
CMSC 202 Final December 20, 2005

Name: ____________________________ UserID: _________________

(Circle your section)

Section: 101 – Tuesday 11:30 102 – Thursday 11:30

 103 – Tuesday 12:30 104 – Thursday 12:30

 105 – Tuesday 1:30 106 – Thursday 1:30

Directions

• This is a closed-book, closed-note, closed-neighbor exam.

• Read through the entire test before you begin.

• Start with the questions that are easiest for you, come back to the rest.

• Write CLEARLY, if I cannot read your writing, you will receive a zero for the

problem in question.

• Feel free to continue your answer on the backs of the pages, but make sure that

you indicate where your answer continues.

• When you are done, read over your answers and then bring your exam to the front

of the room.

• Show your Picture ID AND Exam paper to a TA/Instructor, place in correct

pile.

Score

Page Number Points Possible Points Earned

2 10

3 12

4 7

5 15

6 10

7 12

8 8

9 10

10 16

11 (EC) 6

12 (EC) 9

TOTAL 100 (+15 EC)

 Page 2 of 12 _______ pts

True/False (10 pts total, 1 pt each)

Read each statement carefully and write true or false on the blank to the left.

____________ 1. It is legal to instantiate an object of an abstract class.

____________ 2. The following lines of code correctly modify the value of 'a' to

be 7.
int a = 2;

int* ptr = new int(a);

ptr = 7;

____________ 3. Dynamic objects are allocated on the stack while static object

are allocated on the heap.

____________ 4. The following code correctly creates and deletes an array.
int* array = new int[10];

delete array [];

____________ 5. If try/catch blocks are nested, the exception is always thrown to

the outermost catch block.

____________ 6. The default overloaded operator= (provided by the compiler)

results in a shallow copy of memory.

____________ 7. When using dynamic memory, one should always overload the

copy-constructor and should be sure to protect from self-

assignment (i.e. assigning A to itself).

____________ 8. Derived classes can use, modify or extend methods from their

parent class(es).

____________ 9. When polymorphism is used in C++, the base-class destructor is

called before the derived-class destructor.

____________ 10. Assume that myVector is a vector of integers, myVector.end()

returns an iterator that points to the last item in myVector.

 Page 3 of 12 _______ pts

Short Answer

Complete each of the short-answer coding questions. You may

assume that the questions build on each other and that previously

implemented lines can be used in later questions.

Assume there is a class named Rider with derived classes named

Skier and Snowboarder.

11. (1 pt) Define a dynamic array of Rider pointers. Assume that the size of the

array is in a variable named 'size'.

12. (1 pt) Assume there are already 4 Riders (of various subtypes) in the vector.

Add a Snowboarder to the array.

13. (3 pts) Assume that the insertion operator is overloaded for all Rider types.

Using a for-loop, iterate through the array, printing each rider to the screen.

14. (7 pts) Assume that the > (greater than) operator is defined for all Rider types

and returns a boolean (a > b == true if a is a better Rider than b). Define a

templated function (the function should now know what a Rider is) that finds the

Best item in the array and returns the object.

 Page 4 of 12 _______ pts

15. (6 pts) Assume the Skier has an overloaded constructor that accepts a skill-level

(1 -> 9, beginner -> advanced). Assume there are also a

related mutator and an accessor. Assume the

following lines are defined:
Skier a(6);

const Skier b(1);

Identify whether the following lines are compilable. If

not, describe why. Assume each chunk of code is

examined in isolation of the others.

Will Compile

(Yes/No)?

Code…

____________ const Skier* p = &a;

p->SetSkillLevel(8);

____________ Skier* const q = &a;

q->SetSkillLevel(8);

____________ const Skier* r = &b;

r->SetSkillLevel(8);

____________ Skier* const m = &b;

m->SetSkillLevel(2);

____________ const Skier* p = &a;

p = &b;

____________ Skier* const q = &a;

q = &b;

16. (1 pts) What limitation must be placed on the skill-level accessor of the Skier

classes to have the following code compile?

const Skier * t = &b;

b.GetSkillLevel();

 Page 5 of 12 _______ pts

17. (10 pts) Assume that the Skier constructor used in the previous question throws

an OutOfRange and some other exception. Write a loop that will create 10

Skiers and put them into the original dynamic array (assume it is empty), using 5

to 15 (consecutively) as the skill-level parameter. Using a try/catch block,

correctly catch the exceptions. If an OutOfRange exception is caught, the

default constructor for the Skier should be used and processing should

continue with the next skier. If some other exception is caught, the exception

should be re-thrown.

18. (5 pts) Implement the Skier constructor that accepts a single integer parameter

(skillLevel). Assume there is a data member named 'm_skillLevel'. If the

skillLevel parameter is less than 1 or greater than 9, throw an OutOfRange

exception. Ignore the other exception described in the previous question.

 Page 6 of 12 _______ pts

Class Implementations

19. (10 pts) Write the class definition (header file) for the Rider class. Use static,

constants, virtual and references whenever appropriate. The Rider class has the

following members:

a. skillLevel data member, integer, min of 1, max of 9

b. MaxSkillLevel data member, integer, represents the maximum skill level

c. MinSkillLevel data member, integer, represents the minimum skill level

d. Default constructor, sets skillLevel to minimum

e. Non-default constructor, sets skillLevel to

parameter value if valid

f. Copy constructor – copies parameter

g. Destructor – destroys object

h. GetSkillLevel – returns the Rider's skill level

i. SetSkillLevel – sets the Rider's skill level

j. ReplaceBindings – method to be overridden by

derived classes

 Page 7 of 12 _______ pts

20. (10 pts) Write the class definition (header file) for the Skier class. Use static,

constants, virtual and references whenever appropriate. Assume there is a Ski

class that represents a single ski. The Skier class has the following members:

a. Skier, inherits from Rider

i. leftSki dynamic data member that is the left ski

ii. rightSki dynamic data member that is the right ski

iii. Default constructor, a skier initially has no skis

iv. Copy constructor

v. Destructor – destroys any dynamic memory

vi. ReplaceBindings – replaces the bindings on both skis

21. (2 pts) Discuss the difference between a shallow and deep copy for the copy-

constructor of the Skier class. Use an example to illustrate (no code).

 Page 8 of 12 _______ pts

22. (3 pts) Implement the copy constructor of the Skier class using a deep copy.

23. (3 pts) Assume that a skier can have an entire collection of Skis, but that he must

choose only 2 from that collection to use that day (his "Current Skis").

Assuming that we represent the set of skis as a vector of pointers to Skis, briefly

describe two ways to represent his chosen pair. Compare and contrast these

two strategies, discussing the time, space, and access tradeoffs between them.

24. (2 pts) Implement the destructor for the Skier class.

 Page 9 of 12 _______ pts

(3 pts) Assume that we would like to add this collection of foot-equipment (i.e. Skis or

Snowboards) to the base class, Rider. Prototype (i.e. forward-declare) the Rider class

as a class templated on a single type of equipment.

25. (2 pts) Define the collection data member of the Rider class using a vector of

pointers to the equipment-type.

26. (2 pt) Should the collection be private, protected, or public? Why?

27. (3 pts) Since the only difference between a Skier and a Snowboarder is that the

Skier has 2 pieces of equipment and the Snowboarder has 1, how could you

combine these two classes using templates into only the Rider class? How

would you eliminate the need to store two data members (a left and right ski)

for the Skier?

 Page 10 of 12 _______ pts

Exposition

28. (4 pts) Describe the differences between method overriding and method

overloading. Provide an example to support your comparison.

29. (4 pts) What is the purpose of including a Clone() method in inheritance? Why

should this method use deep copies?

30. (4 pts) Briefly discuss the pros and cons of using inline functions.

31. (4 pts) Why is it important to protect an object from self-assignment (i.e.

assigning A to itself)? (Hint: think about dynamic memory)

 Page 11 of 12 _______ pts

Extra Credit

32. (3 pts) Assume that you want to implement a templated List (push_front,

push_back, pop_front, pop_back), but only have access to a Vector with the

following methods:

• insert(iter), inserts an item before the position pointed to by the

iterator parameter

• erase(iter), removes the object pointed to by the iterator from the

vector

• Assume that the methods begin(), end(), and size() work exactly as in

the STL vector class, you may also assume that the ++ and -- operators

work with these iterators.

Describe briefly how you would use the above Vector to implement a List.

You may assume that your List class must support the following:

• private data member: Vector<T> list;

• pop_back – removes last item in the List

• push_back – insert the parameter after the last item in the List

• pop_front – removes first item in the List

• push_front – insert the parameter before the first item in the List

33. (3 pts) Implement the pop_back() method for your List using the Vector

described above. You may allocate any additional memory necessary.

 Page 12 of 12 _______ pts

Extra Credit – Part Deux

34. (3 pts) If I had asked Extra Credit #1 in the exact opposite way (i.e. build a

Vector on a Linked-List), what would be the greatest difficulty with

implementing an at(i) method that returns the object in the ith position?

35. (4 pts) Write the pseudocode (or code) to implement the at(i) method of the

Vector class on a private data member that is a Linked-List named 'list'.

You may only use the following methods: push_front, push_back, pop_front,

pop_back. You may assume that the pop_* methods return the object they have

removed.

36. (2 pts) If you knew the world was going to end tomorrow, whom (if anyone)

would you tell and why?

