usually)

Guarding Header Files

To use a class, must #include declaration
#include “className.h”

Every file that uses class should #include it

How do you protect from including twice?
#ifndef CIASSNAME_H
#define CLASSNAME_H

// class declaration here.
#endif

Guard EVERY .hfile
Include EVERY .h file thatyou directly use

