
1/29/2014

1

C++ Primer I

CMSC 202

Topics Covered

• Our first “Hello world” program

• Basic program structure

• main()

• Variables, identifiers, types

• Expressions, statements

• Operators, precedence, associativity

• Comments

• C-strings, C++ string class

• Simple I/O: cin, cout, cerr

2

1-3

A Sample C++ Program

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

1/29/2014

2

4

Using the C Compiler at UMBC

• Invoking the compiler is system dependent.

– At UMBC, we have two C compilers available, cc
and gcc.

– For this class, we will use the gcc compiler as it is
the compiler available on the Linux system.

5

Invoking the gcc Compiler

At the prompt, type

g++ -Wall program.cpp –o program.out

where program.cpp is the C++ program source file

(the compiler also accepts “.cc” as a file extension for
C++ source)

• -Wall is an option to turn on all compiler warnings
(best for new programmers).

6

The Result : a.out

• If there are no errors in program.cpp, this command
produces an executable file, which is one that can be
executed (run).

• If you do not use the “-o” option, the compiler names
the executable file a.out .

• To execute the program, at the prompt, type

./program.out

• Although we call this process “compiling a program,”
what actually happens is more complicated.

1/29/2014

3

UNIX Programming Tools

• We will be using the “make” system to
automate what was shown in the previous few
slides

• This will be discussed in lab

1-7Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Variable Declaration

• Syntax: <type> <legal identifier>;

• Examples:

int sum;

float average;

double grade = 98;

– Must be declared before being used

– May appear in various places and contexts (described later)

– Must be declared of a given type (e.g. int, float, char, etc.)

Semicolon required!

8

9

Variable Declarations (con’t)

When we declare a variable, we tell C++:

When and where to set aside memory space for
the variable

How much memory to set aside

How to interpret the contents of that memory: the
specified data type

What name we will be referring to that location by:
its identifier

1/29/2014

4

10

Identifiers

Identifier naming rules apply to all variables,
methods, class names, enumerations, etc.:

Typically consist of letters, digits, and underscores
(‘_’)

Must not start with a digit

Can be of any length

Are case-sensitive:

Rate, rate, and RATE are the names of three different
variables.

Cannot be a keyword, or other reserved

11

Naming Conventions

Naming conventions are additional rules that restrict
the names of variables to improve consistency
and readability

Most places of work and education have a set of naming
conventions

These are not language or compiler enforced

We have our own CMSC 202 standards, given in
detail on the course website, to be used on all
projects

12

Variables:
Start with a lowercase letter

Indicate "word" boundaries with an uppercase letter

Restrict the remaining characters to digits and lowercase
letters

topSpeed bankRate1 timeOfArrival

Classes and functions
Start with an uppercase letter

Otherwise, adhere to the rules above

FirstProgram MyClass BankAccount

Naming Conventions in C++

1/29/2014

5

13

Class members:
Must have a “m_” prefix

Then start with a lowercase letter

Rest of the rules the same as for variables

m_name m_dailyRate

Other rules as given on class web site

Naming Conventions in C++

Data Types:
Display 1.2 Simple Types (1 of 2)

1-14Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Data Types:
Display 1.2 Simple Types (2 of 2)

1-15Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

1/29/2014

6

1-16

Assigning Data

• Initializing data in declaration statement
– Results "undefined" if you don’t!

• int myValue = 0;

• Assigning data during execution
– Lvalues (left-side) & Rvalues (right-side)

• Lvalues must be variables

• Rvalues can be any expression

• Example:
distance = rate * time;
Lvalue: "distance"
Rvalue: "rate * time"

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

1-17

Data Assignment Rules

• Compatibility of Data Assignments

– Type mismatches
• General Rule: Cannot place value of one type into variable of

another type

– intVar = 2.99; // 2 is assigned to intVar!
• Only integer part "fits", so that’s all that goes

• Called "implicit" or "automatic type conversion"

– Literals
• 2, 5.75, "Z", "Hello World"

• Considered "constants": can’t change in program

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Display 1.3
Some Escape Sequences (1 of 2)

1-18Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

1/29/2014

7

Display 1.3
Some Escape Sequences (2 of 2)

1-19Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Constants

• You should not use literal constants directly in
your code

– It might seem obvious to you, but not so:

• “limit = 52”: is this weeks per year… or cards in a deck?

• Instead, you should use named constants

– Represent the constant with a meaningful name

– Also allows you to change multiple instances in a
central place

1-20Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Constants

• There are two ways to do this:

– Old way: preprocessor definition:
#define WEEKS_PER_YEAR 52

This textually replaces the name with the value
(Note: there is no “=“)

– New, better way: constant variable:

• Looks just like variable declaration, including type

• Just add the keyword “const” to the declaration
const float PI = 52;

• Compiler enforces immutability

1-21Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

1/29/2014

8

Operators, Expressions

• Recall: most programming languages have a
variety of operators: called unary, binary, and
even ternary, depending on the number of
operands (things they operate on)

• Usually represented by special symbolic
characters: e.g., ‘+’ for addition, ‘*’ for
multiplication

• There are also relational operators, and
Boolean operators

1-22Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Operators, Expressions

• Simple units of operands and operators
combine into larger units, according to strict
rules of precedence and associativity

• Each computable unit (both simple and larger
aggregates) are called expressions

1-23Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Binary Operators

• What is a binary operator?

– An operator that has two operands

• <operand> <operator> <operand>

– Arithmetic Operators

• + - * / %

– Relational Operators

• < > == <= >=

– Logical Operators

• && ||

24

1/29/2014

9

Relational Operators

• In C++, all relational operators evaluate to a boolean value of either
true or false .

• x = 5;

• y = 6;

– x > y will always evaluate to false .

• C++ has a ternary operator – the general form is:

• (conditional expression) ? true case : false case ;

• For example:

• Cout << ((x > y) ? "X is greater" : "Y is greater");

25

Unary Operators

• Unary operators only have one operand.

• ! ++ --

– ++ and -- are the increment and decrement operators
– x++ a post-increment (postfix) operation

– ++x a pre-increment (prefix) operation

• What is the difference between these segments?

• x = 5;

• cout << "x's value is” << x++;

•

• x = 5;

• cout << "x's value is” << ++x;

26

Precedence, Associativity

• Order of operator application to operands:
• Postfix operators: ++ -- (right to left)
• Unary operators: + - ++ -- ! (right to left)
• * / % (left to right)
• + - (left to right)
• < > <= >=
• == !=
• &&
• ||
• ? :
• Assignment operator: = (right to left)

27

1/29/2014

10

1-28

Arithmetic Precision

• Precision of Calculations

– VERY important consideration!

• Expressions in C++ might not evaluate as
you’d "expect"!

– "Highest-order operand" determines type
of arithmetic "precision" performed

– Common pitfall!

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

1-29

Arithmetic Precision Examples

• Examples:

– 17 / 5 evaluates to 3 in C++!
• Both operands are integers

• Integer division is performed!

– 17.0 / 5 equals 3.4 in C++!
• Highest-order operand is "double type"

• Double "precision" division is performed!

– int intVar1 =1, intVar2=2;
intVar1 / intVar2;

• Performs integer division!

• Result: 0!

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

1-30

Individual Arithmetic Precision

• Calculations done "one-by-one"

– 1 / 2 / 3.0 / 4 performs 3 separate divisions.
• First 1 / 2 equals 0

• Then 0 / 3.0 equals 0.0

• Then 0.0 / 4 equals 0.0!

• So not necessarily sufficient to change
just "one operand" in a large expression

– Must keep in mind all individual calculations
that will be performed during evaluation!

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

1/29/2014

11

1-31

Type Casting

• Two types

– Implicit—also called "Automatic"
• Done FOR you, automatically

17 / 5.5
This expression causes an "implicit type cast" to
take place, casting the 17  17.0

– Explicit type conversion
• Programmer specifies conversion with cast operator

(double)17 / 5.5
Same expression as above, using explicit cast

(double)myInt / myDouble
More typical use; cast operator on variable

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

1-32

Type Casting

• Casting for Variables
– Can add ".0" to literals to force precision

arithmetic, but what about variables?
• We can’t use "myInt.0"!

– static_cast<double>intVar

– Explicitly "casts" or "converts" intVar to
double type

• Result of conversion is then used

• Example expression:
doubleVar = static_cast<double>intVar1 / intVar2;

– Casting forces double-precision division to take place
among two integer variables!

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

1-33

Shorthand Operators

• Increment & Decrement Operators

– Just short-hand notation

– Increment operator, ++
intVar++; is equivalent to
intVar = intVar + 1;

– Decrement operator, --
intVar--; is equivalent to
intVar = intVar – 1;

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

1/29/2014

12

1-34

Shorthand Operators: Two Options

• Post-Increment
intVar++
– Uses current value of variable, THEN increments it

• Pre-Increment
++intVar
– Increments variable first, THEN uses new value

• "Use" is defined as whatever "context"
variable is currently in

• No difference if "alone" in statement:
intVar++; and ++intVar;  identical result

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

1-35

Post-Increment in Action

• Post-Increment in Expressions:
int n = 2,

valueProduced;
valueProduced = 2 * (n++);
cout << valueProduced << endl;
cout << n << endl;

– This code segment produces the output:
4
3

– Since post-increment was used

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

1-36

Pre-Increment in Action

• Now using Pre-increment:
int n = 2,

valueProduced;
valueProduced = 2 * (++n);
cout << valueProduced << endl;
cout << n << endl;

– This code segment produces the output:
6
3

– Because pre-increment was used

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

1/29/2014

13

1-37

Assigning Data: Shorthand Notations

• Display, page 14

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

38

Commenting Programs

• A comment is descriptive text used to help a
reader of the program understand its content.

• C++ supports two different styles of comments

• Style 1: multi-line comments:

– Comment begins with the characters /* and end
with the characters */

– These are called comment delimiters

– As the name implies, these comments can span
multiple lines

39

Commenting Programs

• Style 2: single-line comments:

– Comment begins anywhere in a line with a “//” (a
double forward-slash)

– Everything from the “//” to the end of the line is
ignored as a comment

• Comments (especially program header
comments) are critical to good programming,
and will be stressed in class projects

• Look at the class web page for the required
contents of our header comment.

1/29/2014

14

Comment Examples

• End of line comment:

• Multi-line comment:

vol = x * y * z; // compute the volume

/*

* sort the array using

* selection sort
*/

40

Tricky Comments

• What will this do?
/* Comments

cout << “Hello”;

// */

• What about this?
// /* Comments

cout << “Hello”;

*/

1-41Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

C-strings

• C++ has two different kinds of “string of
characters”:

– the original C-string: array of characters

– The object-oriented string class

• C-strings are terminated with a null character
(‘\0’)
char myString[80];
would declare a variable with enough space
for a string with 79 usable characters, plus null

1-42Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

1/29/2014

15

C-strings

• You can initialize a C-string variable:
char myString[80] = “Hello world”;

– This will set the first 11 characters as given, make
the 12th character ‘\0’, and the rest unused for
now

1-43Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

String type

• C++ added a data type of “string” to store
sequences of characters

– Not a primitive data type; distinction will be made
later

– Must add #include <string> at the top of the
program

– The “+” operator on strings concatenates two
strings together

– cin >> str where str is a string only reads up to the
first whitespace character

1-44Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

String Equality

• In Python, you can use the simple “==“
operator to compare two strings:

if name == “Fred”:

• In C++, you can use “==“ to compare two
string class items, but not C-strings!

• To compare two C-strings, you have to use the
function strcmp(); it is not syntactically
incorrect to compare two C-strings with “==“,
but it does not do what you expect…

1-45Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

1/29/2014

16

1-46

Console Input/Output

• I/O objects cin, cout, cerr

• Defined in the C++ library called
<iostream>

• Must have these lines (called pre-
processor directives) near start of file:

– #include <iostream>
using namespace std;

– Tells C++ to use appropriate library so we can
use the I/O objects cin, cout, cerr

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

1-47

Console Output

• What can be outputted?
– Any data can be outputted to display screen

• Variables

• Constants

• Literals

• Expressions (which can include all of above)

– cout << numberOfGames << " games played.";
2 values are outputted:

"value" of variable numberOfGames,
literal string " games played."

• Cascading: multiple values in one cout

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

1-48

Separating Lines of Output

• New lines in output
– Recall: "\n" is escape sequence for the

char "newline"

• A second method: object endl

• Examples:
cout << "Hello World\n";

• Sends string "Hello World" to display, & escape
sequence "\n", skipping to next line

cout << "Hello World" << endl;
• Same result as above

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

1/29/2014

17

Input/Output (1 of 2)

1-49Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Input/Output (2 of 2)

1-50Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

1-51

Formatting Output

• Formatting numeric values for output

– Values may not display as you’d expect!
cout << "The price is $" << price << endl;

• If price (declared double) has value 78.5, you
might get:

– The price is $78.500000 or:

– The price is $78.5

• We must explicitly tell C++ how to output
numbers in our programs!

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

1/29/2014

18

1-52

Formatting Numbers

• "Magic Formula" to force decimal sizes:
cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);

• These stmts force all future cout’ed values:
– To have exactly two digits after the decimal place

– Example:
cout << "The price is $" << price << endl;

• Now results in the following:
The price is $78.50

• Can modify precision "as you go" as well!

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

1-53

Error Output

• Output with cerr

– cerr works same as cout

– Provides mechanism for distinguishing
between regular output and error output

• Re-direct output streams

– Most systems allow cout and cerr to be
"redirected" to other devices

• e.g., line printer, output file, error console, etc.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

1-54

Input Using cin

• cin for input, cout for output

• Differences:
– ">>" (extraction operator) points opposite

• Think of it as "pointing toward where the data goes"

– Object name "cin" used instead of "cout"

– No literals allowed for cin
• Must input "to a variable"

• cin >> num;
– Waits on-screen for keyboard entry

– Value entered at keyboard is "assigned" to num

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

1/29/2014

19

1-55

Prompting for Input: cin and cout

• Always "prompt" user for input
cout << "Enter number of dragons: ";
cin >> numOfDragons;
– Note no "\n" in cout. Prompt "waits" on same

line for keyboard input as follows:

Enter number of dragons: ____

• Underscore above denotes where keyboard entry
is made

• Every cin should have cout prompt
– Maximizes user-friendly input/output

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Reading from the Console

• Let’s assume the user has entered “128 10” .
• The first “<<“ reads the characters “128” leaving “ 10\n” in

the input buffer.
• The second “<<“ (same expression) reads the “10” and leaves

the “\n” in the buffer. THIS WILL BE IMPORTANT LATER.

‘1’ …‘\n’‘0’‘1’‘ ’‘8’‘2’

int n1, n2;

cout << "Enter 2 numbers to sum: ";

cin >> n1 >> n2;

cout << n1 << "+" << n2 << “=" << (n1 + n2);

56

1-57

Libraries

• C++ Standard Libraries

• #include <Library_Name>
– Directive to "add" contents of library file to

your program

– Called "preprocessor directive"
• Executes before compiler, and simply "copies"

library file into your program file

• C++ has many libraries
– Input/output, math, strings, etc.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

1/29/2014

20

1-58

Namespaces

• Namespaces defined:
– Collection of name definitions

• For now: interested in namespace "std"
– Has all standard library definitions we need

• Examples:
#include <iostream>
using namespace std;

• Includes entire standard library of name definitions

• #include <iostream>using std::cin;
using std::cout;

• Can specify just the objects we want

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

