
CMSC 202 Midterm Exam 2 Spring 2015

Page � of �1 13

“By enrolling in this course, each student assumes
the responsibilities of an active participant in UMBC’s
scholarly community in which everyone’s academic
work and behavior are held to the highest standards
of honesty. Cheating, fabrication, plagiarism, and
helping others to commit these acts are all forms of
academic dishonesty, and they are wrong. Academic
misconduct could result in disciplinary action that
may include, but is not limited to, suspension or
dismissal. To read the full Student Academic Conduct
Policy, consult the UMBC Student Handbook, the
Faculty Handbook, or the UMBC Policies section
of the UMBC Directory.”

UMBC Faculty Senate
February 13, 2001

Student’s Name

Date Subject

Professor’s name:

Comments:

Blue Book

CMSC 202 Midterm Exam 2 Spring 2015

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY BLANK  

Page � of �2 13

CMSC 202 Midterm Exam 2 Spring 2015

1. (18 points) There are at least six errors or omissions in the following interface file. Find six
errors and write the the line number and correction for each in the space provided below.

 1 #ifndef COMPLEX_H
 2
 3
 4 #include <iostream>
 5 using namespace standard;
 6
 7 class Complex {
 8
 9 public:
 10
 11 /* Constructors */
 12 Complex();
 13 Complex(double real, double imaginary);
 14
 15 /* Accessors */
 16 double GetReal() const;
 17 int GetImaginary() const;
 18
 19 /* Mutators */
 20 void SetReal(double real) const;
 21 void SetImaginary(double imaginary);
 22
 23 /* Overloaded operators */
 24 const Complex operator-(const Complex& z);
 25 const Complex operator+(const Complex& x, const Complex& y);
 26 ostream& operator<<(ostream& sout, const Complex& z);
 27
 28 private
 29
 30 double m_real;
 31 double m_imaginary;
 32
 33 }
 34
 35 #endif

Line Number Correction

Page � of �3 13

CMSC 202 Midterm Exam 2 Spring 2015

2. (12 points) Complete the code:
a. I want to append the value of the double variable avg to the double vector scores:

scores. ;

b. I want to call the Fiction() function of the Pulp object pointed to by pPtr:
Pulp *pPtr = new Pulp;

pPtr Fiction();

c. The variable ratings is a pointer to a double; it points to a dynamically allocated array
of doubles. That is, 
 
 double *ratings = new double[arrayLen];  
 
where arrayLen is a variable that depends on user input. I want to delete the array:

delete ratings;

d. I am overloading the assignment operator. I need to be sure I handle self-assignment
(e.g. x = x) properly and that I return the appropriate value:

MyClass& MyClass::operator=(const MyClass& rhs) {

 if (!= &rhs) {

 /* execute only if NOT self-assignment */

 }

 return ;

}

e. I am writing the interface file for class Base and want any class derived from it to have
direct access to Base's class variables. Besides Base and classes derived from it, other
classes should not have direct access to the variables: 

class Base {

�
 int m_classInt;

 string m_classString;

Page � of �4 13

CMSC 202 Midterm Exam 2 Spring 2015

3. (8 points) The class MyArray has two private class variables, defined in MyArray.h: 
 double *m_data;  
 int m_size;  
 The following constructor is defined in MyArray.cpp:
 1 MyArray MyArray::MyArray(int size) {
 2 if (size > 0) {
 3 m_data = new double[size];
 4 m_size = size;
 5 } else {
 6 m_data = NULL;
 7 m_size = 0;
 8 }
 9 }  

a. Explain why the programmer should also define a copy constructor rather than relying on
the default copy constructor provided by the compiler.

 

b. Complete the implementation of the MyArray destructor: 

 
 
 

MyArray::~MyArray() {
 if (m_data != NULL) {

 }
}

Page � of �5 13

CMSC 202 Midterm Exam 2 Spring 2015

4. (12 points) True or False?

a. The data members of a struct are accessed using the "*" operator.

b. Inheritance implements the "is a" relationship.

c. The value of a static class variable can not be changed.

d. Redefining (or overriding) is when a derived class implements a function with
the same signature (name and parameter types) as a function in the base class.

e. Overloaded operators must always return a const value.

f. When a derived class object is destroyed, the derived class destructor is
called before the base class destructor.

g. A base class object can call a public member function of a derived class.

h. Encapsulation is the the hiding of class variables and function
implementations from the user of a class, allowing only controlled access to class data.

i. A struct may be used as a function argument.

j. Overloading implements the "was a" relationship.

k. The capacity of a vector is always less than or equal to its size.

l. A const member function can be called on a const or non-const object.

Page � of �6 13

CMSC 202 Midterm Exam 2 Spring 2015

5. (8 points) Consider the following program consisting of the classes Animal and Lion and a
main() function:

 1 #include <iostream>
 2 using namespace std;
 3
 4 class Animal {
 5 public:
 6 void Eats() { cout << "Eats food." << endl; }
 7 };
 8
 9 class Lion : public Animal {
 10 public:
 11 Lion() : Animal(), m_name("Leo") {}
 12 Lion(string name) : Animal(), m_name(name) {}
 13 void Eats() { cout << m_name << " eats meat." << endl; }
 14 void Sleep() { cout << "Ahh...a nice nap!" << endl; }
 15 private:
 16 string m_name;
 17 };
 18
 19 int main() {
 20 Animal animal;
 21 Lion lion;
 22
 23 animal.Eats();
 24 lion.Eats();
 25
 26 animal.Sleep();
 27
 28 return 0;
 29 }

a. Line 26 causes an error when the program is compiled. Why?  

�  

b. If Line 26 is deleted and the program is compiled and run, what output will it produce?

�

�

Page � of �7 13

CMSC 202 Midterm Exam 2 Spring 2015

6. (12 points) A program needs to create a dynamically-allocated two-dimensional array. The
variables nrows and ncols contain the required number of rows and columns, respectively.
Complete the code to create the nrows-by-ncols integer matrix intArray and initialize its
elements to zero: 

 1 int = new int*[nrows];  

 2 for (int i = 0; i < nrows; i++) {  

 3 intArray[i] = ;  

 4 for (int j = 0; j < ncols; j++)  

 5 = 0;  

 6 }  

7. Consider the following interface (.h) file for a Vehicle class:
 1 #ifndef VEHICLE_H
 2 #define VEHICLE_H
 3
 4 class Vehicle {
 5 public:
 6
 7 /* Default Constructor - creates a vehicle that can carry
 8 passengers AND freight. */
 9
 10 Vehicle();
 11
 12 /* Non-default Constructor - select whether vehicle can
 13 carry passengers and/or freight. */
 14
 15 Vehicle(bool takesPassengers, bool takesFreight);
 16
 17 private:
 18 bool m_takesPassengers; // true if vehicle can carry passengers
 19 bool m_takesFreight; // true if vehicle can carry freight
 20 };
 21
 22 #endif

The Car class is to be derived from the Vehicle class. A Car can carry passengers, but can
not carry freight. Car contains three additional private class variables: an integer m_numSeats
indicating how many seats the car has, an integer m_seatsAvailable indicating how many
seats are available, and a string array m_passengers containing the names of the passengers
in the car.

Page � of �8 13

CMSC 202 Midterm Exam 2 Spring 2015

a. (5 points) Write the implementation of a default constructor which creates a Car with five
seats. Initially, all the seats should be available. The passenger array must be
dynamically allocated and be of the appropriate size (one element per seat).

b. (5 points) Write the implementation of a non-default constructor that creates a Car with
the number of seats specified as an argument. As with the default constructor, initially all
seats should be available and the passenger array should be dynamically allocated and
be of the appropriate size (one element per seat).

c. (5 points) Write the implementation of a Car destructor.

Page � of �9 13

CMSC 202 Midterm Exam 2 Spring 2015

d. (5 points) If a seat is available, the function AddPassenger(string name) adds
name to the passenger array and decrements the number of seats available. If no seats
are available, the function prints a warning message. Write the implementation of the
function:

e. (10 points) Write the complete interface (.h) file for the Car class, including both
constructors, the destructor, and AddPassenger(). Do not include comments.

Page � of �10 13

CMSC 202 Midterm Exam 2 Spring 2015

Continuation (if needed)

Page � of �11 13

CMSC 202 Midterm Exam 2 Spring 2015

Page Points Earned

1 18

2 12

3 8

4 12

5 8

6 12

7 15

8 15

Total 100

Page � of �12 13

CMSC 202 Midterm Exam 2 Spring 2015

Page � of �13 13

