Arrays and Pointers

CMSC 202

9/14/15

Arrays

An array is a collection of related data items all having
the same data type.

Arrays can be of any data type we choose.

Arrays are static in that they remain the same size
throughout program execution.

An array’s data items are stored contiguously in memory
To declare an array called “numbers” consisting of 5
integers, you would use:

int numbers[5];

An Array in Memory

Display .2 An Array in Memory

int af6];

\\“‘\‘\” \/]

Array Declaration and Initialization

This declaration sets aside a block of memory that is big
enough to hold five integers:

int numbers[5];

It does not initialize the memory locations; they contain
garbage data.

int numbers[5] = { 5, 2, 6, 9, 3 };

9/14/15

Initializing an array may be done with an array initializer, as in :

Auto-Initializing Arrays

If fewer values than size supplied:
— Fills from beginning

— Fills remainder with zero of the array’s base type

 If array-size is left out
— Declares array with size required based on
number of initialization values

— Example:
int b[] = {5, 12, 11};
« Allocates array b to size 3

Array Declaration and Initialization

* A special case is an array of chars:
char name[5] ;
* As mentioned earlier, a C-string is in fact an array of chars,
usually ending in a 0 byte.
— The 0-valued byte at the end is called a null terminator.
— Strings do not necessarily have to be null-terminated.
Initializing a char array may be done the usual way, as in:
char name[5] = {'J', 'o', 'h',

'n', 0 };
...or with a string constant:
char name[5] = "John";

o[]

name =

Accessing Array Elements

You use the standard bracketed subscript notation to
access elements in an array:

w3+ [+ [+
0 17 2 3 4

cout << "The third element is " << numbers[2];
would give the output

The third element is 6
Subscripts are integers and always begin at zero.

9/14/15

Accessing Array Elements (con’t)

A subscript can also be any expression that evaluates
to an integer.

numbers[(a + b) * 2];

Caution! C++ does not do bounds checking for simple
arrays, so you must ensure you are staying within
bounds

Defined Constant as Array Size

Always use defined/named constant for
array size

Example:

const int NUMBER OF STUDENTS = 5;
int score[NUMBER OF STUDENTS] ;
Improves readability

Improves versatility

Improves maintainability

9/14/15

Arrays in Functions

¢ As arguments to functions

— Indexed variables
* An individual element of an array can be
a function parameter
— Entire arrays

« All array elements can be passed as
one entity

¢ As return value from function
— Can be done - chapter 10

Indexed Variables as Arguments

* Indexed variable handled same as simple
variable of base type

* Given this function declaration:
void myFunction (double parl);

* And these declarations:
int i; double n, a[l0];

* Can make these function calls:

myFunction (i) ; // i is converted to double
myFunction(a[3]); // a[3] is double
myFunction (n) ; // n is double

Entire Arrays as Arguments

* Formal parameter can be entire array

— Argument passed in function call
is array name

— Called an array parameter

* Send size of array as well
— Typically done as second parameter

— Simple int type formal parameter

Entire Array as Argument Example:
Display 5.3 Function with an Array Parameter

Display 5.3 Function with an Array Parameter

9/14/15

SAMPLE DIALOGUEFUNCTION DECLARATION

void fillpCint afl, int size);

//Precondition: size is the declared size of the array a.
//The user will type in size integers.

//Postcondition: The array a is filled with size integers
//from the keyboard.

SAMPLE DIALOGUEFUNCTION DEFINITION

void fillUp(int all, int size)
{

cout << "Enter " << size << " numbers:\n";
for (int i = 0; i < size; i++)
cin >> alil;
cout << "The last array index used is " << (size - 1) << endl;

}

Entire Array as Argument Example

* Given previous example:

* |n some main () function definition,
consider this call:
int score[5], numberOfScores = 5;
£fillUp (score, numberOfScores) ;

— 1targument is entire array
— 2" argument is integer value

— Note: no brackets in array argument!

Array as Argument: How?

What's really passed?

Think of array as 3 components:

— Address of first indexed variable (arrName [0])
— Array base type

— Size of array

Only 15t piece is passed!

— Just the beginning address of array
— Very similar to pass-by-reference

Array Parameters

May seem strange

— No brackets in array argument
— Must send size separately

One nice property:

— Can use SAME function to fill any size array!
— Exemplifies re-use properties of functions
— Example:

int score[5], time[10];
£fillUp (score, 5);
£illUp(time, 10);

9/14/15

The const Parameter Modifier
* Recall: array parameter passes address of 1%t
element
— Similar to pass-by-reference

* Function can then modify array
— Often desirable; sometimes not

* Protect array contents from modification
— Use "const" modifier before array parameter
« Called constant array parameter
« Tells compiler to not allow modifications

Array Limitations

* Simple arrays have limitations

— Array out-of-bounds access

— No resizing

— Hard to get current size

— Not initialized

— Much of this is due to issues of efficiency and
backwards-compatibility, which are high priorities
in C/C++

* Later, we will learn about the vector class,
which addresses many of these issues

Basic Pointers

* A pointer is a variable that contains the
address of a variable.

— Address can be thought of as an integer value
— Typical machines have 32- or 64-bit addresses
* Pointers are necessary for various reasons:
—In C, allows functions to modify arguments
— To access dynamic objects (more on that later...)

— To pass an array or complex object to a function
efficiently

9/14/15

Basic Pointers

* We can do this in both directions:

— Put an address into a variable and tell the
processor to do an operation on the value in the
location pointed to by the first value

— Given a variable (again, a memory location), take
it's memory address in RAM, which is a number,
and store this number inside some other variable

* This requires the cooperation of the compiler, which
decides, and therefore knows, where the various
variables are being stored in RAM.

Pointer Introduction

* We use the “*' (points to) and ‘&’ (address of)
unary operators to work with pointers.

* Note distinction between a pointer — which is
a numerical address and therefore always a
certain size (number of bytes) on a given
computer—and the type of data it points to,
which can be of different sizes.

Pointer Variables

* Pointers are "typed"
— Can store pointer in variable

— Not int, double, etc.
* Instead: A POINTER to int, double, etc.

* Example:

double *p;
— pis declared a "pointer to double" variable
— Can hold pointers to variables of type double

* Not other types (unless typecast, but could be dangerous)

9/14/15

Declaring Pointer Variables

Pointers declared like other types
— Add "*" before variable name
— Produces "pointer to" that type

"*" must be before each variable
int *pl, *p2, vl, v2;

— pl, p2 hold pointers to int variables
—v1, v2 are ordinary int variables

Addresses and Numbers

Pointer is an address

* Address is an integer

Pointer is NOT an integer!

— Not crazy = abstraction!

* C++ forces pointers to be used as
addresses

— Cannot be used as numbers

— Even though it "is a" number

10-27

Pointing
* Terminology, view
— Talk of "pointing", not "addresses"

— Pointer variable "points to" ordinary variable
— Leave "address" talk out

* Makes visualization clearer

— "See" memory references
* Arrows

9/14/15

Pointing to ...

e int *pl, *p2, vl, v2;

pl = &vl;

— Sets pointer variable p1 to "point to" int

variable v1

* Operator, &

— Determines "address of" variable
* Read like:

— "p1 equals address of v1"
— Or "p1l points to v1"

Pointing to ...

* Recall:
int *pl, *p2, vl, v2;
pl = &vl;

¢ Two ways to refer to vl now:

— Variable v1 itself:
cout << vl;

— Via pointer p1:
cout << *pl;
* Dereference operator, *
— Pointer variable "dereferenced"
— Means: "Get data that p1 points to"

"Pointing to" Example

Consider:
vl = 0;
pl = &vl;
*pl = 42;

cout << vl << endl;
cout << *pl << endl;

Produces output:
42
42

pl and v1 refer to same variable

9/14/15

& Operator
The "address of" operator

Also used to specify call-by-reference
parameter (more on this later)
— No coincidence!

— Recall: call-by-reference parameters pass
"address of" the actual argument

* Operator’s two uses are closely related

Pointer Assignments

Pointer variables can be "assigned":
int *pl, *p2;
p2 = pl;

— Assigns one pointer to another

— "Make p2 point to where p1 points"

Do not confuse with:

*pl = *p2;

— Assigns "value pointed to" by p1, to "value

pointed to" by p2

10

Pointer Assignments Graphic:
Display 10.1 Uses of the Assignment Operator with
Pointer Variables

Display 10.1 Uses of the Assignment Operator with Pointer Variables

Pl = p2;
Before:

9/14/15

Pointer Operator Summary

- & * Examples:
— Address of pointee — int a = 3;
— Syntax: — int* ptr = &a;
+ type ptr = &variable; - *ptr = 8;
« ptr = &variable2;
- - int b =5;
— Dereferencing, Value of pointee — int* ptr2 = b;
— Syntax: — ptr = ptr2;
+ *ptr = value;
+ variable = *ptr;
— Assignment, point to something else
— Syntax:
+ ptrA = ptrB; int:a

int*: ptr

Arrays and Pointer Arithmetic

¢ Tricky stuff...
— Arrays are simply a kind of pointer
— Points to first item in collection
— Index into array is “offset”
* Example

int ages[4] = {0, 1, 2, 3};
int* ptr = &ages[2];

*ptr = 8;

ptr++;

*(ptr - 2) = 9;

int[]: ages

11

Simulated “Pass by Reference”

* Some programming languages provide
mechanism for called function to have direct
access to variables used in the calling function

* We can simulate this by using pointers (see
following slide)

¢ C++ added true “call by reference” — we will
see this later on

9/14/15

Simulated “Pass by Reference”

* Calling function:
int x = 1;

// pass in reference to (actually, pointer to)
// our argument variable “x”

addl (&x) ;

cout << x; // will output 2!

* Called function:

void addl (int *var) {
*var = *var + 1;

}

Dynamic Memory

* new creates a “new” variable or array
— Works with primitives
— Works with class-types (more on this later)
¢ Syntax:
— type *ptrName = new type;
* Example:

— int *newInt = new int;
— double doubleArray = new double[size];

12

New Examples

1 s
i
int* intPtr = new int; 3 These are unnamed i
! objects —the only !
int*: intPtr int: | waywecangetto !
! them is through the !
! pointer. !
i i
] i
i \
i :
\ i
]
i

double* doubleArray = new double[size]; “---------------2

double[size]:

double *: doubleArra

9/14/15

Deletion of Objects

e delete
— Called on the pointer to an object
— Works with primitives & class-types

¢ Syntax:
— delete ptrName;

* Example: Set to NULL so that you
— delete intPtr; can use it later — protect

yourself from
accidentally using an
uninitialized pointer.
— delete [] doubleArray;
— doubleArray = NULL;

— intPtr = NULL;—

13

