
Information retrieval on the Semantic Web:
Integrating inference and retrieval

James Mayfield
The Johns Hopkins University

Applied Physics Laboratory
Laurel MD 20723-6099 USA
james.mayfield@jhuapl.edu

Tim Finin
University of Maryland,

Baltimore County
Baltimore MD 21250 USA

finin@umbc.edu

ABSTRACT
One vision of the Semantic Web is that it will be much like the
Web we know today, except that documents will be enriched by
annotations in machine understandable markup. These annota-
tions will provide metadata about the documents as well as ma-
chine interpretable statements capturing some of the meaning of
document content. We discuss how the information retrieval
paradigm might be recast in such an environment. We suggest that
retrieval can be tightly bound to inference. Doing so makes to-
day’s Web search engines useful to Semantic Web inference en-
gines, and causes improvements in either retrieval or inference to
lead directly to improvements in the other.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval models

General Terms
Management, Measurement, Documentation, Performance, De-
sign, Experimentation, Languages.

Keywords
Semantic Web, information retrieval, DAML+OIL, OWL

1. INTRODUCTION

The Semantic Web [5] has lived its infancy as a clearly delineated
body of Web documents. That is, by and large researchers work-
ing on aspects of the Semantic Web knew where the appropriate
ontologies resided and tracked them using explicit URLs. When
the desired Semantic Web document was not at hand, one was
more likely to use a telephone to find it than a search engine. This
closed world assumption was natural when a handful of research-
ers were developing DAML 0.5 ontologies, but is untenable if the
Semantic Web is to live up to its name.

Yet simple support for search over Semantic Web documents,
while valuable, represents only a small piece of the benefits that
will accrue if search and inference are considered together. We
believe that Semantic Web inference can improve traditional text
search, and that text search can be used to facilitate or augment
Semantic Web inference. Several difficulties, listed below, stand
in the way of this vision.

Current Web search techniques are not directly suited to in-
dexing and retrieval of semantic markup. Most search engines
use words or word variants as indexing terms. When a document
written using some flavor of SGML is indexed, the markup is
typically ignored. Because the Semantic Web is expressed entirely
as markup, it is invisible to the major Web search engines. None-
theless, while it is possible that special purpose Web retrieval
engines will arise that focus on retrieval of Semantic Web pages,
it seems unlikely that they will overtake the coverage of the text
search engines in the near future. Thus, we would like to find a
way to exploit the capabilities of today’s text-based search en-
gines for use with semantic markup.

Current Web search techniques cannot use semantic markup
to improve text retrieval. Web search engines typically rely on
simple term statistics to identify which documents are most rele-
vant to a query. One might consider techniques such as thesaurus
expansion or blind relevance feedback to be integration of infer-
ence into the retrieval process, but such inference is simple com-
pared with what is possible using semantic markup. One would
like the presence of semantic markup in either the query or the
documents retrieved to be exploitable during search to improve
that search.

Likewise, text is not useful during inference. To the extent that
it is possible to automatically convert text to a semantic represen-
tation, such resulting representations can be used during infer-
ence. However, semantic interpretation is difficult at best, and
unsolved in the general case. We would like a way to exploit rele-
vant text during inference, without needing to analyze the seman-
tics of that text.

There is no current standard for creating or manipulating
documents that contain both HTML text and semantic
markup. There are two prime candidates for such hybrid docu-
ments. First, semantic markup might be embedded directly in an
HTML page. Unfortunately, while we call approaches like
DAML+OIL and OWL semantic markup, they are typically used
not as markup but rather as stand-alone knowledge representation
languages that are not directly tied to text. Furthermore, embed-

This work was partially supported by DARPA contract F30602-97-1-0215.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR 2003 Semantic Web Workshop, 1 August 2003, Toronto, Canada.
Copyright 2003 ACM 1-58113-000-0/00/0000…$5.00.

ding RDF-based markup in HTML is non-compliant with HTML
standards up to and including HTML 4.0. This issue is currently
under study by a W3C task force [21].

The second way to bind HTML to semantic markup is to create a
pair of documents, one containing HTML, the other containing
the corresponding semantic markup. The two files are bound by
placing in each a pointer to the URI of the other, either by URI
naming convention, or by concurrent retrieval (i.e., as part of a
single transaction). While this method makes it difficult to associ-
ate semantic markup with specific components of the HTML
page, it is possible to implement using today’s standards.

Whichever approach is taken to binding semantic markup to
HTML, the current lack of a standard has made it difficult to ex-
ploit the relationship between the two.

In the remainder of this paper, we first propose a framework for
the integration of inference and retrieval. Next we describe
OWLIR, a retrieval system that implements portions of the
framework. We then explore some of the more difficult issues that
must be resolved for full implementation of the framework, and
provide concluding remarks.

2. OUR FRAMEWORK

One of the stated objectives of the semantic web is to enhance the
ability of both people and software agents to find documents,
information and answers to queries on the web. While there has
been some research on information retrieval techniques applied to
documents with markup [3,7,11], the role of explicit ontologies in
information retrieval tasks [18], and on question answering as a
retrieval task [16], much of it can be seen as incremental exten-
sions to familiar paradigms. Our goal is more ambitious and of-

fers, we think, a new paradigm for information retrieval that mixes
and interleaves search, retrieval and understanding.

To explore the tight integration of search and inference, we pro-
pose a framework designed to meet the following desiderata:

• The framework must support both retrieval-driven and infer-
ence-driven processing.

• Retrieval must be able to use words, semantic markup, or
both as indexing terms.

• Web search must rely on today’s broad coverage, text-based
retrieval engines.

• Inference and retrieval should be tightly coupled; improve-
ments in retrieval should lead to improvements in inference,
while improvements in inference should lead to improve-
ments in retrieval.

In the following subsections, we first describe the portions of the
framework that use semantic markup, then show how text process-
ing can be mixed in to increase system capabilities and improve
performance.

2.1 Processing of Semantic Markup

First, imagine we are concerned only with retrieval and inference
over semantic markup. We would like the ability to operate some
sort of inference engine, to identify facts and rules needed by the
inference engine to reach its desired conclusions, to search the
Semantic Web for such facts and rules, and to incorporate the
results of the search into the inference process. Figure 1 shows
the basic architecture of such a system.

Input to the system is some sort of Semantic Web query. If the
user’s goal is retrieval, this might simply be semantic markup

Web
Search
Engine

Filters
Semantic
Markup

Inference
Engine

Local
KB

Semantic
Markup

Semantic
Markup

Extractor

Encoder

Ranked
Pages

Semantic
Web Query

Encoded
Markup

Figure 1. Integration of inference and retrieval over semantic markup. Arrows represent data flow.

encoding the concepts being sought (e.g., using XML-QL [9] or
XIRQL [13]). Alternatively, if the goal is inference, the query
might be a statement the system is to prove. In either case, the
query is submitted to the inference engine. For retrieval, the infer-
ence engine may choose to perform limited forward chaining on
the input (as a text retrieval engine might perform thesaurus ex-
pansion). For proof, the inference engine will generate a partial
proof tree (or more accurately, one in a sequence of partial proof
trees), using its local knowledge base to the extent possible. The
inference engine produces a description of the semantic markup to
be sought on the Web.

Because we want to use a traditional Web search engine for the
retrieval, we cannot simply use the output of the inference engine
as a search query. Rather, we must first encode the semantic
markup query as a text query that will be recognized by a search
engine. We call this process swangling, for ‘Semantic Web man-
gling.’1 Technical details about swangling, and its application to
Web pages prior to indexing, are discussed further below in Sec-
tion 4. The result is a bag of words, recognizable as indexing
terms by the target Web search engine(s), that characterize the
desired markup.

The query is submitted to one or more Web search engines. The
result will be a ranked list of Web pages, which either contain
semantic markup themselves, or refer to companion pages that do.
Some number of these pages must be scraped to retrieve their
semantic markup. Control over how many pages to scrape, and
over whether to scrape additional pages or to issue a new Web
query, resides with the inference engine.

1 Mangling is the technical term for a technique used in C++ and

other object-oriented compilers in which the types of a
method’s arguments and return value are encoded in the internal
function name.

Only some of the semantic markup retrieved through this process
will be useful for the task at hand. Some will not come from an
appropriate trusted authority. Some will be redundant. Some will
be irrelevant. Thus, before it is asserted into the inference en-
gine’s knowledge store, the semantic markup gleaned from each
page must be filtered. The result will be a collection of facts and
rules, which are likely to further the inferences being pursued, or
serve as valuable relevance feedback terms. These facts and rules
are passed to the inference engine, which may then iterate the
entire process.

2.2 Using Text

The process described in the previous subsection makes no use of
text, except to the extent that the result of markup swangling is a
set of text terms. However, there is no reason that we cannot in-
clude appropriate text in the Web query. Adding text will influ-
ence the ordering of search results, possibly biasing them toward
pages that will be most useful for the task at hand. Figure 2 shows
how text can be included in the framework. First, a text query can
be sent directly to the search engine (augmented by swangled
markup, if such is available). Second, the extractor can pull text as
well as markup out of retrieved pages. As with semantic markup,
extracted text may be filtered or transduced in various ways before
being used. Potentially useful filters include translation, summa-
rization, trust verification, etc.

Incorporation of extracted text into the query of a subsequent
round of processing corresponds to blind relevance feedback. The
framework therefore provides a way to include both text and se-
mantic markup as relevance feedback terms, even when the origi-
nal query is homogeneous.

3. AN EXAMPLE: OWLIR

Web
Search
Engine

Filters
Semantic
Markup

Inference
Engine

Local
KB

Semantic
Markup

Semantic
Markup

Extractor

Encoder

Ranked
Pages

Semantic
Web Query

Encoded
Markup

Text
Query

TextFiltersText

Figure 2. Text can also be extracted from the query results, filtered, and injected into the query.

OWLIR [22] is an implemented system for retrieval of documents
that contain both free text and semantic markup in RDF,
DAML+OIL or OWL. OWLIR was designed to work with almost
any local information retrieval system and has been demonstrated
working with two–HAIRCUT [20] and WONDIR. In this section
we briefly describe the OWLIR system; readers are referred to
Shah [22] for additional details.

While we have used OWLIR to explore the general issues of hy-
brid information retrieval, the implemented system was built to
solve a particular task – filtering University student event an-
nouncements. Twice a week, UMBC students receive an email
message listing 40-50 events that may be of interest, e.g., public
lectures, club meetings, sporting matches, movie screenings, out-
ing, etc. Our goal was to automatically process these messages
and produce sets of event descriptions containing both text and
markup. These descriptions are then further processed, enriched
with the results of local knowledge and inferencing and prepared
for indexing by an information retrieval system. A simple form-
based query system allows a student to enter a query that includes

both structured information (e.g., event dates, types, etc.) and free
text. The form generates a query document in the form of text
annotated with DAML+OIL markup. Queries and event descrip-

tions are processed by reducing the markup to triples, enriching
the structured knowledge using a local knowledge base and infer-
encing, and swangling the triples to produce acceptable indexing
terms. The result is a text-like query that can be used to retrieve a
ranked list of events that match the query.

OWLIR defines ontologies, encoded in DAML+OIL, allowing
users to specify their interests in different events. These ontolo-
gies are also used to annotate the event announcements. Figure 3
shows a portion of the OWLIR Event Ontology, which is an ex-
tension to the ontologies used in ITTalks [8]. Events may be aca-
demic or non-academic, free or paid, open or by invitation. An
event announcement made within the campus is identified as an
instance of one of the natural kind of events or subcategories.
Instances of subcategories are inferred to be a subtype of one of
the natural kind of events.

Text Extraction. Event announcements are currently in free text.
We need these documents to contain semantic markup. We take
advantage of the AeroText™ system to extract key phrases and
elements from free text documents. Document structure analysis
supports exploitation of tables, lists, and other elements to provide
more effective analysis.

We use a domain user customization tool to fine-tune extraction
performance. The extracted phrases and elements play a vital role
in identifying event types and adding semantic markup. AeroText
has a Java API that provides access to an internal form of the
extraction results. We have built DAML generation components
that access this internal form, and then translate the extraction
results into a corresponding RDF triple model that uses
DAML+OIL syntax. This is accomplished by binding the Event
ontology directly to the linguistic knowledge base used during
extraction.

Inference System. OWLIR uses the metadata information added
during text extraction to infer additional semantic relations. These
relations are used to decide the scope of the search and to provide
more relevant responses. OWLIR bases its reasoning functionality
on the use of DAMLJessKB [15]. DAMLJessKB facilitates read-
ing and interpreting DAML+OIL files, and allowing the user to
reason over that information. The software uses the SiRPAC RDF
API to read each DAML+OIL file as a collection of RDF triples
and Jess (Java Expert System Shell) [12] as a forward chaining
production system to apply rules to those triples.

DAMLJessKB provides basic facts and rules that facilitate draw-
ing inferences on relationships such as Subclasses and Subproper-
ties. We enhance the existing DAMLJessKB inference capabilities
by applying domain specific rules to relevant facts. For example,
DAMLJessKB does not import facts from the ontology that is
used to create instances, thereby limiting its capacity to draw in-
ferences. We have addressed this issue by importing the base
Event ontology and providing relevant rules for reasoning over
instances and concepts of the ontology. This combination of
DAMLJessKB and domain specific rules has provided us with an
effective inference engine.

As an example of the swangling process used in OWLIR, consider
the markup, expressed here in RDF N3 notation, describing a
movie with the title “Spiderman”:

_j:00255 a owlir:movie; dc:title “Spiderman”.

OWLIR has domain-specific rules that are used to add informa-
tion useful in describing an event. One rule is triggered by a de-

Figure 3. OWLIR annotations use terms from a DAML+OIL ontology of
classes and properties that are useful in describing campus events.

scription of a movie event where we know the movie title. This
rule requests that the Internet Movie Database (IMDB) agent seek
additional attributes of this move, such as its genre. The results
are added as triples, such as the following one (also in N3).

_:j00255 owlir:moviegenre “action”.

This triple is then expanded with wildcards to generate seven
terms, which are added to the document prior to indexing:

1. j00255.owlir.umbc.edu/event/moviegenre.action
2. *.owlir.umbc.edu/event/moviegenre.action
3. j00255.*.action
4. j00255.owlir.umbc.edu/event/moviegenre.*
5. j00255.*.*
6. *.owlir.umbc.edu/event/moviegenre.*
7. **.action

We conducted experiments with OWLIR to see if semantic
markup within documents can be exploited to improve retrieval
performance. We measured precision and recall for retrieval over
three different types of document: text only; text with semantic
markup; and text with semantic markup that has been augmented
by inference. We used two types of inference to augment docu-
ment markup: reasoning over ontology instances (e.g., deriving
the date and location of a basketball game); and reasoning over
the ontology hierarchy (e.g., a basketball game is a type of sport-
ing event). For example, extracting the name of a movie from its
description allows details about the movie to be retrieved from the
Internet Movie Database site. A query looking for movies of the
type Romantic Genre can thus be satisfied even when the initial
event description was not adequate for the purpose.

We generated twelve hybrid (text plus markup) queries, and ran
them over a collection of 1540 DAML+OIL-enhanced event an-
nouncements.

Table 1. Mean average precision over twelve hybrid queries

Unstructured data
(e.g., free text)

Structured data
with inferred data

Structured data plus
free text

25.9% 66.2% 85.5%

Indexed documents contain RDF Triples and RDF Triple Wild-
cards. This gives users the flexibility to represent queries with
RDF Triple wildcards. DAML+OIL captures semantic relation-
ships between terms and hence offers a better match for queries
with correlated terms.

These experiments were run using the WONDIR information
retrieval engine. Preliminary results are shown in Table 1 and in
Shah et al. [22]. Retrieval times for free text documents and
documents incorporating text and markup are comparable. Includ-
ing semantic markup in the representation of an indexed docu-
ment increases information retrieval effectiveness. Additional
performance benefits accrue when inference is performed over a
document's semantic markup prior to indexing. While the low
number of queries at our disposal limits any conclusions we might
draw about the statistical significance of these results, we are
nonetheless strongly encouraged by them. They suggest that de-
veloping retrieval techniques that draw on semantic associations
between terms will enable intelligent information services, per-
sonalized Web sites, and semantically empowered search engines.

4. DISCUSSION

A body of documents that contain both text and semantic annota-
tions requires, or at least offers an opportunity to explore, new
models for information retrieval that interleave document retrieval
and inference. Such interleaving is done today, but is split be-
tween people and computers.

Here is a description of what occurs in a typical information re-
trieval session, focusing on the roles played by a person with a
query (e.g., “What is the capital of India”) and the computer sys-
tem(s) used to answer the query.

• A person mentally forms a semantic query;

• the person encodes the query as a combination of words and
phrases that are thought to characterize documents that con-
tain information needed to answer the query;

• the computer system retrieves a ranked set of documents
matching the text query;

• the person reviews some of the highly ranked documents,
reading and extracting some of their meaning;

• if the semantic query can now be answered, the process ter-
minates with success; otherwise,

• Some of the newly extracted facts and knowledge are used to
reformulate the text query, and the process repeats.

Our goal can be seen as attempting to completely automate this
process. Achieving this goal will have two major benefits. First,
for systems that start with a human-posed query, the person no
longer needs to read and extract information from retrieved
documents in order to answer the semantic query or reformulate
the text query. Second, it allows software agents to extract knowl-
edge from the Web to answer their semantic queries without the
aid of a person.

Progress toward this goal will rely on solutions to a number of
issues and open problems. The general categories include tokeni-
zation (mapping OWL onto word-like indexable tokens), reason-
ing (when and how much), trust and consistency (what sources to
use), and dealing with search engines.

4.1 Tokenization

Most search engines are designed to use words as tokens. We
have named the process of converting semantic web RDF triples
to word-like tokens swangling. There are two immediate issues
that present themselves – which triples to select for swangling and
what techniques to use to swangle a selected triple.

What to swangle. Some search engines, such as Google, limit
query size. Care must be taken to choose a set of triples that will
be effective in finding relevant documents. Some triples carry
more information that others. For example, every instance is a
type of owl:thing, so adding triples asserting owl:thingness will
not be very helpful, especially if the query size is limited. OWL
and RDF descriptions typically contain anonymous nodes (also
know as “blank nodes”) that represent existentially asserted enti-
ties. Triples that refer to blank nodes should probably be proc-
essed in a special way, since including the “gensym” tag that

represents the blank node carries no information. It might be pos-
sible to develop a statistical model for OWL annotations on
documents similar to statistical language models. Such a model
could help to select triples to include in a query.

How to swangle. In the OWLIR system we explored one ap-
proach to swangling triples. More experimentation is clearly
needed to find the most effective and efficient techniques for re-
ducing a set of triples to a set of tokens that a given information
retrieval system will accept. The simplest approach would be to
decompose each triple into its three components and to swangle
these separately. This loses much of the information, of course.
OWLIR followed an approach which preserved more information.
Each triple was transformed into seven patterns, formed by replac-
ing zero, one or two of its components with a special “don’t care”
token. Each of the seven resulting tokens was then reduced to a
single word-like token for indexing.

4.2 Reasoning

When to reason. We have a choice about when to reason over
Semantic Web markup. We can reason over the markup in a
document about to be indexed, resulting in a larger set of triples.
We can also reason over a query that contains RDF triples prior to
processing it and submitting it to the retrieval system. Finally, we
can reason over the markup found in the documents retrieved. In
OWLIR, we chose to reason both over documents as they were
being indexed and over queries about to be submitted. It is not
obvious to us how much redundancy this entails nor is it clear if
there is a best approach to when to do the reasoning.

How much to reason. A similar problem arises when one con-
siders how much reasoning to do or whether to rely largely on
forward chaining (as in OWLIR) or a mixture of forward and
backward reasoning.

4.3 What knowledge to use

What to trust. The information found on the Semantic Web will
vary greatly in its reliability and veracity, just as information on
the current Web. It will not do just to inject into our reasoning
the facts and knowledge from a newly found and relevant docu-
ment. Moreover, we may need to take care not to create an incon-
sistent knowledge base. This problem is being studied in the con-
text of models of trust on the Web [10][14][22].

Modeling document provenance. Much of the information found
in a document comes from somewhere else – typically another
document. Data provenance [6] is a term used for modeling and
reasoning about the ultimate source of a given fact in a database
or document. For systems that extract and reason about facts and
knowledge found on the Semantic Web, it will be important to (i)
inform our trust model and make better decision about the trust-
worthiness of each fact; and (ii) remove duplicate facts from our
semantic model.

4.4 Dealing with search engines

Control. The basic cycle we’ve described involves (re)forming a
query, retrieving documents, processing some of them, and repeat-
ing. This leaves us with a decision about whether to look deeper

into the ranked result set for more information to use in reforming
our query, or to reform the query and generate a new result set.
The choice is similar to that faced by an agent in a multiagent
system that has to frequently consider whether to continue reason-
ing with the information it has or to ask other agents for more
information or to help with the reasoning [19]. We need some
metric that estimates the expected utility of processing the next
document in the ranked result set.

Spiders. Web search engines typically do not process markup.
So, we need a way to give a search engine spider a preprocessed
(swangled) version of a Web page when it tries to spider it for
indexing. This can be easily accomplished if we have control of
the HTTP server that serves a page – it checks to see if the re-
questing agent is a spider. If so, it returns the swangled version of
the page, otherwise it returns the original source page. The pre-
processing can be done in advance or on demand with caching.

Offsite annotation. The technique described above depends on
having control over all of the servers associated with a Semantic
Web page. If this is not the case, some work arounds are needed.
One option is to mirror the pages on a server that does automatic
swangling. The pages should have a special annotation (e.g., in
RDF) that asserts the relationship between the source and mir-
rored pages.

Search engine limitations. Web based search engines have limi-
tations that must be taken into account, including how they token-
ize text and constraints on queries. We would like swangled
terms to be accepted as indexable terms. The two retrieval sys-
tems we used in OWLIR were very flexible in what they accepted
as a token; tokens could be of arbitrary length and could include
almost any non-whitespace characters. Many commercial systems
are much more constrained. With Google, for example, we were
advised to keep the token length less than 50 and to include only
lower and uppercase alphabetic characters. Many commercial
systems also limit the size of a query to a maximum number of
terms. Google, for example, currently has a limit of ten terms in a
query. These limitations, as well as others, affect how we have to
interface to a given retrieval engine.

5. CONCLUSION

The Semantic Web will contain documents enriched by annota-
tions that provide metadata about the documents as well as ma-
chine interpretable statements capturing some of the meaning of
the documents’ content. Information retrieval over collections of
these documents offers new challenges and new opportunities.
We have presented a framework for integrating search and infer-
ence in this setting that supports both retrieval-driven and infer-
ence-driven processing, uses both text and markup as indexing
terms, exploits today’s text-based Web search engines, and tightly
binds retrieval to inference. While many challenges must be re-
solved to bring this vision to fruition, the benefits of pursuing it
are clear.

6. REFERENCES

[1] Abiteboul, S., Quass, D., McHugh, J. Widom, J. and Wiener,
J. ‘The Lorel query language for semistructured data.’ In-
ternational Journal on Digital Libraries 1, pages 68-88,
April 1997.

[2] Arocena, G. and Mendelzon, A. ‘WebOQL: Restructuring
documents, databases and webs.’ In International Confer-
ence on Data Engineering, pages 24--33. IEEE Computer
Society, 1998.

[3] Bar-Yossef, Z., Kanza, Y., Kogan, Y., Nutt, W. and Sagiv,
Y.. ‘Quest: Querying semantically tagged documents on the
World Wide Web.’ In Proc. of the 4th Workshop on Next
Generation Information Technologies and Systems, volume
NGITS'99, Zikhron-Yaakov (Israel), July 1999.

[4] Berners-Lee, T. and Fischetti, M. Weaving the Web: The
Original Design and Ultimate Destiny of the World Wide
Web by its Inventor. Harper, San Francisco. 1999.

[5] Berners-Lee, T., Hendler, J. and Lassila, O. ‘The Semantic
Web.’ Scientific American, May 2001.

[6] Buneman, P., Khanna, S. and Tan, W-C. ‘Why and Where: A
Characterization of Data Provenance.’ International Confer-
ence on Database Theory (ICDT) 2001.

[7] Chinenyanga, T. and Kushmerick, N. ‘Elixir: An expressive
and efficient language for XML information retrieval.’ In
SIGIR Workshop on XML and Information Retrieval, 2001.

[8] Cost, R. S., Finin, T., Joshi, A., Peng, Y., Nicholas, C.,
Soboroff, I., Chen, H., Kagal, L., Perich, F., Zou, Y., and To-
lia, S. ‘ITTALKS: A Case Study in the Semantic Web and
DAML+OIL.’ IEEE Intelligent Systems 17(1):40-47, 2002.

[9] Deutsch, A.,Fernandez, M., Florescu, D., Levy, A. and
Suciu, D. ‘XML-QL: A query language for XML.’ In Pro-
ceedings of the Eighth International World Wide Web Con-
ference, 1999.

[10] Ding, L., Zhou, L. and Finin, T. ‘Trust Based Knowledge
Outsourcing for Semantic Web Agents,’ 2003 IEEE/WIC In-
ternational Conference on Web Intelligence (WI 2003), Oc-
tober 2003, Halifax, Canada.

[11] Egnor, D. and Lord, R. ‘Structured information retrieval
using XML.’ In Proceedings of the ACM SIGIR 2000 Work-
shop on XML and Information Retrieval, Athens, Greece,
July 2000.

[12] Friedman-Hill, E. Jess, the Java expert system shell. Sandia
National Laboratories. 2000.

[13] Fuhr, N. and Grojohann, K. ‘XIRQL: An extension of XQL
for information retrieval.’ In Proceedings of the ACM SIGIR
2000 Workshop on XML and Information Retrieval, Athens,
Greece, July 2000.

[14] Golbeck, J., Parsia, B., and Hendler, J. ‘Trust networks on
the Semantic Web.’ To appear in the Proceedings of Coop-
erative Intelligent Agents 2003, August 27-29, Helsinki,
Finland.

[15] Kopena, J. and Regli, W., ‘DAMLJessKB: A tool for reason-
ing with the Semantic Web.’ IEEE Intelligent Systems 18(3),
May/June, 2003.

[16] Kwok, C., Etzioni, O. and Weld, D. ‘Scaling question an-
swering to the Web. ‘ In Proceedings of WWW10, Hong
Kong, 2001.

[17] Martin, P. and Eklund, P. ‘Embedding knowledge in Web
documents.’ In Proceedings of World Wide Web Conference
(WWW8), Toronto, Canada, 1999.

[18] Mayfield, J. ‘Ontologies and text retrieval.’ Knowledge En-
gineering Review 17(1):71-75. 2002.

[19] Mayfield, J., Finin, T., Narayanaswamy, R., Shah, C., Mac-
Cartney, W. and Goolsbey, K. ‘The Cycic Friends Network:
Getting Cyc agents to reason together.’ Proceedings of the
CIKM Workshop on Intelligent Information Agents. 1995.

[20] Mayfield, J., McNamee, P. and Piatko, C. ‘The JHU/APL
HAIRCUT system at TREC-8.’ The Eighth Text Retrieval
Conference (TREC-8), pages 445-452, November 1999.

[21] Reagle, J. (ed.), RDF in XHTML. W3C Task Force Docu-
ment, May 2003.

[22] Shah, U., Finin, T., Joshi, A., Cost, R. S. and Mayfield, J.
‘Information Retrieval on the Semantic Web.’ 10th Interna-
tional Conference on Information and Knowledge Manage-
ment, November 2002.

