
CMSC 202 Final Exam Spring 2015

“By enrolling in this course, each student assumes
the responsibilities of an active participant in UMBC’s
scholarly community in which everyone’s academic
work and behavior are held to the highest standards
of honesty. Cheating, fabrication, plagiarism, and
helping others to commit these acts are all forms of
academic dishonesty, and they are wrong. Academic
misconduct could result in disciplinary action that
may include, but is not limited to, suspension or
dismissal. To read the full Student Academic Conduct
Policy, consult the UMBC Student Handbook, the
Faculty Handbook, or the UMBC Policies section
of the UMBC Directory.”

UMBC Faculty Senate
February 13, 2001

Student’s Name

Date Subject

Professor’s name:

Comments:

Blue Book

CMSC 202 Final Exam Spring 2015

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY BLANK  

CMSC 202 Final Exam Spring 2015

1. (15 points) There are at least five errors or omissions in the following program. Find five
errors and write the the line number and correction for each in the space provided below. 

Line Number Correction

2 "standard" should be "std"

11 "=" should be "=="

12 "NoDonutEx" should be "NoDonutEx()"

13 Missing {

20 Missing ;

30 "DivByZeroEx" should be "NoDonutEx"

Page � of �1 13

 1 #include <iostream>
 2 using namespace standard;
 3
 4 class NoDonutEx {};
 5
 6 class Donut {
 7 public:
 8 Donut() : m_numDonuts(1) {}
 9 Donut(int numDonuts) : m_numDonuts(numDonuts) {}
 10 void Eat() {
 11 if (m_numDonuts = 0)
 12 throw NoDonutEx;
 13 else
 14 cout << "Yummy donut!" << endl;
 15 m_numDonuts--;
 16 }
 17 }
 18 private:
 19 int m_numDonuts;
 20 }
 21
 22 int main() {
 23 Donut d(2);
 24
 25 try {
 26 d.Eat();
 27 d.Eat();
 28 d.Eat();
 29 }
 30 catch (DivByZeroEx) {
 31 cerr << "No more donuts. I'm outta here." << endl;
 32 }
 33 return 0;
 34 }

CMSC 202 Final Exam Spring 2015

2. (10 points) Complete the code:

a. I want to compute the average of the three integer variables x, y, and z and save it to the
double variable avg.

avg = (x + y + z) / ;

b. On a 24-hour clock, the hours are labeled 0, 1, 2, …, 23. A computationally intensive job
will take 75 hours to complete; I want to determine the hour at which it will finish given
the hour at which it will start (startTime):

int startTime = 11;

int endTime = (startTime + 75) 24;

c. The program should only call the function BadInput() if the integer variable
numSelected has a value less than 1 or greater than 42:

if ()

 BadInput(data, numSelected);  

d. The user of a data analysis program can enter 's' to save their data or 'h' to display a
help message. The users selection is stored in the variable selection:

switch(selection) {

 case 's':

 SaveData();

 break;

 case 'h':

 DisplayHelp();

 break;

 :

 cerr << "Invalid selection" << endl;

}

e. I want to insert the value of the integer variable aScore into the integer set scores:

scores. ;

Page � of �2 13

3.0

%

numSelected < 1 || numSelected > 42

default

insert(aScore)

CMSC 202 Final Exam Spring 2015

3. (10 points) Complete the code:

a. I want to call the Bride() function of the Princess object pointed to by pPtr:
Princess *pPtr = new Princess;

pPtr Bride();

b. The variable scores is a pointer to an integer; it points to a dynamically allocated array
of integers. That is, 
 
 int *scores = new int[arrayLen];  
 
where arrayLen is a variable that depends on user input. I want to delete the array:

delete ratings;

c. I am overloading the assignment operator. I need to be sure I handle self-assignment
(e.g. x = x) properly and that I return the appropriate value:

MyClass& MyClass::operator=(const MyClass& rhs) {

 if (this != &rhs) {

 /* execute only if NOT self-assignment */

 }

 return ;

}

d. I am writing the interface file for class Derived, which is derived from the class Base:

class Derived : Base {

 /* class declarations go here */

 };

e. I am writing the interface file for a base class from which other classes will be derived.
The virtual function ToString() will not be implemented in the base class but must be
implemented in any derived class: 
 

virtual string ToString() ;  

Page � of �3 13

->

[]

*this

public

 =0

CMSC 202 Final Exam Spring 2015

4. (10 points) Complete the code:

a. The function Dangerous() may throw a DarthVaderEx exception. DarthVaderEx is
an exception class; it has a what() function that returns a string description of the error.
I want to catch the exception and print the error message by calling what(): 
 
try {  
 Dangerous();  
}  

catch (){  
 cerr << e.what() << endl;  
}  

b. I want to print the elements in the integer set sizes: 
 
set<int>::iterator itr;  

for (itr = sizes. ; itr != sizes.end(); itr++)  

 cout << << endl;  

c. I want to create a two-dimensional integer array named data with NUMROWS rows and
NUMCOLS columns (NUMROWS and NUMCOLS are defined integer constants): 
 

int ;  
data = new int*[NUMROWS];  
for (int i = 0; i < NUMROWS; i++)  

 data[i] = new ;  

Page � of �4 13

DarthVaderEx& e -or- DarthVaderEx e

begin()

*itr

**data

int[NUMCOLS]

CMSC 202 Final Exam Spring 2015

5. (10 points) What output is produced by the following code?

1 int *p1, *p2;

2 int x = 3, y = 5;

3 int z[3] = {1, 2, 3};

4 p1 = &x;

5 p2 = &y;

6 cout << *p1 + *p2 << endl;

7 p2 = p1;

8 cout << *p1 * *p2 << endl;

9 p1 = z;

10 cout << *(p1 + 1) * *p2 << endl;  
11 p1++;

12 cout << *p1 * *p2 << endl;

13 cout << (*p1 + 1) / *p2 << endl;

Page � of �5 13

8

9

6

6

1

CMSC 202 Final Exam Spring 2015

6. (30 points) True or False?

a. There is one iterator type that is used with all STL containers.

b. Inheritance implements the "is a" relationship.

c. It is a good idea to throw an exception if an error occurs in a constructor.

d. It is a good idea to throw an exception if an error occurs in a destructor.

e. A do-while loop should be used if the body of the loop is to be executed
one or more times.

f. In Late Binding (also called Dynamic Binding), decisions as to which version
of an overridden function should be called are made at run-time.

g. When a derived class object is destroyed, the derived class destructor is
called before the base class destructor.

h. A class is abstract only if all of its functions are pure virtual.

i. A set is a collection of unique elements.

j. If iset is a set of integers, iset.begin() is the first integer in the set.

k. Encapsulation implements the "wants a" relationship.

l. Elements of arrays are stored in successive memory locations.

m. A base class pointer can point to a derived class object.

n. A derived class pointer can point to a base class object.

o. The order of precedence is the same for multiplication (*) and addition (+).

Page � of �6 13

F

T

T

F

T

T

T

F

T

T

F

T

T

F

F

CMSC 202 Final Exam Spring 2015

7. (10 points) Consider the following program:

a. Line 28 causes an error when the program is compiled. Why?  

�
b. If line 28 is deleted and the program is compiled and run, what output will it produce?

�

�  

�

Page � of �7 13

 1 #include <iostream>
 2 #include <string>
 3 using namespace std;
 4
 5 class Dinosaur {
 6 public:
 7 Dinosaur() {}
 8 virtual string ToString() { return "I am a dinosaur."; }
 9 };
 10
 11 class Pteranadon : public Dinosaur {
 12 public:
 13 Pteranadon() : Dinosaur(), m_name("Pterry") {}
 14 Pteranadon(string name) : Dinosaur(), m_name(name) {}
 15 void Fly() { cout << m_name << " is flying!" << endl; }
 16 virtual string ToString() {
 17 return m_name + " is a pteranadon.";
 18 }
 19 private:
 20 string m_name;
 21 };
 22
 23 int main() {
 24 Dinosaur *dPtr = new Pteranadon("Barb");
 25 Pteranadon *pPtr = new Pteranadon("Steve");
 26
 27 cout << dPtr->ToString() << endl;
 28 dPtr->Fly();
 29
 30 cout << pPtr->ToString() << endl;
 31 pPtr->Fly();
 32
 33 return 0;
 34 }

Dinosaur class does not have a Fly() function.

Barb is a pteranadon.

Steve is a pteranadon.

Steve is a flying!

CMSC 202 Final Exam Spring 2015

8. Write the required code: 

a. (5 points) Write the implementation of a function to compute the sum of the elements of an
integer array. The function should accept the array and the array size as parameters and
return the integer sum of the elements. You do not need to comment the function.

Page � of �8 13

int sum(int *array, int size) {
 int sum = 0;
 for (int i = 0; i < size; i++)
 sum += array[i];
 return sum;
}

CMSC 202 Final Exam Spring 2015

b. (5 points) Write a function that allows the user to enter non-negative integer values on the
keyboard and then returns a vector containing the values entered. The user enters a
negative value to indicate that they are done (the terminating negative value should not be
included in the vector). The function must provide appropriate instructions to the user. You
do not have to comment the function or worry about #includes. You may assume the user
will enter valid integer data. 

Page � of �9 13

vector<int> GetInput() {
 vector<int> data;
 int input;

 cout << "Enter a nonnegative integer (negative to end):";

 cin >> input;

 while (input >= 0) {
 data.push_back(input);

 cout << "Enter another nonnegative integer (negative to end):";

 cin >> input;

 }

 return data;
}

CMSC 202 Final Exam Spring 2015

c. (5 points) Consider the following class definition: 

The overloaded assignment operator is not exception safe; that is, if an exception occurs during
execution of the assignment operator, for instance if the attempt to allocate memory with new
fails, then the object on the left-hand side may be corrupted. Rewrite the operator so that if new
causes an exception, the left-hand side of the assignment is not changed. 

Page � of �10 13

 1 class Kennel {
 2 public:
 3 Kennel(int numPens) : m_numPens(numPens) {
 4 m_occupied = new bool[m_numPens];
 5 for (int i = 0; i < m_numPens; i++)
 6 m_occupied[i] = false;
 7 }
 8 Kennel& operator=(Kennel& k) {
 9 if (this != &k) {
 10 if (m_occupied != NULL)
 11 delete [] m_occupied;
 12 m_numPens = k.m_numPens;
 13 m_occupied = new bool[k.m_numPens];
 14 for (int i = 0; i < m_numPens; i++)
 15 m_occupied[i] = k.m_occupied[i];
 16 }
 17 return *this;
 18 }
 19 private:
 20 int m_numPens;
 21 bool* m_occupied;
 22 };

See next page for details.

CMSC 202 Final Exam Spring 2015

Page � of �11 13

Kennel& operator=(Kennel &k) {

 if (this != &k) {

 bool* tmpArray = new bool[k.m_numPens];

 for (int i = 0; i < k.m_numPens; i++)

 tmpArray[i] = k.m_occupied[i];

 if (m_occupied != NULL)

 delete [] m_occupied;

 m_numPens = k.m_numPens;

 m_occupied = tmpArray;

 }

 return *this;
}

CMSC 202 Final Exam Spring 2015

Page Points Earned

1 15

2 10

3 10

4 10

5 10

6 30

7 10

8 5

9 5

10 5

Total 110

Page � of �12 13

CMSC 202 Final Exam Spring 2015

Page � of �13 13

