9/2/15

C++ Primer
Part 2

CMSC 202

Topics Covered

* Expressions, statements, blocks

¢ Control flow: if/else-if/else, while, do-while,
for, switch

* Booleans, and non-bools as bools

* Functions

Expressions

* An expression is a construct made up of
variables, operators, and method invocations,
that evaluates to a single value.

* For example:

int cadence = 0;

anArray[0] = 100;

cout << "Element 1 at index 0: " << anArray[0]);

int result = 1 + 2;

cout << (x == y ? "equal" :"not equal");

Statements

» Statements are roughly equivalent to sentences
in natural languages. A statement forms a
complete unit of execution.

* Two types of statements:

— Expression statements — end with a semicolon ;'
* Assignment expressions
* Any use of ++ or --
* Method invocations
* Object creation expressions

— Control Flow statements
* Selection & repetition structures

If-Then Statement

* The if-then statement is the most basic of all
the control flow statements.

Python C++
if x == 2: if (x == 2)

print "x is 2" cout << "x is 2";
print "Finished" cout << "Finished";

Notes about C++’s if-then:

 Conditional expression must be in parentheses
« Conditional expression has various interpretations of
“truthiness” depending on type of expression

A brief digression...

If-then raises questions about
— Multi-statement blocks
— Scope
—Truth in C++

9/2/15

Multiple Statements

* What if our then case contains multiple
statements?

Python C++ (but incorrect!!)
if x == 2: if(x == 2)
print "even" cout << "even";
print "prime" cout << "prime";
print "Done!" cout << "Done!";
Notes:

« Unlike Python, spacing plays no role in C++'s selection/
repetition structures

* The C++ code is syntactically fine — no compiler errors
* However, it is logically incorrect

Blocks

* A block is a group of zero or more statements
that are grouped together by delimiters.

¢ In C+4, blocks are denoted by opening and
closing curly braces ‘{" and ‘} .

if(x == 2) {
cout << "even";
cout << "prime";
}

cout << "Done!";

Note:
« It is generally considered a good practice to include the curly
braces even for single line statements.

Variable Scope

* You can define new variables in many places in your code,
so where is it in effect?

* Avariable’s scope is the set of code statements in which
the variable is known to the compiler.

* Where a variable can be referenced from in your program
 Limited to the code block in which the variable is defined
¢ For example:

if (age >= 18) {
bool adult = true;

/* couldn't use adult here */

9/2/15

Scope Example
What will this code do?

#include <iostream>
using namespace std;

int main() {
int x = 3, y = 4;

{
int x = 7;
cout << "x in block is " << x << endl;
cout << "y in block is " << y << endl;

}
cout << "x in main is " << x << endl;

return 0;

}

“Truthiness”**

¢ What is “true” in C++?

* Like some other languages, C++ has a true Boolean
primitive type (bool), which can hold the constant
values true and false

* Assigning a Boolean value to an int variable will
assign O for false, 1 for true

** kudos to Stephen Colbert
1

“Truthiness”

* For compatibility with C, C++ is very liberal
about what it allows in places where Boolean
values are called for:

— bool constants, variables, and expressions have
the obvious interpretation

— Any integer-valued type is also allowed

* Ois interpreted as “false”, all other values as
“true”

* So, even -1 is considered true!

9/2/15

Gotcha! = versus ==

int a = 0;

if (a = 1) {
printf (“a is one\n”) ;
}

If-Then-Else Statement

* The if-then-else statement looks much like it
does in Python (aside from the parentheses
and curly braces).

Python C++
if x $ 2 == 1: if(x $ 2 == 1) {
print "odd" cout << "odd";
else: } else {
print "even" cout << "even";

}

If-Then-Else If-Then-Else Statement

* Again, very similar...

Python C++
if x < y: if (x <y) {
print "x < y" cout << "x < y";
elif x > y: } else if (x > y) {
print "x > y" cout << "x > y";
else: } else {
print "x == y" cout << "x == y";

}

9/2/15

Switch Statement

* Unlike if-then and if-then-else, the switch
statement allows for any number of possible
execution paths.

* Works with any integer-based (e.g., char, int,
long) or enumerated type (covered later)

Switch Statement

int cardValue = /* get value from somewhere */;
switch (cardValue) {
case 1:
cout << "Ace";
break;
case 11:
cout << "Jack";
break;
case 12:
cout << "Queen";
break;
case 13:
cout << "King";
break;
default:
cout << cardvValue;

Notes:

* break statements are typically
used to terminate each case.

« It is usually a good practice to
include a default case.

Switch Statement

switch (month) {

case 1: case 3: case 5: case 7:

case 8: case 10: case 12:
cout << "31 days";
break;

case 4: case 6: case 9: case 11:
cout << "30 days";
break;

case 2:
cout << "28 or 29 days";
break;

default:
cout << "Invalid month!";
break;

}

Note:
* Without a break statement, cases “fall through” to the next statement.

9/2/15

Switch Statement

* To repeat: the switching value must evaluate
to an integer or enumerated type (some other
esoteric class types also allowed—not covered
in class)

* The case values must be constant or literal, or
enum value

¢ The case values must be of the same type as
the switch expression

While Loops

* The while loop executes a block of statements
while a particular condition is true.

Pretty much the same as Python...

Python C++

count = 0; int count = 0;

while (count < 10): while(count < 10) {
print count cout << count;
count += 1 count++;

print "Done!" }

cout << "Done!";

Do-While Loops

* In addition to while loops, Java also provides a
do-while loop.

— The conditional expression is at the bottom of the
loop.

— Statements within the block are always executed
at least once.

— Note the trailing semicolon!

int count = 0;
do {
cout << count;
count++;
} while (count < 10);
cout << "Done!";

9/2/15

For Loop

* The for statement provides a compact way to iterate
over a range of values.

for (initialization; termination; increment) {

/* .

}

statement(s) ... */

* The initialization expression initializes the loop — it is
executed once, as the loop begins.

* When the termination expression evaluates to false,
the loop terminates.

* The increment expression is invoked after each
iteration through the loop.

For Loop

* The equivalent loop written as a for loop

— Counting from start value (zero) up to (excluding)
some number (10)

Python

C++

for count in range(0, 10):
print count
print "Done!"

for (int count = 0; count < 10; count++) {
cout << count;

}

cout << "Done!";

For Loop

* Counting from 25 up to (excluding) 50 in steps

of 5

Python

C++

for count in range (25, 50, 5):
print count
print "Done!"

for (int count = 25; count < 50; count += 5){
cout << count;

}

cout << "Done!";

9/2/15

The break Statement

* The break statement can be used in while,
do-while, and for loops to cause premature
exit of the loop.

¢ THIS IS NOT ARECOMMENDED CODING
TECHNIQUE.

Example break in a for Loop

#include <iostream>

using namespace std; OUTPUT:
ine mainl) { 1234
int i;
for (i = 1; i < 10; i++) { Broke out of loop ati = 5.

if (i == 5) {
break;
}
cout << i << ™ V%
}
cout << “\nBroke out of loop at i = “ << i;
return 0 ;

}

The continue Statement

* The continue statement can be used in
while, do-while, and for loops.

* It causes the remaining statements in the
body of the loop to be skipped for the
current iteration of the loop.

* THIS IS NOT A RECOMMENDED CODING
TECHNIQUE.

9/2/15

Example continue in a for Loop

#include <iostream>

Using namespace std; OUTPUT:
fnt main() | 12346789
int i;
for (i = 1; i < 10; i++) { Done.
if (i == 5) {

continue;
}
cout << i << ™ %
}
cout << “\nDone.\n”;
return 0 ;

Predefined Functions

¢ C++ has standard libraries full of functions for
our use!

* Must "#include" appropriate library
—e.g.,
* <cmath>, <cstdlib> (Original "C" libraries)
* <iostream> (for cout, cin)

The Function Call

* Sample function call and result assignment:
theRoot = sqrt(9.0);

— The expression "sqrt(9.0)" is known as a
function call, or function invocation

— The argument in a function call (9.0) can be a
literal, a variable, or a complex expression

— A function can have an arbitrary number of arguments

— The call itself can be part of an expression:
* bonus = sqrt(sales * commissionRate)/10;

* A function call is allowed wherever it’s legal to use
an expression of the function’s return type

9/2/15

10

9/2/15

More Predefined Functions

¢ #include <cstdlib>

— Library contains functions like:
* abs() // Returns absolute value of an int
* labs() // Returns absolute value of a long int
* *fabs() // Returns absolute value of a float

— *fabs() is actually in library <cmath>!
* Can be confusing

* Remember: libraries were added after C++ was
"born," in incremental phases

« Refer to appendices/manuals for details

Even More Math Functions:
Display 3.2 Some Predefined
Functions (1 of 2)

Display 3.2 Some Predefined Functions

sqrt Square double double sqrt(4.0) 2.0 cmath
root

pow Powers double double pow(2.0,3.0) 8.0 cmath

abs Absolute int int abs(-7) 7 cstdlib
value for abs(7) 7
int

labs Absolute long long labs (-70000) 70000 cstdlib
value for labs (76000) 70000
long

fabs Absolute double double fabs(-7.5) 7.5 cmath
value for fabs(7.5) 7.5
double

Even More Math Functions:
Display 3.2 Some Predefined
Functions (2 of 2)

ceil Ceiling double double ceil(3.2) 4.0 cmath
(round. ceil(3.9) 4.0
up)

Floor Floor double double floor(3.2) 3.0 cath
(round. Floor(3.9) 3l0
down)

exit Endpo- int void exit(1); None cstdlib
gram

rand Random None int rand() Varies cstdlib
number

srand set seed unsigned void srand(42); None cstdlib
forrand it

11

Programmer-Defined Functions

¢ Write your own functions!
* Building blocks of programs
— Divide & Conquer
— Readability
— Re-use
* Your "definition" can go in either:
— Same file as main()
— Separate file so others can use it, too

Components of Function Use

* 3 Pieces to using functions:
— Function Declaration/prototype
* Information for compiler
* To properly interpret calls
— Function Definition

* Actual implementation/code for what
function does

— Function Call
* Transfer control to function

Function Declaration

Also called function prototype
* Aninformational declaration for compiler
Tells compiler how to interpret calls
— Syntax:

<return_type> FnName(<formal-parameter-list>);
— Example:

double totalCost(int numberParameter,

double priceParameter);

* Placed before any calls
— In declaration space of main()
— Or above main() in global space

* Detail: parameter types are mandatory, but names
are optional

9/2/15

12

Function Definition

¢ Implementation of function
« Just like implementing function main()
* Example:

double totalCost(int numberParameter,
double priceParameter)
{

const double TAXRATE = 0.05;

double subTotal;

subtotal = priceParameter * numberParameter;
return (subtotal + subtotal * TAXRATE) ;

Function Definition Placement

* Placed after function main()
— NOT inside function main()!

* Functions are equals; no function is ever
part of another (well, almost never)

¢ Formal parameters in definition
— Placeholders for data passed to function
— Variable name used to refer to data in definition

¢ return statement
— Sends data back to caller

Function Call

* Just like calling predefined function
bill = totalCost(number, price);

* Recall: totalCost returns double value
— Assigned to variable named "bill"

¢ Arguments here: number, price
— Recall arguments can be literals, variables,
expressions, or combination
— In function call, arguments often called
"actual arguments"
* Because they contain the "actual data" being sent

9/2/15

13

Function Example:
Display 3.5 A Function to Calculate Total Cost (1 of 2)

Display 3.5

#include <iostream>
using namespace std;

3 double totalCost(int numberParameter, double priceParameter);
4 //Computes the total cost, including 5% sales tax,
5 //on numberParameter items at a cost of priceParameter e

6 int main()

7

8 double price, bill;

9 int number;

10 cout << "Enter the number of items purchased: ";
11 cin >> number;

12 cout << "Enter the price per item §";

13 cin >> price; F

14 bill = totalCost(number, price);

Copyright © 2012 P
h

rson Addison-We

Function Example:
Display 3.5 A Function to Calculate Total Cost (1 of 2)

15 cout.setf(ios: :fixed);
16 cout.setf(ios: :showpoint) ;
1 cout.precision(2);

18 cout << number << " items at "

19 << "S" << price << " each.\n"

20 << "Final bill, including tax, is §" << bill
21 << endl;

2 return 0;

23}

double totalCost(int numberParameter, double priceParameter)\
€ \

const double TAXRATE = 0.05; //5% sales tax
7 double subtotal;

28 subtotal = priceParaneter * nunberParaneter;
29 return (subtotal + subtotal*TAXRATE) ;

30}

SAMPLE DIALOGUE

Enter the number of items purchased: 2
Enter the price per item: $10.10
2items at $10.10 each.

Final bill, including tax, is $21.21

Topyright © 2012 Pearson Addison-We

Parameter vs. Argument

¢ Terms often used interchangeably

* Formal parameters/arguments
— In function declaration
— In function definition’s header

¢ Actual parameters/arguments
— In function call

* Parameter is formal variable name; argument is
actual value or variable.

9/2/15

14

Declaring Void Functions

¢ “void” functions are called for side effects;
they don’t return any usable value

Declaration is similar to functions returning a
value, but return type specified as "void"
¢ Example:
— Function declaration/prototype:
void showResults(double fDegrees,

double cDegrees);
« Return-type is "void"
* Nothing is returned

More on Return Statements

* Transfers control back to calling function

— For return type other than void, MUST have
return statement

— Typically the LAST statement in
function definition

* return statement optional for void functions

— Closing “}” would implicitly return control from
void function

main(): "Special"
* Recall: main() IS a function

e "Special" in that:
— One and only one function called main()
will exist in a program
¢ Who calls main()?
— Operating system
— Tradition holds it should have return statement
* Value returned to "caller" = Here: operating system
— Should return "int" or "void"

9/2/15

15

