
Java Primer II

CMSC 202

Expressions

• An expression is a construct made up of
variables, operators, and method invocations,
that evaluates to a single value.

• For example:

int cadence = 0;

anArray[0] = 100;

System.out.println("Element 1 at index 0: " + anArray[0]);

int result = 1 + 2;

System.out.println(x == y ? "equal" :"not equal");

2

Statements
• Statements are roughly equivalent to sentences

in natural languages. A statement forms a
complete unit of execution.

• Two types of statements:
– Expression statements – end with a semicolon ‘;’

• Assignment expressions

• Any use of ++ or --

• Method invocations

• Object creation expressions

– Control Flow statements
• Selection & repetition structures

3

Comment Types
• End of line comment – ignores everything else on the line after the

“//”

• Multi-line comment — must open with “/*” and close with “*/”

• Javadoc comment — special version of multi-line comment that
starts with “/**”
– Used by Java’s documentation tool

// compute the volume

/*

* sort the array using

* selection sort

*/

/**

* Determines if the item is empty

* @return true if empty, false otherwise

*/

4

If-Then Statement

• The if-then statement is the most basic of all
the control flow statements.

if (x == 2)

System.out.println("x is 2");

System.out.println("Finished");

if x == 2:

print "x is 2"

print "Finished"

Python Java

Notes about Java’s if-then:

• Conditional expression must be in parentheses
• Conditional expression must result in a boolean value

5

Multiple Statements

• What if our then case contains multiple
statements?

if(x == 2)

System.out.println("even");

System.out.println("prime");

System.out.println("Done!");

if x == 2:

print "even"

print "prime"

print "Done!"

Python Java

Notes:
• Unlike Python, spacing plays no role in Java’s
selection/repetition structures
• The Java code is syntactically fine – no compiler errors
• However, it is logically incorrect

6

Blocks

• A block is a group of zero or more statements
that are grouped together by delimiters.

• In Java, blocks are denoted by opening and
closing curly braces ‘{’ and ‘}’ .

if(x == 2) {

System.out.println("even");

System.out.println("prime");

}

System.out.println("Done!");

Note:
• It is generally considered a good practice to include the curly
braces even for single line statements.

7

Variable Scope

• That set of code statements in which the variable
is known to the compiler.

• Where a variable it can be referenced in your
program

• Limited to the code block in which the variable is
defined

• For example:

if(age >= 18) {

boolean adult = true;

}

/* couldn't use adult here */

8

If-Then-Else Statement

• The if-then-else statement looks much like it
does in Python (aside from the parentheses
and curly braces).

if(x % 2 == 1) {

System.out.println("odd");

} else {

System.out.println("even");

}

if x % 2 == 1:

print "odd"

else:

print "even"

Python Java

9

If-Then-Else If-Then-Else Statement

• Again, very similar…

if(x < y) {

System.out.println("x < y");

} else if (x > y) {

System.out.println("x > y");

} else {

System.out.println("x == y");

}

if x < y:

print "x < y"

elif x > y:

print "x > y"

else:

print "x == y"

Python Java

10

Switch Statement

• Unlike if-then and if-then-else, the switch
statement allows for any number of possible
execution paths.

• Works with byte, short, char, and int primitive
data types.

– As well as enumerations (which we’ll cover later)

11

Switch Statement

int cardValue = /* get value from somewhere */;

switch(cardValue) {

case 1:

System.out.println("Ace");

break;

case 11:

System.out.println("Jack");

break;

case 12:

System.out.println("Queen");

break;

case 13:

System.out.println("King");

break;

default:

System.out.println(cardValue);

}

Notes:
• break statements are typically
used to terminate each case.
• It is usually a good practice to
include a default case.

12

Switch Statement

switch (month) {

case 1: case 3: case 5: case 7:

case 8: case 10: case 12:

System.out.println("31 days");

break;

case 4: case 6: case 9: case 11:

System.out.println("30 days");

break;

case 2:

System.out.println("28 or 29 days");

break;

default:

System.err.println("Invalid month!");

break;

}

Note:
• Without a break statement, cases “fall through” to the next statement.

13

While Loops

• The while loop executes a block of statements
while a particular condition is true.

• Pretty much the same as Python…

int count = 0;

while(count < 10) {

System.out.println(count);

count++;

}

System.out.println("Done!");

count = 0;

while(count < 10):

print count

count += 1

print "Done!"

Python Java

14

Do-While Loops

• In addition to while loops, Java also provides a
do-while loop.

– The conditional expression is at the bottom of the
loop.

– Statements within the block are always executed
at least once.

– Note the trailing semicolon!

int count = 0;

do {

System.out.println(count);

count++;

} while(count < 10);

System.out.println("Done!");

15

For Loop

• The for statement provides a compact way to iterate
over a range of values.

• The initialization expression initializes the loop – it is
executed once, as the loop begins.

• When the termination expression evaluates to false,
the loop terminates.

• The increment expression is invoked after each
iteration through the loop.

for (initialization; termination; increment) {

/* ... statement(s) ... */

}

16

For Loop

• The equivalent loop written as a for loop

– Counting from start value (zero) up to (excluding)
some number (10)

for(int count = 0; count < 10; count++) {

System.out.println(count);

}

System.out.println("Done!");

for count in range(0, 10):

print count

print "Done!"

Python

Java

17

For Loop

• Counting from 25 up to (excluding) 50 in steps
of 5

for(int count = 25; count < 50; count += 5){

System.out.println(count);

}

System.out.println("Done!");

for count in range(25, 50, 5):

print count

print "Done!"

Python

Java

18

For Loop

• Iterating over the contents of an array

String[] items = new String[]{"foo","bar","baz"};

for (int i = 0; i < items.length; i++) {

System.out.printf("%d: %s%n", i, items[i]);

}

items = ["foo", "bar", "baz"]

for i in range(len(items)):

print "%d: %s" % (i, items[i])

Python

Java

19

For Each Loop
• Java also has a second form of the for loop known

as a “for each” or “enhanced for” loop.
• This is much more like Python’s for-in loop.
• The general form is:

• For now, we’ll assume that the collection is an
array (though there are other objects it can be,
which we’ll discuss later in the semester).

for (<type> <item name> : <collection name>) {

/* ... do something with item ... */

}

20

For Each Loop

• Iterating over the contents of an array using a
for-each loop

String[] items = new String[]{"foo","bar","baz"};

for(String item : items) {

System.out.println(item);

}

items = ["foo", "bar", "baz"]

for item in items:

print item

Python

Java

21

Reading From the Console
• Java’s Scanner object reads in input that the user

enters on the command line.

• System.in is a reference to the standard input buffer.

• We can read values from the Scanner object using the
dot notation to invoke a number of functions.
– nextInt() — returns the next integer from the buffer

– nextFloat() — returns the next float from the buffer

– nextLine() — returns the entire line as a String

Scanner input = new Scanner(System.in);

22

Scanner Notes
• In order to use the Scanner class, you’ll need

to add the following line to the top of your
code…

• You should never declare more than one
Scanner object on a given input stream.

• The Scanner object will wait for a user to
type, and read all text entered up until the
user presses the “enter” key (including the
newline character).

import java.util.Scanner;

23

Reading from the Console

• Let’s assume the user has entered “128 10” .
• The first call to nextInt() reads the characters “128” leaving “

10\n” in the input buffer.
• The second call to nextInt() reads the “10” and leaves the “\n”

in the buffer.

‘1’ …‘\n’‘0’‘1’‘ ’‘8’‘2’

System.out.print("Enter 2 numbers to sum: ");

Scanner input = new Scanner(System.in);

int n1 = input.nextInt();

int n2 = input.nextInt();

System.out.printf("%d + %d = %d", n1, n2, n1 + n2);

24

Reading via UNIX Redirection

• The Scanner class also has a bunch of hasNextX()
methods to detect if there’s another data item of the
given type in the stream.

• For example, this is useful if we were reading an
unknown quantity of integers from a file that is
redirected into our program (as above).

% cat numbers

1 2 3

4

5 6 7

8

% java Sum < numbers

Sum: 36

%

int sum = 0;

Scanner input = new Scanner(System.in);

while(input.hasNextInt()) {

sum += input.nextInt();

}

System.out.println("Sum: " + sum);

25

Strings
• Java’s String class represents an immutable sequence of characters.

• Strings can be easily concatenated together using the + operator

• Strings can be concatenated with both primitive and reference
types.

• Strings also support the += operator.

String variable = "ABC";

String name = "Bubba";

String player = "Donkey" + "Kong";

String foo = "abc" + 123;

String s = "foo";

s += "bar";

26

String Equality

• Unlike Python, we cannot simply use the ==
operator to compare Strings.

• Remember — Strings are reference types, so
comparing the variables would simply compare
the references.

• Instead, we need to utilize the String class’
equals() method.

if(player.equals("Mario")) {

color = “red";

}

if player == "Mario":
color = "red"

Python Java

27

Strings

• The String class’ length method is used to retrieve the
number of characters in a string.

• To access an individual character of a string, we must
use the String class’ charAt(index) method.

String player = "Mario";
System.out.println(player.charAt(0));

player = "Mario"
print "%c" % player[0]

Python Java

System.out.println(name.length());print len(name)

Python Java

28

Strings

• To see more String methods, consult the
javadocs...
– http://download.oracle.com/javase/6/docs/api/java/lang/String.html

29

http://download.oracle.com/javase/6/docs/api/java/lang/String.html

Java Program Basics

• All code (variables, functions, etc.) in Java exist
within a class declaration ...
– Data Structures

– Driver Classes

• The package keyword defines a file/class
hierarchy used by the compiler and JVM.

package demos;

public class SimpleProgram {

public static void main (String[] args){

System.out.println("Hello World");

}

}

30

Java Program Review

• Java source code can be compiled under any operating system.
– javac -d . SimpleProgram.java
– javac -d . OtherProgram.java

• Java will create a directory named demos containing
– SimpleProgram.class
– OtherProgram.class

• We can execute SimpleProgram with the following.
– java demos.SimpleProgram

• We can execute OtherProgram with the following.
– Java demos.OtherProgram

• We can execute any class’ main in a similar manner.
– java <package name>.<Class name>

package demos;

public class SimpleProgram {

public static void main (String[] args){

System.out.println("Hello World");

}

}

package demos;

public class OtherProgram {

public static void main (String[] args){

System.out.println("Hello World 2");

}

}

31

Command Line Arguments

• Anything that follows the name of the main class to be executed
will be read as a command line argument.

• All text entered will be stored in the String array specified in main
(typically args by convention).
– java demos.ArgsDemo Hi
– Results in “Hi” stored at args[0]

• Individual arguments can be separated by spaces like so
– java demos.ArgsDemo foo 123 bar
– Results in “foo” stored at args[0], “123” at args[1] and “bar” at args[2]

package demos;

public class ArgsDemo {

public static void main (String[] args){

for(int i = 0; i < args.length; i++){

System.out.println(args[i]);

}

}

}

32

