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ABSTRACT 
One vision of the Semantic Web is that it will be much like the 
Web we know today, except that documents will be enriched by 
annotations in machine understandable markup.  These annota-
tions will provide metadata about the documents as well as ma-
chine interpretable statements capturing some of the meaning of 
document content.  We discuss how the information retrieval 
paradigm might be recast in such an environment. We suggest that 
retrieval can be tightly bound to inference. Doing so makes to-
day’s Web search engines useful to Semantic Web inference en-
gines, and causes improvements in either retrieval or inference to 
lead directly to improvements in the other. 

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]:  Retrieval models 

General Terms 
Management, Measurement, Documentation, Performance, De-
sign, Experimentation, Languages. 

Keywords 
Semantic Web, information retrieval, DAML+OIL, OWL 

1. INTRODUCTION 
 

The Semantic Web [5] has lived its infancy as a clearly delineated 
body of Web documents. That is, by and large researchers work-
ing on aspects of the Semantic Web knew where the appropriate 
ontologies resided and tracked them using explicit URLs. When 
the desired Semantic Web document was not at hand, one was 
more likely to use a telephone to find it than a search engine. This 
closed world assumption was natural when a handful of research-
ers were developing DAML 0.5 ontologies, but is untenable if the 
Semantic Web is to live up to its name. 

Yet simple support for search over Semantic Web documents, 
while valuable, represents only a small piece of the benefits that 
will accrue if search and inference are considered together. We 
believe that Semantic Web inference can improve traditional text 
search, and that text search can be used to facilitate or augment 
Semantic Web inference. Several difficulties, listed below, stand 
in the way of this vision. 

Current Web search techniques are not directly suited to in-
dexing and retrieval of semantic markup. Most search engines 
use words or word variants as indexing terms. When a document 
written using some flavor of SGML is indexed, the markup is 
typically ignored. Because the Semantic Web is expressed entirely 
as markup, it is invisible to the major Web search engines. None-
theless, while it is possible that special purpose Web retrieval 
engines will arise that focus on retrieval of Semantic Web pages, 
it seems unlikely that they will overtake the coverage of the text 
search engines in the near future. Thus, we would like to find a 
way to exploit the capabilities of today’s text-based search en-
gines for use with semantic markup. 

Current Web search techniques cannot use semantic markup 
to improve text retrieval.  Web search engines typically rely on 
simple term statistics to identify which documents are most rele-
vant to a query. One might consider techniques such as thesaurus 
expansion or blind relevance feedback to be integration of infer-
ence into the retrieval process, but such inference is simple com-
pared with what is possible using semantic markup. One would 
like the presence of semantic markup in either the query or the 
documents retrieved to be exploitable during search to improve 
that search. 

Likewise, text is not useful during inference. To the extent that 
it is possible to automatically convert text to a semantic represen-
tation, such resulting representations can be used during infer-
ence.  However, semantic interpretation is difficult at best, and 
unsolved in the general case. We would like a way to exploit rele-
vant text during inference, without needing to analyze the seman-
tics of that text. 

There is no current standard for creating or manipulating 
documents that contain both HTML text and semantic 
markup. There are two prime candidates for such hybrid docu-
ments.  First, semantic markup might be embedded directly in an 
HTML page.  Unfortunately, while we call approaches like 
DAML+OIL and OWL semantic markup, they are typically used 
not as markup but rather as stand-alone knowledge representation 
languages that are not directly tied to text. Furthermore, embed-
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ding RDF-based markup in HTML is non-compliant with HTML 
standards up to and including HTML 4.0.  This issue is currently 
under study by a W3C task force [21]. 

The second way to bind HTML to semantic markup is to create a 
pair of documents, one containing HTML, the other containing 
the corresponding semantic markup.  The two files are bound by 
placing in each a pointer to the URI of the other, either by URI 
naming convention, or by concurrent retrieval (i.e., as part of a 
single transaction). While this method makes it difficult to associ-
ate semantic markup with specific components of the HTML 
page, it is possible to implement using today’s standards. 

Whichever approach is taken to binding semantic markup to 
HTML, the current lack of a standard has made it difficult to ex-
ploit the relationship between the two. 

In the remainder of this paper, we first propose a framework for 
the integration of inference and retrieval. Next we describe 
OWLIR, a retrieval system that implements portions of the 
framework. We then explore some of the more difficult issues that 
must be resolved for full implementation of the framework, and 
provide concluding remarks. 

2. OUR FRAMEWORK 
 

One of the stated objectives of the semantic web is to enhance the 
ability of both people and software agents to find documents, 
information and answers to queries on the web.  While there has 
been some research on information retrieval techniques applied to 
documents with markup [3,7,11], the role of explicit ontologies in 
information retrieval tasks [18], and on question answering as a 
retrieval task [16], much of it can be seen as incremental exten-
sions to familiar paradigms.  Our goal is more ambitious and of-

fers, we think, a new paradigm for information retrieval that mixes 
and interleaves search, retrieval and understanding. 

To explore the tight integration of search and inference, we pro-
pose a framework designed to meet the following desiderata: 

• The framework must support both retrieval-driven and infer-
ence-driven processing. 

• Retrieval must be able to use words, semantic markup, or 
both as indexing terms. 

• Web search must rely on today’s broad coverage, text-based 
retrieval engines. 

• Inference and retrieval should be tightly coupled; improve-
ments in retrieval should lead to improvements in inference, 
while improvements in inference should lead to improve-
ments in retrieval. 

In the following subsections, we first describe the portions of the 
framework that use semantic markup, then show how text process-
ing can be mixed in to increase system capabilities and improve 
performance. 

2.1 Processing of Semantic Markup 
 

First, imagine we are concerned only with retrieval and inference 
over semantic markup.  We would like the ability to operate some 
sort of inference engine, to identify facts and rules needed by the 
inference engine to reach its desired conclusions, to search the 
Semantic Web for such facts and rules, and to incorporate the 
results of the search into the inference process.  Figure 1 shows 
the basic architecture of such a system. 

Input to the system is some sort of Semantic Web query. If the 
user’s goal is retrieval, this might simply be semantic markup 
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Figure 1. Integration of inference and retrieval over semantic markup. Arrows represent data flow. 



encoding the concepts being sought (e.g., using XML-QL [9] or 
XIRQL [13]). Alternatively, if the goal is inference, the query 
might be a statement the system is to prove. In either case, the 
query is submitted to the inference engine. For retrieval, the infer-
ence engine may choose to perform limited forward chaining on 
the input (as a text retrieval engine might perform thesaurus ex-
pansion). For proof, the inference engine will generate a partial 
proof tree (or more accurately, one in a sequence of partial proof 
trees), using its local knowledge base to the extent possible. The 
inference engine produces a description of the semantic markup to 
be sought on the Web. 

Because we want to use a traditional Web search engine for the 
retrieval, we cannot simply use the output of the inference engine 
as a search query. Rather, we must first encode the semantic 
markup query as a text query that will be recognized by a search 
engine. We call this process swangling, for ‘Semantic Web man-
gling.’1 Technical details about swangling, and its application to 
Web pages prior to indexing, are discussed further below in Sec-
tion 4. The result is a bag of words, recognizable as indexing 
terms by the target Web search engine(s), that characterize the 
desired markup. 

The query is submitted to one or more Web search engines. The 
result will be a ranked list of Web pages, which either contain 
semantic markup themselves, or refer to companion pages that do. 
Some number of these pages must be scraped to retrieve their 
semantic markup. Control over how many pages to scrape, and 
over whether to scrape additional pages or to issue a new Web 
query, resides with the inference engine. 

                                                                 
1 Mangling is the technical term for a technique used in C++ and 

other object-oriented compilers in which the types of a 
method’s arguments and return value are encoded in the internal 
function name. 

Only some of the semantic markup retrieved through this process 
will be useful for the task at hand. Some will not come from an 
appropriate trusted authority. Some will be redundant. Some will 
be irrelevant. Thus, before it is asserted into the inference en-
gine’s knowledge store, the semantic markup gleaned from each 
page must be filtered. The result will be a collection of facts and 
rules, which are likely to further the inferences being pursued, or 
serve as valuable relevance feedback terms. These facts and rules 
are passed to the inference engine, which may then iterate the 
entire process. 

2.2 Using Text 
 

The process described in the previous subsection makes no use of 
text, except to the extent that the result of markup swangling is a 
set of text terms. However, there is no reason that we cannot in-
clude appropriate text in the Web query.  Adding text will influ-
ence the ordering of search results, possibly biasing them toward 
pages that will be most useful for the task at hand. Figure 2 shows 
how text can be included in the framework. First, a text query can 
be sent directly to the search engine (augmented by swangled 
markup, if such is available). Second, the extractor can pull text as 
well as markup out of retrieved pages. As with semantic markup, 
extracted text may be filtered or transduced in various ways before 
being used.  Potentially useful filters include translation, summa-
rization, trust verification, etc.  

Incorporation of extracted text into the query of a subsequent 
round of processing corresponds to blind relevance feedback. The 
framework therefore provides a way to include both text and se-
mantic markup as relevance feedback terms, even when the origi-
nal query is homogeneous. 

3. AN EXAMPLE: OWLIR 
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Figure 2. Text can also be extracted from the query results, filtered, and injected into the query. 



OWLIR [22] is an implemented system for retrieval of documents 
that contain both free text and semantic markup in RDF, 
DAML+OIL or OWL.  OWLIR was designed to work with almost 
any local information retrieval system and has been demonstrated 
working with two–HAIRCUT [20] and WONDIR.  In this section 
we briefly describe the OWLIR system; readers are referred to 
Shah [22] for additional details. 

While we have used OWLIR to explore the general issues of hy-
brid information retrieval, the implemented system was built to 
solve a particular task – filtering University student event an-
nouncements.   Twice a week, UMBC students receive an email 
message listing 40-50 events that may be of interest, e.g., public 
lectures, club meetings, sporting matches, movie screenings, out-
ing, etc.  Our goal was to automatically process these messages 
and produce sets of event descriptions containing both text and 
markup.  These descriptions are then further processed, enriched 
with the results of local knowledge and inferencing and prepared 
for indexing by an information retrieval system.  A simple form-
based query system allows a student to enter a query that includes 

both structured information (e.g., event dates, types, etc.) and free 
text.  The form generates a query document in the form of text 
annotated with DAML+OIL markup. Queries and event descrip-

tions are processed by reducing the markup to triples, enriching 
the structured knowledge using a local knowledge base and infer-
encing, and swangling the triples to produce acceptable indexing 
terms.  The result is a text-like query that can be used to retrieve a 
ranked list of events that match the query. 

OWLIR defines ontologies, encoded in DAML+OIL, allowing 
users to specify their interests in different events. These ontolo-
gies are also used to annotate the event announcements.  Figure 3 
shows a portion of the OWLIR Event Ontology, which is an ex-
tension to the ontologies used in ITTalks [8]. Events may be aca-
demic or non-academic, free or paid, open or by invitation. An 
event announcement made within the campus is identified as an 
instance of one of the natural kind of events or subcategories. 
Instances of subcategories are inferred to be a subtype of one of 
the natural kind of events. 

Text Extraction. Event announcements are currently in free text. 
We need these documents to contain semantic markup. We take 
advantage of the AeroText™ system to extract key phrases and 
elements from free text documents. Document structure analysis 
supports exploitation of tables, lists, and other elements to provide 
more effective analysis.  

We use a domain user customization tool to fine-tune extraction 
performance. The extracted phrases and elements play a vital role 
in identifying event types and adding semantic markup. AeroText 
has a Java API that provides access to an internal form of the 
extraction results. We have built DAML generation components 
that access this internal form, and then translate the extraction 
results into a corresponding RDF triple model that uses 
DAML+OIL syntax. This is accomplished by binding the Event 
ontology directly to the linguistic knowledge base used during 
extraction.  

Inference System. OWLIR uses the metadata information added 
during text extraction to infer additional semantic relations. These 
relations are used to decide the scope of the search and to provide 
more relevant responses. OWLIR bases its reasoning functionality 
on the use of DAMLJessKB [15].  DAMLJessKB facilitates read-
ing and interpreting DAML+OIL files, and allowing the user to 
reason over that information. The software uses the SiRPAC RDF 
API to read each DAML+OIL file as a collection of RDF triples 
and Jess (Java Expert System Shell) [12] as a forward chaining 
production system to apply rules to those triples.  

DAMLJessKB provides basic facts and rules that facilitate draw-
ing inferences on relationships such as Subclasses and Subproper-
ties. We enhance the existing DAMLJessKB inference capabilities 
by applying domain specific rules to relevant facts. For example, 
DAMLJessKB does not import facts from the ontology that is 
used to create instances, thereby limiting its capacity to draw in-
ferences. We have addressed this issue by importing the base 
Event ontology and providing relevant rules for reasoning over 
instances and concepts of the ontology. This combination of 
DAMLJessKB and domain specific rules has provided us with an 
effective inference engine. 

As an example of the swangling process used in OWLIR, consider 
the markup, expressed here in RDF N3 notation, describing a 
movie with the title “Spiderman”: 

_j:00255 a owlir:movie; dc:title “Spiderman”. 

OWLIR has domain-specific rules that are used to add informa-
tion useful in describing an event.  One rule is triggered by a de-

 
Figure 3.  OWLIR annotations use terms from a DAML+OIL ontology of 
classes and properties that are useful in describing campus events. 

 



scription of a movie event where we know the movie title.  This 
rule requests that the Internet Movie Database (IMDB) agent seek 
additional attributes of this move, such as its genre.  The results 
are added as triples, such as the following one (also in N3). 

_:j00255 owlir:moviegenre “action”. 

This triple is then expanded with wildcards to generate seven 
terms, which are added to the document prior to indexing: 

1. j00255.owlir.umbc.edu/event/moviegenre.action 
2. *.owlir.umbc.edu/event/moviegenre.action 
3. j00255.*.action 
4. j00255.owlir.umbc.edu/event/moviegenre.* 
5. j00255.*.* 
6. *.owlir.umbc.edu/event/moviegenre.* 
7. **.action 

We conducted experiments with OWLIR to see if semantic 
markup within documents can be exploited to improve retrieval 
performance. We measured precision and recall for retrieval over 
three different types of document: text only; text with semantic 
markup; and text with semantic markup that has been augmented 
by inference.  We used two types of inference to augment docu-
ment markup: reasoning over ontology instances (e.g., deriving 
the date and location of a basketball game); and reasoning over 
the ontology hierarchy (e.g., a basketball game is a type of sport-
ing event). For example, extracting the name of a movie from its 
description allows details about the movie to be retrieved from the 
Internet Movie Database site. A query looking for movies of the 
type Romantic Genre can thus be satisfied even when the initial 
event description was not adequate for the purpose. 

We generated twelve hybrid (text plus markup) queries, and ran 
them over a collection of 1540 DAML+OIL-enhanced event an-
nouncements. 

Table 1. Mean average precision over twelve hybrid queries 

Unstructured data 
(e.g., free text) 

Structured data 
with inferred data 

Structured data plus 
free text 

25.9% 66.2% 85.5% 

 

Indexed documents contain RDF Triples and RDF Triple Wild-
cards. This gives users the flexibility to represent queries with 
RDF Triple wildcards. DAML+OIL captures semantic relation-
ships between terms and hence offers a better match for queries 
with correlated terms. 

These experiments were run using the WONDIR information 
retrieval engine. Preliminary results are shown in Table 1 and in 
Shah et al. [22]. Retrieval times for free text documents and 
documents incorporating text and markup are comparable. Includ-
ing semantic markup in the representation of an indexed docu-
ment increases information retrieval effectiveness. Additional 
performance benefits accrue when inference is performed over a 
document's semantic markup prior to indexing.  While the low 
number of queries at our disposal limits any conclusions we might 
draw about the statistical significance of these results, we are 
nonetheless strongly encouraged by them. They suggest that de-
veloping retrieval techniques that draw on semantic associations 
between terms will enable intelligent information services, per-
sonalized Web sites, and semantically empowered search engines. 

4. DISCUSSION 
 

A body of documents that contain both text and semantic annota-
tions requires, or at least offers an opportunity to explore, new 
models for information retrieval that interleave document retrieval 
and inference.  Such interleaving is done today, but is split be-
tween people and computers.   

Here is a description of what occurs in a typical information re-
trieval session, focusing on the roles played by a person with a 
query (e.g., “What is the capital of India”) and the computer sys-
tem(s) used to answer the query. 

• A person mentally forms a semantic query; 

• the person encodes the query as a combination of words and 
phrases that are thought to characterize documents that con-
tain information needed to answer the query; 

• the computer system retrieves a ranked set of documents 
matching the text query; 

• the person reviews some of the highly ranked documents, 
reading and extracting some of their meaning; 

• if the semantic query can now be answered, the process ter-
minates with success; otherwise, 

• Some of the newly extracted facts and knowledge are used to 
reformulate the text query, and the process repeats. 

Our goal can be seen as attempting to completely automate this 
process.  Achieving this goal will have two major benefits.  First, 
for systems that start with a human-posed query, the person no 
longer needs to read and extract information from retrieved 
documents in order to answer the semantic query or reformulate 
the text query. Second, it allows software agents to extract knowl-
edge from the Web to answer their semantic queries without the 
aid of a person. 

Progress toward this goal will rely on solutions to a number of 
issues and open problems.  The general categories include tokeni-
zation (mapping OWL onto word-like indexable tokens), reason-
ing (when and how much), trust and consistency (what sources to 
use), and dealing with search engines. 

4.1 Tokenization 
 

Most search engines are designed to use words as tokens.  We 
have named the process of converting semantic web RDF triples 
to word-like tokens swangling.  There are two immediate issues 
that present themselves – which triples to select for swangling and 
what techniques to use to swangle a selected triple. 

What to swangle. Some search engines, such as Google, limit 
query size.  Care must be taken to choose a set of triples that will 
be effective in finding relevant documents.  Some triples carry 
more information that others. For example, every instance is a 
type of owl:thing, so adding triples asserting owl:thingness will 
not be very helpful, especially if the query size is limited. OWL 
and RDF descriptions typically contain anonymous nodes (also 
know as “blank nodes”) that represent existentially asserted enti-
ties.  Triples that refer to blank nodes should probably be proc-
essed in a special way, since including the “gensym” tag that 



represents the blank node carries no information. It might be pos-
sible to develop a statistical model for OWL annotations on 
documents similar to statistical language models.  Such a model 
could help to select triples to include in a query. 

How to swangle. In the OWLIR system we explored one ap-
proach to swangling triples.  More experimentation is clearly 
needed to find the most effective and efficient techniques for re-
ducing a set of triples to a set of tokens that a given information 
retrieval system will accept.  The simplest approach would be to 
decompose each triple into its three components and to swangle 
these separately.  This loses much of the information, of course.  
OWLIR followed an approach which preserved more information.  
Each triple was transformed into seven patterns, formed by replac-
ing zero, one or two of its components with a special “don’t care” 
token.  Each of the seven resulting tokens was then reduced to a 
single word-like token for indexing. 

4.2 Reasoning 
 

When to reason.  We have a choice about when to reason over 
Semantic Web markup.  We can reason over the markup in a 
document about to be indexed, resulting in a larger set of triples.  
We can also reason over a query that contains RDF triples prior to 
processing it and submitting it to the retrieval system.  Finally, we 
can reason over the markup found in the documents retrieved.  In 
OWLIR, we chose to reason both over documents as they were 
being indexed and over queries about to be submitted.  It is not 
obvious to us how much redundancy this entails nor is it clear if 
there is a best approach to when to do the reasoning. 

How much to reason.  A similar problem arises when one con-
siders how much reasoning to do or whether to rely largely on 
forward chaining (as in OWLIR) or a mixture of forward and 
backward reasoning. 

4.3 What knowledge to use 
 

What to trust.  The information found on the Semantic Web will 
vary greatly in its reliability and veracity, just as information on 
the current Web.  It will not do just to inject into our reasoning 
the facts and knowledge from a newly found and relevant docu-
ment.  Moreover, we may need to take care not to create an incon-
sistent knowledge base.  This problem is being studied in the con-
text of models of trust on the Web [10][14][22]. 

Modeling document provenance. Much of the information found 
in a document comes from somewhere else – typically another 
document.  Data provenance [6] is a term used for modeling and 
reasoning about the ultimate source of a given fact in a database 
or document.  For systems that extract and reason about facts and 
knowledge found on the Semantic Web, it will be important to (i) 
inform our trust model and make better decision about the trust-
worthiness of each fact; and (ii) remove duplicate facts from our 
semantic model. 

4.4 Dealing with search engines 
 

Control.  The basic cycle we’ve described involves (re)forming a 
query, retrieving documents, processing some of them, and repeat-
ing.  This leaves us with a decision about whether to look deeper 

into the ranked result set for more information to use in reforming 
our query, or to reform the query and generate a new result set.  
The choice is similar to that faced by an agent in a multiagent 
system that has to frequently consider whether to continue reason-
ing with the information it has or to ask other agents for more 
information or to help with the reasoning [19]. We need some 
metric that estimates the expected utility of processing the next 
document in the ranked result set. 

Spiders. Web search engines typically do not process markup.  
So, we need a way to give a search engine spider a preprocessed 
(swangled) version of a Web page when it tries to spider it for 
indexing.  This can be easily accomplished if we have control of 
the HTTP server that serves a page – it checks to see if the re-
questing agent is a spider.  If so, it returns the swangled version of 
the page, otherwise it returns the original source page.  The pre-
processing can be done in advance or on demand with caching.  

Offsite annotation.  The technique described above depends on 
having control over all of the servers associated with a Semantic 
Web page.  If this is not the case, some work arounds are needed.  
One option is to mirror the pages on a server that does automatic 
swangling.  The pages should have a special annotation (e.g., in 
RDF) that asserts the relationship between the source and mir-
rored pages. 

Search engine limitations. Web based search engines have limi-
tations that must be taken into account, including how they token-
ize text and constraints on queries.  We would like swangled 
terms to be accepted as indexable terms.  The two retrieval sys-
tems we used in OWLIR were very flexible in what they accepted 
as a token; tokens could be of arbitrary length and could include 
almost any non-whitespace characters.  Many commercial systems 
are much more constrained.  With Google, for example, we were 
advised to keep the token length less than 50 and to include only 
lower and uppercase alphabetic characters.  Many commercial 
systems also limit the size of a query to a maximum number of 
terms.  Google, for example, currently has a limit of ten terms in a 
query.  These limitations, as well as others, affect how we have to 
interface to a given retrieval engine. 

5. CONCLUSION 
 

The Semantic Web will contain documents enriched by annota-
tions that provide metadata about the documents as well as ma-
chine interpretable statements capturing some of the meaning of 
the documents’ content.  Information retrieval over collections of 
these documents offers new challenges and new opportunities.  
We have presented a framework for integrating search and infer-
ence in this setting that supports both retrieval-driven and infer-
ence-driven processing, uses both text and markup as indexing 
terms, exploits today’s text-based Web search engines, and tightly 
binds retrieval to inference. While many challenges must be re-
solved to bring this vision to fruition, the benefits of pursuing it 
are clear. 
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