
3/24/2014

1

Pointers & Dynamic Memory

CMSC 202

Representing Variables
• Regular variables

int age;

• Array of ints
int ages[4];

• Struct with 2 data pieces
struct Person

{

int age;

char initial;

};

Person p;

• Array of structs
Person people[4];

int: age

int[]: ages

int: p.age

char: p.initial
Person: p

Person[]: people

Pointer Review

• Creating a pointer
– int* ptr;

• Connecting it to a pointee
– int a = 4;

– ptr = &a;

• Changing its pointee’s value
– *ptr = 7;

• Changing pointees
– int b = 2;

– ptr = &b;

int*: ptr

int*: ptr 4

int: a

int*: ptr 7

int: a

int*: ptr 7

int: a

2

int: b

int*: ptr



3/24/2014

2

Pointer Operators

• &
– Address of pointee
– Syntax:

• type* ptr = &variable;

• ptr = &variable2;

• *
– Dereferencing, Value of pointee
– Syntax:

• *ptr = value;

• variable = *ptr;

• =
– Assignment, point to something else
– Syntax:

• ptrA = ptrB;

• Examples:
– int a = 3;

– int* ptr = &a;

– *ptr = 8;

– int b = 5;

– int* ptr2 = &b;

– ptr = ptr2;

int*: ptr 3

int: a

8

Arrays and Pointer Arithmetic
• Tricky stuff…

– Arrays are simply a kind of pointer
– Points to first item in collection
– Index into array is “offset”

• Example

int ages[4] = {0, 1, 2, 3};

int* ptr = &ages[2];

*ptr = 8;

ptr++;

*(ptr - 2) = 9;

0int[]: ages 1 2 3

int*: ptr

9 8

ptr - 2

Dynamic Memory and Classes
• Types of memory from Operating System

– Stack – local variables and pass-by-value parameters are 
allocated here

– Heap – dynamic memory is allocated here

• C
– malloc() – memory allocation

– free() – free memory

• C++
– new – create space for a new object (allocate)

– delete – delete this object (free)



3/24/2014

3

New Objects

• new 

– Works with primitives

– Works with class-types

• Syntax:
– type* ptrName = new type;

– type* ptrName = new type( params );

Constructor!

New Examples

int* intPtr = new int;

Car* carPtr = new Car(“Nissan”, “Pulsar”);

Customer* custPtr = new Customer;

int*: intPtr int: 

Car*: carPtr Car:

Nissan

Customer*: custPtr

Customer:
Pulsar

Notice:

These are 

unnamed objects!  

The only way we 

can get to them is 

through the pointer!

Pointers are the 

same size no 

matter how big the 

data is!

Deletion of Objects
• delete

– Called on the pointer to an object
– Works with primitives & class-types

• Syntax:
– delete ptrName;

• Example:
– delete intPtr;

– intPtr = NULL;

– delete carPtr;

– carPtr = NULL;

– delete custPtr;

– custPtr = NULL;

Set to NULL so that 

you can use it later –

protect yourself from 

accidentally using 

that object!



3/24/2014

4

Video!

Pointer Fun with Binky

http://cslibrary.stanford.edu/104/

Practice

• Assume you have a 
Shoe class:
– Create a pointer to a 

Shoe

– Connect the pointer to a 
new Shoe object

– Delete your Shoe object

– Set pointer to null

Shoe* shoePtr;

shoePtr = new Shoe;

delete shoePtr;

shoePtr = NULL;

Dynamic Arrays?!

• Syntax
– type* arrayName = new type[ size ];

– type* arrayName = new type[ size ] ( params );

– delete [ ] arrayName;

• Example
int* intPtr;

intPtr = new int[ 5 ];

Car* carPtr;

carPtr = new Car[ 10 ];

Customer* custPtr;

custPtr = new Customer[ 3 ];

int*: intPtr

Constructor!



3/24/2014

5

Dynamic Arrays?!

• Syntax
– type* arrayName = new type[ size ];

– type* arrayName = new type[ size ] ( params );

– delete [ ] arrayName;

• Example
int* intPtr;

intPtr = new int[ 5 ];

Car* carPtr;

carPtr = new Car[ 10 ] ( “Nissan”, “Pulsar” );

Customer* custPtr;

custPtr = new Customer[ 3 ];

int*: intPtr

Constructor!

Dynamic 2D Arrays

• Algorithm
– Allocate the number of rows
– For each row

• Allocate the columns

• Example
const int ROWS = 3; 

const int COLUMNS = 4;

char **chArray2; 

// allocate the rows 

chArray2 = new char* [ ROWS ]; 

// allocate the (pointer) elements for each row 

for (int row = 0; row < ROWS; row++ ) 

chArray2[ row ] = new char[ COLUMNS ];

char**: chArray2

Dynamic 2D Arrays

• Delete?
– Reverse the creation algorithm

• For each row
– Delete the columns

• Delete the rows

• Example

// delete the columns 

for (int row = 0; row < ROWS; row++) 

{ 

delete [ ] chArray2[ row ]; 

chArray2[ row ] = NULL; 

} 

// delete the rows 

delete [ ] chArray2; 

chArray2 = NULL; 



3/24/2014

6

2D Vectors?!

• Allocation
vector< vector< int > > intArray; 

• Deletion
// allocate the rows 

intArray.resize ( ROWS ); 

// allocate the columns 

for (unsigned int i = 0; i < intArray.size( ); i++) 

intArray[ i ].resize( COLUMNS ); 

Notice the 

space, why??

Destructors

• Constructors
– Construct or create the object
– Called when you use new

• Destructors
– Destroy the object
– Called when you use delete
– Why is this needed?

• Dynamic memory WITHIN the class!

• Syntax:
class ClassName

{

public:

ClassName(); // Constructor

~ClassName(); // Destructor

// other stuff…

};

Destructor Example

class Car

{

public:

Car( const string& make, 

int year);

~Car(); // Destructor

private:

string* m_make;

int* m_year;

};

Car::Car( const string& make, 
int year)

{

m_make = new string(make);

m_year = new int(year);

}

Car::~Car()

{

delete m_make;

m_make = NULL; // cleanup

delete m_year;

m_year = NULL; // cleanup

}



3/24/2014

7

Dynamic Memory Rules

• Classes
– If dynamic data

• MUST have constructor

• MUST have destructor

• Delete
– After delete – always set pointer to NULL

• Security

• “For every new, there must be a delete.”

Practice
• Dynamically create an array of 50 Shoes

• Delete your array of shoes

• “Clear” the pointer

Shoe* shoeArray = new Shoe[ 50 ];

delete shoeArray;

shoeArray = NULL;

Challenge

• Create a very simple Car class

– Dynamically allocate an array of Passengers within 
the car

– Create a constructor to allocate the array

– Create a deconstructor to delete the array


