
Developing Secure Agent Systems Using Delegation
Based Trust Management �

Lalana Kagal
University of Maryland

Baltimore County
1000 Hilltop Circle

Baltimore, MD 21250

lkagal1@cs.umbc.edu

Tim Finin
University of Maryland

Baltimore County
1000 Hilltop Circle

Baltimore, MD 21250

finin@cs.umbc.edu

Anupam Joshi
University of Maryland

Baltimore County
1000 Hilltop Circle

Baltimore, MD 21250

joshi@cs.umbc.edu

ABSTRACT
We present an approach to some security problems in multi-agent
systems based on distributed trust and the delegation of permis-
sions, and credibility. We assume an open environment in which
agents must interact with other agents with which they are not fa-
miliar. In particular, an agent will receive requests and assertions
from other agents and must decide how to act on the requests and
assess the credibility of the assertions. In a closed environment,
agents have well known and familiar transaction partners whose
rights and credibility are known. The problem thus reduces to
authentication – the reliable identification of agents’ true identity.
In an open environment, however, agents must transact business
even when knowing the true identities is un-informative. Decisions
about who to believe and who to serve must be based on an agent’s
properties. These properties are established by proving them from
an agent’s credentials, delegation assertions, and the appropriate
security policy. We begin by describing our approach and the con-
cepts on which it is built. Then we present a design that provides
security functions (authorization and credibility assessment) in a
typical agent framework (FIPA) and describe initial work in its re-
alization using the semantic web language DAML+OIL.

1. INTRODUCTION
Though there has been some research in trust based security for

multi-agent systems, generally multi-agent systems have always re-
lied on traditional security schemes like access control lists, role
based access control and public key infrastructure. These physi-
cal methods use system-based controls to verify the identity of an
agent or process, explicitly enabling or restricting the ability to use,
change, or view a computer resource. However these methods gen-
erally require some sort of central repository or control to provide
authentication and need to store access control information for in-
dividual agents or groups of agents. We believe that these schemes
will not scale adequately or provide the increased flexibility re-
quired for emerging dynamic multi-agent systems that consists of
an extremely large number of agents that are spread over a large
geographic area [11] like the agentcities project1. Hence we argue
that it no longer makes sense to divide authorization into authenti-
cation and access control [16, 14].

We propose a security framework for multi-agent systems which
is based on distributed trust management. Distributed trust manage-
ment involves proving that an agent has the ability to access some
�This work was supported by NSF Awards IIS 9875433 and CCR
0070802, and the Defense Advanced Research Projects Agency un-
der contract F30602-00-2-0 591 AO K528.
�http://www.agentcities.org/

service/resource solely by verifying that its credentials comply with
the security policy of the requested service [16, 2]. These creden-
tials include properties of the agent, for example, membership in
certain organizations, age or host of the agent, recommendations
and delegations by other agents. The process of verifying the cre-
dentials is itself under the security policy of the verifying agent.
Aspects of trust management include creating security policies, as-
sociating credentials with certain abilities and reasoning over these
policies and credentials to decide the rights of an agent. Our trust
management system includes a trust ontology for specifying enti-
ties or principals, policies, credentials, a mechanism for verifying
credentials and a mechanism for checking if the credentials con-
form to the policy. The policy includes a set of rules that associate
a required set of credentials with a certain ability or right; imply-
ing that only agents with the specified credentials can possess the
ability.

Agents communicate their beliefs with each other for trust man-
agement. Beliefs are exchanged in terms of delegations, creden-
tials, abilities of other agents and trust values. An agent will reason
about beliefs (its own and of other agents) and policies while mak-
ing authorization decisions.

This framework, based on FIPA specifications [6], addresses many
of the security threats generally associated with Multi-Agent Sys-
tems (MAS) [20]. The challenges usually associated with MAS
are corrupted naming (Agent Management System) and matchmak-
ing (Directory Facilitator) services, insecure communication, inse-
cure delegations, lack of accountability, access control for foreign
agents, and lack of central control [20].

2. RELATED WORK
There has been a lot of interesting work in security for multi-

agent systems, and in this section we describe some research projects
that are most relevant to ours.

Wong and Sycara describe the design of a security infrastructure
for multi-agent systems [20]. Their work is based on RETSINA,
a resuable multi-agent infrastructure. The authors describe sev-
eral threats associated with multi-agent systems with respect to the
RETSINA framework; corrupted agent naming servers or match-
makers, insecure communication channels, insecure delegations,
and lack of accountability. To prevent the threat of corrupted ANSs
or matchmakers, the authors believe it is necessary to use only
trusted ANSs and matchmakers that behave as they should, by only
servicing valid requests, inserting/removing entries from their database
in a way that is consistent with the request and giving responses that
are consistent with their databases. As a way of counteracting lack
of accountability, all agents should be given proofs of identity that

cannot be forged and deployers of agents should be made responsi-
ble for the actions of their agents. Communication channels should
be made secure and agents should be made to prove that they are
delegatees of whom they claim to be. Certificates are used to link
agents to actions and deployers to agents for accountability. The
authors describe mechanisms for agent key certification and revo-
cation, in which the deployer interacts with the ACA. Then they
discuss protocols for registration, unregistration and lookup. To
handle insecure communication channels, the authors plan to add
SSL (secure socket layer) underneath their agent communication
layer.

In their paper ’Distributed Trust in Open Multi-Agent Systems’,
the authors build on earlier work by Herzberg et al [8] to define
an infrastructure for distributed trust in multi-agent systems [15].
Following Herzberg’s assumptions, the authors think that identity
is not required for trust management, and that there is no need for
a centralized certificate mechanism or trusted third parties. This
work is based on the use of certificates. Most role based access con-
trol mechanisms map users’ identities to role. However this is not
the approach used in this work; an agent uses its policy to map an-
other agent to a role, based on the latter’s certificates [8]. Any agent
can be a certificate issuer, and may not be globally trusted. An is-
suer is trusted when it can provide sufficient certificates from other
issuers to satisfy the requester’s policy. An agent could have several
certificates certifying its capabilities and its performance. These
certificates will be from other agents that have used the agent’s ser-
vices. However these certifying agents may not be globally trusted.
If an agent X needs to find a particular service, it sends a request to
the MatchMaker in a system like RETSINA [20]. The MatchMaker
will return a list of matching agents and their certificates. The re-
questing agent will reason about these certificates to decide which
agents can be trusted. The policy will define rules for deciding trust
levels based on the certificates. To solve the problem of authoriz-
ing accessing agents, every agent has as part of its architecture an
access control mechanism. This component helps the agent decide
which services should be accessible to a certain agent. The access
control component uses certificates to map an accessing agent to
a role, and then uses role based access control to decide its access
rights.

In his paper, Hu explains how to build up an agent oriented PKI
and demonstrates some delegation mechanisms for it [9]. In this
agent oriented PKI, there are two types of certificates; identity cer-
tificates for humans and their agent, and authorization certificates
for humans and agents. Authorization certificates are used to repre-
sent authorizations by entities. These include the public key for the
granting entity, the public key of the entity receiving the authoriza-
tion, the actual authorization (access right), re-delegation bit, and
the validation period. However, the re-delegation bit always set to
1, because the author does not have any fail-proof method of pre-
venting re-delegation. Though there is a difference between trust
between humans and agents and between agents, the author mod-
els them in the same way. Hu also describes 3 types of delegations;
chain-ruled, threshold, and conditional. In chain-ruled the access
rights are delegated in a cascading manner. Threshold delegation
allows an entity to delegate to multiple subjects. These subjects
must co-operate with each other to perform the delegation. When
the subject has to satisfy certain conditions in oder to use the del-
egation, it is called conditional delegation. As authorizations can
be re-delegated, they form delegation networks. The verification
process checks that every entity in the delegation network has the
authority to re-delegate, that all the authorizations are within the
validity period, and that none of the required certificates have been
revoked. However, this study does not include mechanisms for han-

dling revocation of certificates. The verification can either be done
by a Trusted Third Party or the original issuer agent. Usually the
service guardian authorizes other agents to use the service, who in
turn authorize other agents. Generally the original issuer agent is
the verifying authority as well. Rules for verifying an authority are
specified as part of the delegation policies within the original issuer
agent’s rule base. If a Trusted Third Party is responsible for verifi-
cation of authority validity, then it is also responsible for all the ser-
vice access control. The author has included several performatives
for human/agent identity certificate management and human/agent
authorization certificate management. Hu also describes how these
performatives are encoded in XML for agent communication.

Poslad et al. describe the security and trust notions currently part
of the FIPA specifications and point out some of its strengths and
weaknesses [17]. The FIPA security specifications were started in
1998, but are still not complete and have actually been made obso-
lete by FIPA. The authors believe that security is domain dependent
and that it is not possible to have a general security architecture
which is suitable for all applications. The authors describe the trust
models existing in FIPA. All agents that want to use services or pro-
vide services in a platform must register with the platform’s Agent
Management System (AMS). The AMS is trusted and maintains
the identity of all registered agents. However as authentication is
not mandated, spoofing is possible. AMS is responsible for the life
cycle for all agents in the platform and agents must report all sig-
nificant changes to the AMS and allow the AMS to control their
life cycles. However an agent need not obey orders from the AMS,
causing the AMS to take some other course of action like using an
external API or de-registering the agent. Agents also register their
capabilities/services with the Directory Facilitator (DF). There are
no specifications about this registration, so a malicious agent could
cause a lot of damage by registering non-existent services, register-
ing wrong service descriptions etc. FIPA does not define how ac-
cessing agents can specify their preferences. There exists a trust re-
lationship between the Agent Communication Channel (ACC) and
registered agents. The ACC is trusted to transmit the messages in
a timely fashion and to maintain the integrity of the messages. The
FIPA security model [7] defines mechanisms for keeping messages
private, mechanisms to check the integrity of messages and authen-
tication messages. This model extends the functionality of AMS
and DF and introduces an entity called Agent Platform Security
Manager (APSM), which is responsible for maintaining security in
the platform. The AMS uses public key infrastructure mechanisms
for authenticating agents wishing to register with it. This raises
issues related to PKI [3]. The agents define additional security pa-
rameters as part of their service descriptions which they register
with the DF. The current specifications also include some sugges-
tions for secure Agent Communication Language (ACL) commu-
nications, mainly the envelop construct. Certain keywords like au-
thentication, non-repudiation etc can be used to express a level of
security. When an agent requests a service, it is the responsibility of
the message transport layer to encapsulate the messages based on
these levels. The semantics of these keywords are provided by the
platform. The authors propose certain requirements for adding se-
curity to FIPA systems, including authentication of agents by mid-
dle agents (AMS and DF) when writing to directories accessed via
middle agents, use of private channel to send messages, and au-
thentication of middle agents by agents for bi-directional trust.

3. DESIGN
This model provides security based on distributed trust manage-

ment for open, dynamic agent platforms, with methods for intra-
platform and inter-platform security.

Agents are authorized to access a certain service if they have the
required credentials. Our work is similar to role based access con-
trol in that a user’s access rights are computed from its properties.
However, we use additional ontologies that include not just role
hierarchies but any properties and constraints expressed in a se-
mantic language including elements of both description logics and
declarative rules. For example, there could a rule specifying that
if an agent in a meeting room is using the projector, it is probably
a presenter and should be allowed to use the computer too. In this
way, rights can be assigned dynamically without creating a new
role. Similarly, rights can be revoked from a user without changing
his/her role, making this approach more flexible and maintainable
than role based access control.

We extend the functionality of the Agent Management System
(AMS) and the Directory Facilitator (DF) to manage security for
the platform, as not all agents should be able to register on a partic-
ular platform or use a certain DF. Similarly, agents are also given
some access control ability. The AMS, DF and agents follow cer-
tain security policies to decide the access rights of requesting agents.

Our system addresses the challenges associated with MAS, namely,
corrupted AMS and DF, insecure communication, insecure dele-
gations, lack of accountability, access control for foreign agents,
and lack of central control. The model manages corrupted nam-
ing and matchmaking services by using a PKI handshaking proto-
col between the agent and the AMS to verify validity of both par-
ties. All messages are encrypted according to Public Key Infras-
tructure. However we do not use these certificates for authenticat-
ing agents but for exchanging messages securely. Our delegation
mechanism is able to thwart any invalid or insecure delegations.
Only agents with the right to delegate can actually make valid del-
egations that change the access rights of other agents. All agents
are held accountable for their actions because they have to sign all
service queries and requests with their own private key. As there
is a unique private key public key pair, once an agent signs a re-
quest, the agent can be held accountable. Our infrastructure allows
foreign or unknown agents access into the system using trust man-
agement. When an unknown agent tries to register with a platform,
the platform checks the agents credentials, and decides its rights
with that platform based on the security policy. Multiagent sys-
tems are inherently decentralized and it is not possible to have a
central database of access rights or policies. This is not a problem
in our system as no central information is required. The policy is
enforced individually at the entity processing the request. The pol-
icy is enforced at two levels; at the platform level, where access
to the AMS and DF is controlled and at the agent level, where an
agent can specify who can access its services.

Agents are able to delegate their rights in a controlled and secure
fashion. For example, if agent A delegates some service to agent B,
and agent B tries to delegate this service to agent C, then the second
delegation will fail as agent A did not give agent B the ability to
redelegate.

The agents use a semantic language like DAML+OIL [4] as an
ontology language. DAML+OIL is an ontology language for mark-
ing up resources, and is basically being developed for the realiza-
tion of the Semantic Web2. The agents express security informa-
tion including credentials, delegations, and policies in DAML+OIL
making it easier for other agents to interpret them correctly.

3.1 Security Classification
We classify security into two levels depending on where it is en-

forced: platform or agent. In platform security, the AMS and DF

�W3C’s Ontology Wrapper Language (OWL) is based on
DAML+OIL

have additional security features. The AMS can decide whether or
not to allow an agent to register, search or use its other functions.
Similarly, the DF can also decide whether to allow an agent to reg-
ister, modify or search for agents based on certain access control
information. An agent, while registering with a platform, can send
some security information to the AMS specifying its security cat-
egory;private, secure or open. A private agent’s Agent Identifier
(AID) is not displayed to any other agent by the AMS, asecure
agent has to send some access control information so that the AMS
can filter requests to the agent and and anopen agent is visible to all
agents. Similarly, while registering its services with a DF, the agent
can choose a category for each service. For example, an agent A
can register as an open agent with the AMS and register two ser-
vices with the DF, a GPS service which is open and a navigator
service which is secure. Agent A also specifies that only agent B,
with certain credentials, can access the navigator service. In agent
security, the agent uses a policy to decide how to further validate
service requests.

3.2 Platform Security
In platform security the AMS and DF use distributed trust man-

agement principles to authorize requests to their services.

3.2.1 Security Module for an AMS
When an agent wants to register with the AMS, it signs it’s re-

quest and sends it to the AMS, along with its digital identity cer-
tificate. The AMS verifies the certificate based on the rules. The
rules could be of the form, an entity X of the organization Y with
a certificate from trusted Certificate Authority CA(Y) is valid. Or
there could be a rule saying, for all certificates from organization Z,
calculate certification path and verify with the CA. If the certificate
is valid, the AMS checks the signature. The AMS uses its policies
to decide what access rights the agent has on the platform.

If the agent does not have the right to register with the AMS, its
request is denied. If the agent does have the right to register with
the AMS, the AMS starts thehandshaking protocol that is com-
mon in Public Key Systems. It sends the agent a small message, a
nonce, encrypted with the agents public key, and attaches the plat-
forms certificate, to the address specified by the requesting agent.
This is not only done so that both parties can verify each other,
but also in order to verify the agents location, prevent spoofing and
securely exchange information. The agent can now go ahead and
verify the platforms certificate. It then replies to the AMS with the
same nonce encrypted with the platforms public key. On receiv-
ing this, the AMS creates atrust certificate containing the platform
related rights of the agent, the associated public key, time validity
and other relevant information and sends it back. This certificate
is valid only for a short time, after which the agent has to start the
registration process again. This period is directly based on thelevel
of trust associated with the agent or in fact the agent’sreputation in
the platform. Using a trust certificate enables the AMS and DF to
skip the rechecking of the agents’ credentials everytime the agent
tries to use the services of the platform.

After creating the trust certificate, the AMS will inform the agent
about all the agents that are either in the open category or the se-
cure category for which the agent fulfills the required conditions
for access. During the period of validity of the trust certificate, the
agent can make requests to access the AMSs services. These re-
quests have to be signed. The AMS does not need to check all the
credentials of the agent, but only verifies that the agent has the right
to the requested service.

3.2.2 Security Module for a DF

After obtaining a trust certificate from the AMS of a platform,
the agent can access various services of the AMS and the DFs. Us-
ing the trust certificate, an agent can register its services with the
DF, if the platforms policy allows that particular agent to use the
DF. This service registration message is signed with the agents pri-
vate key, and acts as a digital signature. This forces agents to be ac-
countable for their actions. The DF verifies the trust certificate and
checks that the trust certificate is valid and belongs to the agent. It
retrieves the agents public key from the trust certificate, and checks
the signature of the registration message. If the certificate states
that the agent has the right to register, the DF proceeds with the
registration. An agent can register its different services under dif-
ferent categories. This service description is also in DAML+OIL,
making the searching more semantic and more flexible. To query
the DF, the agent sends a signed query message to the DF. The DF
verifies the message and the checks the category of the service that
fulfills the search query, the conditions attached if a secure service,
and the access rights of the requester before sending back any re-
sults. These results are encrypted with the agents public key, which
is associated with the trust certificate.

Agents can ’delegate’ authorization ability to the DF if they share
domain ontology. If an agent cannot use the DF for making autho-
rization decisions on its behalf, then the agent has to contain a trust
management engine and interpret its own policies. This makes the
presence of the engine in an agent optional, allowing agents to run
on smaller, lightweight, devices. The AMS/DF has a list of condi-
tions that an agent must satisfy in order to contact a particular agent
or use a particular service. However the AMS and DF need to un-
derstand the service agent’s3 policy or have access to its knowledge
base. It is upto the service agent to make sure that these conditions
are accurate and conform to its policy. In some cases, the AMS or
DF cannot understand the associated conditions. Then, based on
the policy of the platform, the AMS and DF can decide to reject all
requests for the agent or service or accept all requests and forward
them to the appropriate service agent for interpretation.

3.3 Agent Security
The authorization decisions carried out by individual agents for

access to their services comprises agent security.

3.3.1 Security Module for Agent
Every service agent has two modes of operation as an owner of

a service and as a requester of a service.
Owner of a service

Security on the agents side can be handled in multiple ways. An
agent can decide to register its services asopen or private on the
DF, so that the agent itself is completely responsible for access con-
trol. The second way, is for the agent to categorize its services as
secure and specify the access control conditions in the DF. If the
agent trusts the DF completely, it can rely on the DF to handle ac-
cess control and the agent need not have a security module at all. If
the agent does not trust the DF, it can implement its own security
module for stricter access control. In this case, after the requests
are filtered by the DF, they can be re-verified by the service agent.

Requester of a service
After an agent receives a matching list of services as a result of its
DF query, it tries to execute one of them. The agent sends a request
to the service agent and attaches its identity certificate and trust
certificate. This message is encrypted using the agents private key.
The receiving agent carries out similar reasoning as the AMS, by
going through its certificate verification rules to verify the identity
certificate and trust certificate. If both the certificates are valid, it
�The agent controlling a service is known as service agent

verifies the signature. It then uses its security policy to decide if the
agent meets its requirements for accessing that particular service.
If all the checks are valid, then the receiving agent sends the result
back encrypted with the senders public key. The agent does not go
through the handshaking procedure because the sender has a valid
trust certificate from the platform. Even after the platform checks
by the AMS and DF, a service agent may decide not to honor a
certain request, because there may be certain additional constraints
it requires that the requesting agent fails to meet.

4. INTER PLATFORM SECURITY
If an agent is already registered with a platform and wants to

access the AMS or DF on another platform, the agent should send
along with its identity certificate, its current trust certificate, which
contains information about its access rights. The remote platform
decides the agents rights in the normal fashion based on its own
security policy, and may take into consideration the platform that
the agent is currently registered on.

DF’s of different platforms can be accessed if they register with
each other through principles offederations of DF [6]. If an agent
is searching for a particular service, and its DF cannot find any
matching service, the DF will forward the request with the trust
certificate to the other DFs registered with it. These DFs will pro-
cess the agents request as normal and return the results.

5. VERIFICATION OF CREDENTIALS
Credentials are properties of agents that are described in a se-

mantic language and signed by other agents. Delegations are spe-
cial credentials and are discussed in detail in Section 6. In order to
accept credentials of other agents, an agent must be able to verify
these credentials. Verification can be carried out in the following
ways

� Simple Verification : In this scheme, a service agent ex-
pects all the credentials necessarily at the time of request.
In order to use its services, a requesting agent must send all
required credentials along with the request for service. The
service agent will check its knowledge base, and question
other agents about their beliefs in order to verify the creden-
tials. Suppose agent A has an alarm service which requires
that requesters be AAAI members. The security policy of
agent A also states that the agent XYZ should be trusted to
verify AAAI certificates. An agent B sends A a request to use
the service along with its certificate from the AAAI CA. This
certificate states that the bearer of this certificate is a member
of AAAI. Agent A asks agent XYZ to verify the certificate.
If the certificate is valid then agent B is authorized to use the
alarm service. If agent B did not send the required certificate
or sent an invalid certificate, its request would be denied.

� Negotiation : Certain service agents may provide a more in-
teractive requesting mechanism. If the requested agent does
not provide the correct credentials to access the service, the
service agent asks the requester for specific additional cre-
dentials. For example, a service agent A only allows employ-
ees of XYZ Pvt. Ltd. to access its services, and accepts dele-
gations from these employees. Agent B approaches agent A
with a credential from AAAI. Agent A decides that the cre-
dential is not good enough and asks the agent B to prove that
it is an employee of XYZ or if B has a delegation from an
employee. Agent B possesses a delegation from Bob who is
an employee of XYZ and sends this delegation to A. A ver-

ifies the delegation and the chain of delegations and decides
to authorize agent B’s request.

� Third Party : Some service agents do not have the resources
to verify credentials and so request trusted third parties to
handle the verification on their behalf. Suppose a trusted
agent, C, did have the resources and the inclination to help
agent A, agent A would send B’s credentials to C to be veri-
fied and would trust C’s response. C could either use simple
verification or negotiation to verify these credentials.

6. DELEGATIONS
An agent has the ability to make any delegation, but whether it is

honored depends on various factors, including the security policy,
the agent’s rights, and the rights of the agents ahead it in the del-
egation chain. Agents are not prevented from making delegations,
but the delegations by unauthorized agents are considered invalid.
Only agents with the ability to delegate can make valid delegations.
Valid delegations change access rights of other agents. The right to
delegate is defined implicitly and explicitly. Implicitly, an agent can
delegate rights to any service it offers. Explicitly, an agent that has
been given the right to delegate by an authorized agent can perform
valid delegations, as long as the delegation fulfills the constraints
of the previous delegation. This forms a chain of constraints; the
agent at the end of the chain must satisfy all the constraints associ-
ated with the delegations in the chain. Our delegation mechanism,
written in logic, verifies that the requesting agent satisfies all the
constraints of the delegations before it in the chain.

Our framework allows certain authorized agents to delegate ac-
cess rights, with restrictions attached, to other agents. A delegation
usually has constraints attached, such as one that limits the access
to a certain period, or to whom the right can be re-delegated. A del-
egation consists of various information; delegator, right, constraints
on delegatee, constraints on execution, constraints on re-delegation
and time period. By using constraints on delegatee, the delegator
can specify whom to delegate to. For example, a delegation could
be conferred on all agents with certificates from a certain CA and
registered with a certain platform. By restricting which of the dele-
gatee can actually use the right, the delegator can prevent wrongful
execution of the right. Constraints on re-delegation allow the dele-
gator to decide whether the right can be re-delegated and to whom
it can be re-delegated. We have developed rules that capture this in-
formation and enforce security by checking these constraints at the
right time. We have separated the constraints on execution from the
constraints on delegatee, to make delegation more flexible and its
management more complete.

6.1 Delegation Management
Though delegation is very important for the propagation of trust,

managing delegations in a distributed and dynamic environment is
rather difficult. Consider the following example, an agent (delega-
tor), who is delegated a certain right, delegates it to another agent
(delegatee) and goes down immediately. The delegatee asks to use
the certain resource and presents its delegation certificate. How-
ever this request cannot be validated because the delegator’s ability
to delegate cannot be checked.

We suggest three schemes for managing delegations
Delegation Chain The previous example can be solved by mak-

ing the delegator attach its own delegation certificate to the newly
created delegation before sending it to the delegatee. This means
that every agent will have to store a chain of delegation certificates
leading to its own delegation, in order to validate its delegation.
This is not feasible because each chain could be very long and there

could be several delegations for every agent. To reduce the number
of certificates in a chain, certificate reduction could be used [1], but
the original delegator may not be accessible.

Centralized Delegation To avoid handling and processing chains
of delegations, all delegations can be addressed to the service agent
or the agent platform responsible for the service agent. However
this scheme has two problems; it is rather centralized and the dele-
gator may not be able to access either the service agent or the agent
platform at the time of the delegation.

Delegations on the Web The last scheme is to continue using
delegation chains, but instead of storing the chains within the agent,
the chains could be stored on web pages. In order to prove it has
a certain ability, an agent could point to a certain delegation on its
delegation page. This delegation in turn would refer to a delegation
on the page of the agent who made the delegator. By traversing this
delegations, the agent platform and/or service agent would be able
to verify the delegation and decide whether or not to authorize the
request.

7. TRUST PERFORMATIVES AND INTER-
ACTION PROTOCOLS

FIPA is based on speech acts, predicate logic and public ontolo-
gies. Speech acts are ways of communicating or expressing oneself
[18]. A speech act only succeeds if it is understood by the recip-
ient as intended. However FIPA does not include the speech acts
required for trust management. As part of this security initiative,
several speech acts, that are common to distributed trust domains,
will be modeled. In this framework, agents will use certain speech
acts to explain their intent; delegating, requesting etc. For example,
”I delegate to you the ability to access my files for one hour”, or ”I
request you to delegate to me the use of your workstation”. These
statements contain a lot of information that needs to be captured.
An ontology, grounded in DAML+OIL will be used to describe
these speech acts. This ontology will enable the audience to cor-
rectly interpret the speech act and understand its purpose. FIPA
Communicative Acts describe a set of ”utterances” used in multi-
agent systems, and FIPA Interaction Protocol specifies the order
of messages exchanged. Though most of the communication be-
tween the agents can be modeled with existing FIPA performative,
we believe certain additional performatives are required for agent
security and trust.

The performatives that will be added are Request Permission,
Delegate, Request Verification, and Credential Required.

� Request Permission
The action of asking another agent for permission to access
a certain service.

� Delegate
The action of delegating to another agent or group of agents
the ability to perform a certain action on a certain service.

� Credential Required
The action of asking the recipient to provide additional cre-
dentials. The content is the credential required and this per-
formative is the response to a request where the recipient did
not provide the correct credentials.

� Request Verification
The action of asking the recipient to verify credentials sup-
plied by an agent requesting access to the sender’s service.

Using existing FIPA communicative acts and the performatives
described above, we describe the interaction protocols for trust man-
agement in our system.

Root of trust
ontology

State
(Startime, Endtime)

Entity
(Name,Address,

Affliation,Owner,Type)

Action
(Name,Desc,Actor,Objects,

PreCond,PostCond)

Proposition
(From, To, Action, Constraint on

execution, Constraint on To, Constraint
on re-delegation)

Permission Obligation Belief

Agent Object Speech Act

Delegate
Request

Permission
Credentials Credential

Required

Request
Verification

Figure 1: Our trust ontology as a class hierarchy

� Request Interaction Protocol
This interaction protocol allows the initiator to request the
use of another agent’s service. The initiator sends the re-
cipient a request message. Similar to FIPA, some responses
are not-understood, refuse, agree, failure, inform-done, and
inform-ref [5]. However depending on the kind of verifica-
tion being performed by the recipient, the responses could
also include Credential Required. The sender would now
have to resend its request with the new credentials in order to
gain access to the service.

� Request Permission Interaction Protocol
An agent uses this protocol to request another agent to del-
egate certain abilities to it. The initiator starts the protocol
by sending the recipient a Request Permission message. The
responses from the recipient include not-understood, refuse,
agree, failure, and Delegate.

� Request Verification Interaction Protocol
The initiator uses this protocol when it is unable to verify
some credentials and requires the recipient to verify the cre-
dentials on its behalf. The initiator starts this interaction pro-
tocol by sending a Request Verification message. The valid
responses to this message are not-understood, refuse, agree,
failure, inform-done, and inform-ref.

8. ONTOLOGIES
Our infrastructure uses ontologies expressed in DAML+OIL to

represent security information and policies in a multi-agent system.
We have designed an ontology for trust and security information

in this system, which is illustrated in Figure One. The root of the
ontology is divided into State, Entity and Action. State contains
all information pertaining to the current state. It currently has one
subclass, Proposition, which is further sub-classified into Permis-
sion, Obligation, and Belief. Propositions are clauses that have a
truth value in the system. An Entity could either be an Agent or
an Object. An object can be extended to define domain specific re-
sources like credentials, files, computers, printers, etc. An Action
is associated with a set of Objects or resources. Speech acts like
Requests and Delegations are extensions of Actions.

The ontology specific to agent systems extends the main trust
ontology with information related to FIPA platforms; register an
agent, deregister an agent, search, create, agent service, etc. as ac-
tions and certificates, platform address, network address, network
protocol used etc. as objects. Figure Two shows part of the Agent
ontology.

9. POLICY
The security policies are based on the Agent ontology. Each plat-

form and agent follows a security policy. A security policy may

contain rules for verifying certificates and credentials, access con-
trol, and delegation. Rules for verifying certificates could specify
which certificate authorities are trusted, and the procedure involved
in verifying different kinds of certificates, based on the CA, princi-
pal, agent etc. Rules for access control will state the credentials an
agent must have for a certain access right. The policy also contains
rules that describe the way delegations and revocations propagate
in the system, how re-delegations are handled, how prohibitions af-
fect access control and delegations and how revocations should be
managed. For example, if a delegation is revoked, should all the
agents that the delegatee delegated to, lose the access right as well
or can they keep it and whether a prohibition is given priority over
a delegation while deciding access rights.

Our default policy defines certain rules about the propagation of
delegations so that all constraints in the delegation chain are ap-
plied before an agent can gain access to a service. If a certain link
in the delegation chain fails or the right is revoked, the rest of the
chain after this failed link loses the access right as well. This de-
fault policy also includes rules for the mechanisms of credential
verification and belief management.

10. PREVIOUS WORK
We have previously developed two security systems based on

distributed trust management - an agent-based supply chain man-
agement application [12] and an agent-mediated pervasive com-
puting environment [13, 19]. During their implementation we have
refined our trust management concepts and developed several pro-
grams in logic for handling the propagation of delegation, and val-
idating requests.

10.1 Security for Supply Chain Management
Systems

We successfully implemented a trust based framework for the
Extended Enterprise COalition for Integrated Collaborative Manu-
facturing Systems (EECOMS) project, which is aimed at providing
a set of technologies for integrated supply chain and business to
business electronic commerce [10]. A supply chain management
system consists of groups of buyers and sellers that need to open
up their internal systems to each other in a secure way. In other
words, a supply chain management system consists of a network of
heterogeneous agents that interact to perform certain actions that
may or may not need authorization. The main problem is guaran-
teeing the authenticity of requests between these agents, whether
within a company or between one or more companies.

Our system sets up authorization and delegation rules, so that
the information in the SCM may be accessed only by authorized
agents. Special intelligent agents calledsecurity agents are re-
quired for authentication and authorization within a particular do-
main, and are trusted within the company and by the companys
buyers and sellers. They also represent the company in some sense.
The security agents of a company enforce the company policy. This
policy describes certain rules for rights, delegation and for reason-
ing about them. The policy is not changed frequently and usually
involves human intervention. Agents within a company possess an
identity certificate that is signed by a trusted Certificate Author-
ity. Agents within a company can be authenticated by the security
agents through their ID certificates.

In order to allow the buyer’s employees to access certain infor-
mation within its company, the security agent of the seller gives the
security agent of the buyer the permission to access that informa-
tion, and the ability to delegate this right. To propagate this trust
within its own company, the seller’s security agent delegates this
right to some of its employees based on the policy. Depending on

<?xml version="1.0" encoding="UTF-8" ?>

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
 xmlns:dtrust = "http://daml.umbc.edu/ontologies/trust-ont#"
>
<daml:Ontology>
 <daml:Class rdf:ID="Date">
 <daml:equivalentTo>http://daml.umbc.edu/ontologies/
calendar#Date</daml:equivalentTo>
 </daml:Class>
 <daml:Class rdf:ID="String">
 <daml:equivalentTo>http://www.daml.org/2001/03/
daml+oil#Literal</daml:equivalentTo>
 </daml:Class>
</daml:Ontology>

<!-- SubClass of Objects; Certificate -->
<rdfs:Class rdf:ID="Certificate">
 <rdfs:subClassOf rdf:resource="dtrust:Object"/>

 <rdfs:label>Certificate</rdfs:label>
 <rdfs:comment>
 This subclass contains information about Certificates
 </rdfs:comment>
 <daml:Restriction>

 <daml:onProperty rdf:resource="dtrust:Affiliation"/>
 <daml:toClass rdf:resource="#Organizations"/>

 </daml:Restriction>
</rdfs:Class>

<!-- Properties of Certificates -->
<rdf:Property rdf:ID="CA">
 <rdfs:domain rdf:resource="dtrust:Agent"/>
</rdf:Property>
<rdf:Property rdf:ID="Principal">
 <rdfs:domain rdf:resource="dtrust:Agent"/>
</rdf:Property>
<!-- more properties -->

<!-- SubClass of Certificates; ID, Trust, Delegation -->
<rdfs:Class rdf:ID="IDCertificate">
 <rdfs:subClassOf rdf:resource="#Cerificate"/>
 <rdfs:label>IDCertificate</rdfs:label>
 <rdfs:comment>

This subclass contains information about ID Certificates
 </rdfs:comment>
</rdfs:Class>
<rdfs:Class rdf:ID="TrustCertificate">
 <rdfs:subClassOf rdf:resource="#Cerificate"/>
 <rdfs:label>TrustCertificate</rdfs:label>
 <rdfs:comment>
 This subclass contains information about Trust
 Certificates
 </rdfs:comment>
</rdfs:Class>
<rdfs:Class rdf:ID="DelegationCertificate">
 <rdfs:subClassOf rdf:resource="#Cerificate"/>
 <rdfs:label>DelegationCertificate</rdfs:label>
 <rdfs:comment>

This subclass contains information about Delegation
 Certificates
 </rdfs:comment>
</rdfs:Class>

<!-- Properties for Trust Certificate -->
<rdf:Property rdf:ID="Roles">
 <rdfs:domain rdf:resource="dtrust:Object"/>
</rdf:Property>
<rdf:Property rdf:ID="PublicKey">
 <rdfs:domain rdf:resource="dtrust:Object"/>
</rdf:Property>
<rdf:Property rdf:ID="StartDateTime">
 <rdfs:domain rdf:resource="#Date"/>
</rdf:Property>
<rdf:Property rdf:ID="EndDateTime">
 <rdfs:domain rdf:resource="#Date"/>
</rdf:Property>
<!-- more properties ...-->

<!-- Subclass of Object -->
<rdfs:Class rdf:ID="Organization">
 <rdfs:subClassOf rdf:resource="dtrust:Object"/>
 <rdfs:label>Organization</rdfs:label>
 <rdfs:comment>

This subclass contains information about organizations
 </rdfs:comment>
</rdfs:Class>

<!-- Subclass of Actions; RegisterWithAMS -->
<rdfs:Class rdf:ID="RegisterWithAMS">

<rdfs:subClassOf rdf:resource="dtrust:Action"/>
<rdfs:label>RegisterWithAMS</rdfs:label>

 <daml:Restriction>
 <daml:onProperty rdf:resource="dtrust:Actor"/>
 <daml:toClass rdf:resource="dtrust:Agent"/>
 </daml:Restriction>
</rdfs:Class>

<!-- Properties of RegisterWithAMS -->
<rdf:Property rdf:ID="IDCertificate">

<rdfs:range rdf:resource="#IDCertificate"/>
</rdf:Property>
<rdf:Property rdf:ID="RegisterMessage">

<rdfs:range rdf:resource="#String"/>
</rdf:Property>
<!-- more properties ... -->

<!-- Subclass of Actions; QueryDF -->
<rdfs:Class rdf:ID="QueryDF">

<rdfs:subClassOf rdf:resource="dtrust:Action"/>
<rdfs:label>QueryDF</rdfs:label>

 <daml:Restriction>
 <daml:onProperty rdf:resource="dtrust:Actor"/>
 <daml:toClass rdf:resource="dtrust:Agent"/>
 </daml:Restriction>
</rdfs:Class>

<!-- Properties of QueryDF -->
<rdf:Property rdf:ID="TrustCertificate">

<rdfs:range rdf:resource="#TrustCertificate"/>
</rdf:Property>
<rdf:Property rdf:ID="QueryString">

<rdfs:range rdf:resource="#String"/>
</rdf:Property>
<!-- more properties ... -->

</rdf:RDF>

Figure 2: This image shows a portion of the Agent System Ontology. Registration of an agent, deregistration of an agent, querying a
DF, etc. are all subclasses of the Action class in our Trust Ontology. Similarly, certificates, addresses, organizations etc. are subclasses
of the Object class in our Trust Ontology.

the previous delegations, the employees can further delegate this
right to other employees, forming a chain of delegation from the
buyer’s security agent to the seller’s security agent to the seller’s
employees. If at any point a delegation fails or is revoked the access
cannot go through. The same holds if the situation is reversed and
the supplier gives the buyer access to some of its resources. Delega-
tion chains should always trace back to a security agent to be valid.
Security agents are responsible for all accesses originating from its
company and act as gateways. All access to information outside
the company must go through a security agent. This agent will au-
thenticate the requester, check the delegation chain and verify that
the requester has the right to access the requested information. The
security agent creates an authorization certificate for the requesting
agent, that the requesting agent can use for access.

This framework led us to view trust management as a very ef-
fective method for resolving several issues related to security in
distributed systems.

10.2 Security for Pervasive Systems
We have designed and implemented Vigil, a security framework,

which provides security and access control in pervasive systems
[13]. Vigil has been optimized to work inSmartSpaces, which is
a specific instance of pervasive environments. A SmartSpace envi-
ronment provides services and resources, that users can access us-
ing some short range wireless communications such as Bluetooth,

IEEE 802.11, or Infrared, via any hand-held device, within a Vigil
can also be used in wired systems, but the focal point of our re-
search is the security in dynamic, mobile systems. Vigil is designed
so that clients can move, attach, detach, and re-attach at any point
within the framework.

Our infrastructure is designed to minimize the load on portable
devices and provide a media independent infrastructure and com-
munication protocol for the provision of services. Vigil, in ad-
dition to solving the issue of controlling access to services in a
SmartSpace, also accommodates users that are foreign entities, that
is entities that are not known to the system in advance. In many
conventional systems, access rights are static; agents are not able
to request permission to access a Service to which they are not pre-
authorized. To overcome these issues, we have incorporated the
Vigil Security Agent. This Security Agent allows agents to ask for
access permission and other agents to actually delegate rights that
they have. This extends the security policy in a secure manner, as
only agents that have the permission to delegate, can actually dele-
gate.

The Vigil system is divided intoSmartSpaces, and each SmartSpace
uses one or more security agents to maintain security. The Secu-
rity Agent is responsible for maintaining distributed trust in the
Vigil system. It enforces the security policy of the organization
or SmartSpace. It interprets the policy to provide controlled access

to Services and uses distributed trust as a more flexible and eas-
ily extensible policy based mechanism. There is generally a global
policy associated with the organization and a local policy associ-
ated with a SmartSpace. All security agents in the organization
will enforce the global policy and will additionally enforce a local
policy, which is specific to the Space. A policy includes rules for
role assignment, rules for access control, and rules for delegation
and revocation.

The Security Agent uses a knowledge base and sophisticated rea-
soning techniques to handle security and distributed trust. On ini-
tialization, it reads the policy and stores it in a Prolog knowledge
base. All requests are translated into Prolog, and the knowledge
base is queried. The policy containspermissions which are access
rights associated with roles, andprohibitions which are interpreted
as negative access rights. The policy also contains rules for role as-
signments, access control and delegation. A user has the ability to
access a service if the user has not been prohibited from accessing
the service by an authorized entity and if it either has the role based
access right or if some authorized entity has delegated this right to
it. An entity can only delegate an access right that it has the ability
to delegate.

When a user needs to access a service that it does not have the
right to access, it requests another user, who has the right, or the
service itself, for the permission to access the Service. If the entity
requested does have the permission to delegate the access to the
Service, the entity sends a delegate message, signed by its own
private key, along with its certificate, to the Security Agent and the
requester. The Security Agent checks the roles of the delegator
and the delegatee and ensures that the delegator has the right to
delegate, and that the delegation follows the security policy. It then
adds the permission for the Client to access the Service, but sets a
very short period of validity for the permission. Once this period
is over, The Security Agent has to reprocess the delegation. This is
very useful incase of revoked certificates, delegations or rights. If
any one entity in the delegation chain loses the permission, then it
is propagated down the chain very quickly, till everyone after the
entity loses the ability. Everytime a Service Broker asks about the
delegated rights of the client, the Security Agent sends back only
valid permissions.

11. SUMMARY
In this paper we present the design for a security framework for

multi-agent systems based on trust management, the delegation of
permissions and credibility. We believe that other interesting con-
cepts like reputations and obligations can also be built in once the
basic framework is developed. This approach is particularly use-
ful in open environment in which agents must interact with other
agents with which they are not familiar. Research in security for
multi-agent systems often tends to focus on a limited subset of the
security challenges of MAS. We believe our model addresses sev-
eral prominent security issues associated with these agent environ-
ments and provides a comprehensive trust based solution.

12. REFERENCES
[1] Tuomas Aura. Distributed Access-Rights Managements with

Delegations Certificates.Secure Internet Programming,
pages 211–235, 1999.

[2] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis.
The Role of Trust Management in Distributed Systems.
Secure Internet Programming, LNCS vol. 1603, Springer,
Berlin, 1999, pages 185-210, 1999.

[3] Carl Ellison and Bruce Schneier. Ten Risks of PKI: What
You’re Not Being Told About Public Key Infrastructure.
Computer Security Journal, 16, 2000.

[4] Ian Horrocks et al. DAML+OIL Language Specifications.
http://www.daml.org/ 2000/12/daml+oil-index, 2001.

[5] Foundation for Intelligent Physical Agents. Interaction
Protocol Specifications.
http://www.fipa.org/repository/ips.html.

[6] Foundation for Intelligent Physical Agents. FIPA
Specification. http://www.fipa.org/spec/, 2001.

[7] Foundation for Physical Intelligent Agents. FIPA 98
Specifications Part 10, Version 1.0, Agent Security
Management, 1998.

[8] A. Herzberg, Y. Mass, J.Mihaeli, D.Naor, and Y. Ravid.
Access Control meets Public Key Infrastructure : Or
Assigning Roles to Strangers. InProceedings of 2000 IEEE
Symposium on Security and Privacy, Oakland, May 2000,
2000.

[9] Yuh-Jong Hu. Some thoughts on Agent Trust and Delegation.
In Proceedings of Autonomous Agents 2001, 2001.

[10] Ingersoll Rand (Woodcliff Lake, NJ) and QAD (Carpenteria,
CA) and Berclain Group (Schaumburg, IL) and IBM
Corporation (Somers, NY). CIIMPLEX Consortium,
Consortium for Integrated Intelligent Manufacturing
PLanning and EXecution. http://www.ciimplex.org, 2000.

[11] Lalana Kagal, Tim Finin, and Anupam Joshi. Trust based
security for pervasive computing enviroments. InIEEE
Communications, December 2001, 2001.

[12] Lalana Kagal, Tim Finin, and Yun Peng. A Framework for
Distributed Trust Management. InProceedings of IJCAI-01
Workshop on Autonomy, Delegation and Control, 2001.

[13] Lalana Kagal, Jeffrey Undercoffer, Filip Perich, Anupam
Joshi, and Tim Finin. A Security Architecture Based on Trust
Management for Pervasive Computing Systems. In
Proceedings of Grace Hopper Celebration of Women in
Computing 2002, 2001.

[14] Ninghui Li, Benjamin N. Grosof, and Joan Feigenbaum. A
Practically Implementable and Tractable Delegation Logic.
In Proceedings of IEEE Symp. on Security and Privacy, held
Oakland, CA, USA, May 2000, 2000.

[15] Yosi Mass and Onn Shehory. Distributed Trust in Open Multi
Agent Systems. InWorkshop on Deception, Fraud and Trust
in Agent Societies, Autonomous Agents 2000, 2000.

[16] M.Blaze, J.Feigenbaum, and J.Lacy. Decentralized Trust
Management. InProceedings of IEEE Conference on
Privacy and Security, 1996.

[17] Stefan Poslad and Monique Calisti. Towards Improved Trust
and Security in FIPA Agent Platforms. InAutonomous
Agents 2000 Workshop on Deception, Fraud and Trust in
Agent Societies, Spain, 2000, 2000.

[18] J. R. Searle. Speech Acts : An essay in the Philosophy of
Language. Cambridge University Press, 1969.

[19] Jefferey Undercoffer, Andrej Cedilnik, Filip Perich, Lalana
Kagal, and Anupam Joshi. A Secure Infrastructure for
Service Discovery and Management in Pervasive
Computing.ACM MONET : The Journal of Special Issues on
Mobility of Systems, Users, Data and Computing, 2002.

[20] H.C. Wong and K. Sycara. Adding Security and Trust to
Multi-Agent Systems. InProceedings of Autonomous Agents
’99 Workshop on Deception, Fraud, and Trust in Agent
Societies, May, 1999, pp. 149 - 161, 1999.

