Pointers & Dynamic Memory

CMSC 202

3/24/2014

Representing Variables

Regular variables
int age;
Array of ints
int ages[4];
Struct with 2 data pieces
struct Person
{
int age;
char initial;
}i
Person p;
Array of structs

Person people[4];

int: age |:|

int: p.age . E
char: p.initial person: p

Pointer Review

Creating a pointer

int*: ptr Z‘
int*: ptr E—;

— int* ptr;

Connecting it to a pointee int a

—int a = 4; int*: ptr

— ptr = &a;

Changing its pointee’s value int: a

— *ptr = 7; int*: ptr =
Changing pointees n

— int b = 2; .

- ptr = sb; int*: ptr

3/24/2014

Pointer Operators

< & * Examples:
— Address of pointee — int a = 3;
— Syntax: — int* ptr = &a;
+ type* ptr = variable; - *ptr = 8;
+ ptr = &variable2;
. - int b = 5;
— Dereferencing, Value of pointee — int* ptr2 = &b;
— Syntax: — ptr = ptr2;

« *ptr = value;
+ variable = *ptr;

— Assignment, point to something else
— Syntax:
+ ptrA = ptrB; int: a

Arrays and Pointer Arithmetic

e Tricky stuff...
— Arrays are simply a kind of pointer
— Points to first item in collection
— Index into array is “offset”
* Example

int ages[4] = {0, 1, 2, 3};
int* ptr = &ages[2];

*ptr = 8;

ptr++;

*(ptr - 2) = 9;

Dynamic Memory and Classes

* Types of memory from Operating System

— Stack — local variables and pass-by-value parameters are
allocated here

— Heap — dynamic memory is allocated here
« C
— malloc() — memory allocation
— free() — free memory
e C++
— new — create space for a new object (allocate)
— delete — delete this object (free)

3/24/2014

New Objects

* new

— Works with primitives

— Works with class-types

Constructor!

* Syntax:
— type* ptrName

new type;

— type* ptrName = new type(params) ;

New Examples

Notice:

These are
unnamed objects!
The only way we
can get to them is

through the pointer!

int* intPtr = new int;

int*: intPtr int:

Pointers are the

same size no
Car* carPtr = new Car(“Nissan”, “Pulsar”); matter hOV\{ big the
data is!
Car*: carPtr Car Tttt
= Nissan
Customer:

Customer* custPtr = new Customer;

Customer*: custPtr

Deletion of Objects

* delete
— Called on the pointer to an object
— Works with primitives & class-types

* Syntax:
— delete ptrName;

* Example:
— delete intPtr; Set to NULL so that
— intPtr = NULL; you can use it later —

protect yourself from
accidentally using
that object!

— delete carPtr;
— carPtr = NULL;

— delete custPtr;
— custPtr = NULL;

Video!

Pointer Fun with Binky
http://cslibrary.stanford.edu/104/

3/24/2014

Practice
Assume you have a
Shoe class:
— Create a pointer to a Shoe* shoePtr;
Shoe

— Connect the pointer to a
new Shoe object

— Delete your Shoe object
— Set pointer to null delete shoePtr;

shoePtr = new Shoe;

shoePtr = NULL;

Dynamic Arrays?!

Syntax

— type* arrayName = new type[size];

— type* arrayName = new type[size] (params);
— delete [] arrayName;

Example int*: intPtr

int* intPtr;
intPtr = new int[5];

Car* carPtr;
carPtr = new Car[10];

Customer* custPtr;
custPtr = new Customer[3];

Constructor!

Dynamic Arrays?!

Syntax

— type* arrayName = new type[size];

— type* arrayName = new type[size] (params);
— delete [] arrayName;
Example

int* intPtr;

intPtr = new int[5];

int*. intPtr

Car* carPtr;
carPtr = new Car[10] (“Nissan”, “Pulsar”);

Customer* custPtr;
custPtr = new Customer[3];

Constructor!

3/24/2014

Dynamic 2D Arrays

char**: chArray2

Algorithm
— Allocate the number of rows
— Foreach row

* Allocate the columns
Example
const int ROWS = 3;
e m
char **chArray2;
// allocate the rows —_—
chArray? = new char* [ROWS];
// allocate the (pointer) elements for each row

for (int row = 0; row < ROWS; row+)
chArray2[row] = new char[COLUMNS];

//

Dynamic 2D Arrays

Delete?
— Reverse the creation algorithm
« Foreach row
— Delete the columns
+ Delete the rows
Example

delete the columns

for (int row = 0; row < ROWS; row++)

{

}
/7

delete [] chArray2[row];
chArray2[row] = NULL;

delete the rows

delete [] chArray2;
chArray2 = NULL;

2D Vectors?!

Notice the
space, why??

* Allocation
vector< vector< int > > intArray;

* Deletion
// allocate the rows
intArray.resize (ROWS);

// allocate the columns

3/24/2014

for (unsigned int i = 0; i < intArray.size(); i++)
intArray[i].resize(COLUMNS);
+ Constructors
— Construct or create the object
— Called when you use new
+ Destructors
— Destroy the object
— Called when you use delete
— Why is this needed?
« Dynamic memory WITHIN the class!
* Syntax:
class ClassName
{
public:
ClassName () ; // Constructor
~ClassName () ; // Destructor
// other stuff..
}i
class Car Car::Car(const strings make,
{ int year)
public: {
Car (const strings make, m_make = new string(make);
int year); m_year = new int(year);
}
~Car(); // Destructor
Car::~Car()
private: {
string* m_make; delete m make;
int* m_year; m make = NULL; // cleanup

}i
delete m_year;
m_year = NULL;

// cleanup

3/24/2014

Dynamic Memory Rules

* Classes
— If dynamic data
* MUST have constructor
* MUST have destructor
* Delete
— After delete — always set pointer to NULL
* Security

* “For every new, there must be a delete.”

Practice

* Dynamically create an array of 50 Shoes
* Delete your array of shoes
* “Clear” the pointer

Shoe* shoeArray = new Shoe[50];

delete shoeArray;
shoeArray = NULL;

Challenge

* Create a very simple Car class

— Dynamically allocate an array of Passengers within
the car

— Create a constructor to allocate the array

— Create a deconstructor to delete the array

