
KQML Overview

An Overview of KQML:

A Knowledge Query and Manipulation Language

KQML Advisory Group

with major contributions from

Tim Finin

Don McKay

Rich Fritzson

March 2, 1992

Abstract

We describe a language and protocol intended to support interoperability among
intelligent agents in a distributed application. Examples of applications envisioned
include intelligent multi-agent design systems as well as intelligent planning, scheduling
and replanning agents supporting distributed transportation planning and scheduling
applications. The language, KQML for Knowledge Query and Manipulation Language,
is part of a larger DARPA-sponsored Knowledge Sharing e�ort focused on developing
techniques and tools to promote the sharing on knowledge in intelligent systems. e will
de�ne the concepts which underly KQML and attempt to specify its scope and provide
a model for how it will be used.

Please send comments to Tim Finin, Computer Science, University of Maryland, Bal-
timore MD 21228; �nin@cs.umbc.edu; 410-455-3522 or to Don Mckay, Paramax Systems
Corporation, PO Box 517, Paoli PA 19301; mckay@prc.unisys.com; 215-648-2256.

This work is partly supported by DARPA and Rome Laboratory under USAF contract
F30602-91-C-0040.

**** DRAFT **** 1 **** DRAFT ****



KQML Overview

Contents

1 Introduction 3

1.1 Background and Motivation : : : : : : : : : : : : : : : : : : : : : : : : : : : 3
1.2 Modules in a Knowledge-Based System : : : : : : : : : : : : : : : : : : : : : 3
1.3 The Interfaces : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4
1.4 A Framework for Knowledge Interchange : : : : : : : : : : : : : : : : : : : : 7

2 KQML 11

2.1 Design Issues and Assumption : : : : : : : : : : : : : : : : : : : : : : : : : : 11
2.2 KQML Layers : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13
2.3 KQML Content Layer : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14
2.4 KQML Message Layer : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15

2.4.1 Content Messages : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15
2.4.2 Declaration Messages : : : : : : : : : : : : : : : : : : : : : : : : : : 15

2.5 KQML Communication Layer : : : : : : : : : : : : : : : : : : : : : : : : : : 16
2.6 KQML Performatives : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17

2.6.1 Content Language : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17
2.6.2 Discourse Contexts : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18
2.6.3 De�nitions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 19
2.6.4 Question Answering : : : : : : : : : : : : : : : : : : : : : : : : : : : 20
2.6.5 Control Messages : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22
2.6.6 Replies : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22
2.6.7 To Do : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 23

3 SKTP 24
3.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 24
3.2 Facilitator Interface Library : : : : : : : : : : : : : : : : : : : : : : : : : : : 26

3.2.1 Declarations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 26
3.2.2 Exporting Messages : : : : : : : : : : : : : : : : : : : : : : : : : : : 27
3.2.3 Importing Messages : : : : : : : : : : : : : : : : : : : : : : : : : : : 27

3.3 Facilitators : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 28
3.3.1 Routing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 28
3.3.2 Ontology and Topic Matching : : : : : : : : : : : : : : : : : : : : : : 29
3.3.3 Database of Knowledge Based Services. : : : : : : : : : : : : : : : : 29

3.4 Implementation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 30
3.4.1 Prolog Facilitator Interface Library : : : : : : : : : : : : : : : : : : : 30
3.4.2 Declaration: Import Queries and Import Assertions : : : : : : : : : 31
3.4.3 Common Lisp Facilitator : : : : : : : : : : : : : : : : : : : : : : : : 33
3.4.4 Common Lisp TCP/IP : : : : : : : : : : : : : : : : : : : : : : : : : 33

4 Research and Development Plan 34

4.1 Short and Medium term Goals : : : : : : : : : : : : : : : : : : : : : : : : : 34
4.2 Long Term Research Issues : : : : : : : : : : : : : : : : : : : : : : : : : : : 34

5 Conclusions 35

6 Acknowledgements 36

**** DRAFT **** 2 **** DRAFT ****



KQML Overview

1 Introduction

This paper is an overview of the Knowledge Query and Manipulation Language (KQML)
ongoing e�ort under the auspicies of External Interfaces Working Group of the DARPA
Knowledge Sharing E�ort [8]. The report is intended to motivate the need for a standard
language for information exchange among a collection of interacting knowledge-based agents
and give an overview for KQML.

1.1 Background and Motivation

We envision future large knowledge-based systems systems consisting of many dynamically
interacting components. Organizationally, they will di�er depending on their layer, i.e., are
they close to the user, are they deeply buried internally, or are they the interface with the
real-world? Figure 1 shows these interfaces, and indicates the external interfaces needed.
All external interfaces should be `friendly', but user-friendliness is not directly part of this
standardization e�ort.

For the transmission of knowledge among these components a full set of internal inter-
faces among can be visualized. These are sketched in Figure 2.

1.2 Modules in a Knowledge-Based System

To de�ne the interfaces we will �rst give names to the typical component node types.

End User Applications (EUAs). Here knowledge is acquired, possibly from multiple
sources, fused, analyzed, and presented to an end user. Enough meta-knowledge must
be made available to recognize sources, cost, expected volumes, and presentation devices.
Knowledge of the source may lead to assessment of quality and completeness.

Knowledge Based Systems (KBs). Here knowledge and meta-knowledge is made avail-
able to the EUAs, in response to their requests. Knowledge-based systems may monitor
data resources such as databases (DBs) and active sensors (ASs) in order to acquire and
monitor knowledge. Responses to EUA's may be deferred until certain conditions in source
databases or active sensors are met. Knowledge engineers construct knowledge-based sys-
tems using a development interface or shell.

Knowledge Base Repositories (KBR). Associated with a knowledge-based system
will be a repository for the speci�c knowledge base content which we call a Knowledge
Base Repository. The knowledge base repository will assure persistency of the knowledge.
Often a full history will be kept, so that older versions of a will be accessible. Akin to
the coordination and responsibility role of a database administrator, a Knowledge Base
Administrator is charged with overseeing the design, integrity and content of a knowledge-
base for use in knowledge-based system applications.

Database Systems (DBs). Here we group conventional databases and other data �les.
The focus of the database system is collecting and storing information persistently. Such
database systems are typically maintained and updated autonomously to reect the accurate
operational status of an organization or other entity. A database administrator is in charge
of the database design, integrity and content for use by other applications.

**** DRAFT **** 3 **** DRAFT ****



KQML Overview

Database
Active
Sensors

  Knowledge
Based System

Knowledge
Base
Repository

(KB)

(DB) (KBR)
(AS)

(EUA)

End User
Application

Knowledge
Based System

Knowledge
Engineers

Real
World

Knowledge
Base
Administrator
(KBA)

Database
Administrator
(DBA)

End
User

Figure 1: Potential major modules of knowledge-based systems.

Active Sensors (AS). We must also consider direct input from real-world phenomena.
Under active sensors we group all data sources that are not persistent. This means that
subsequent requests are likely to provide new values, and older values will not be retrievable.
An extension, not speci�cally considered here, are actuators that directly e�ect change on
the real world.

1.3 The Interfaces

We can now discuss systematically the possible interfaces for these �ve system nodes, and
indicate our focus. Since we do not distinguish direction we have 1/2(n*(n+1)= 15 potential
interface types for 5 module types. In Figure 2 only one instance of each interface is shown.

EUA to EUA. If an application (EUA) accepts a server role for another EUA, it must
satisfy the requirements we place on a general knowledge-based system (KB) acting as a
server, as de�ned as (2) below.

EUA to KB. The transmission of knowledge or knowledge-based derivations from knowledge-
based systems acting as servers to applications is a major path and is a focus of this docu-
ment.

EUA to KBR. Direct access to the representation of knowledge (KBR), without the
mediation of a (KB) can provide history, structure, and other information about the cor-
responding KB. However, uninterpreted knowledge may be risky to use; the expected user,

**** DRAFT **** 4 **** DRAFT ****



KQML Overview

End User Application (EUA) EUA

Knowledge−Based
        System
         (KB)

Knowledge Base
    Repository
        (KBR)

KB

KBR

Database
DB

Active Sensors AS

KQML

Interlingua

KQML

KQML

KQML

Interlingua

Interlingua

Interlingua

InterlinguaKQML

Distributed
 Databases

Major Information Flow

Minor/Null Information Flow

Figure 2: Internal interfaces among major modules: Interfaces are labeled with KQML and Interlingua

to designate which interfaces are seen to primarily be focused on either. In many cases, whether one is

given precedence over the other is a matter of view. The �gure depicts the relationship from the point

of view of the KQML working group.

the knowledge-based administrator, of the interface is expected to be experienced in the
domain and the interface.

EUA to DB. Standards for DB access are well established, as SQL and RDA. They are
however fairly awkward and not Turing-complete. We will not discuss those here. A number
of commercial products and semi-products exist here. For instance, the Apple CL initiative
generalizes such access for multiple SQL-based DBs. The common current approach is to
interface via a standard language such as SQL. Knowledge-based access to databases has
the potential to add knowledge supporting intelligent access to data and information stored
in conventional databases.

EUA to AS. Di�erences in sensor technology have inhibited high-level standards here,
although a variety of low-level standards exist. We will not discuss these here. As sensor-
based systems start using more standard types of computing equipment we can expect to
achieve more commonality.

KB to KB. The language in which to e�ect the interchange of knowledge among knowledge-
based systems has two parts. One is the language in which to express the content of the
information being exchanged. This is the focus of the Interlingua group under the Knowl-
edge Sharing E�ort (KSE). This kind of communication may only be e�ective where the
ontologies match, are shared, can be circumscribed and can be translated. The other part
of the interchange language is the speci�c communication language used to exchange the
content expressions. The language in which to encapsulate, route and match senders with

**** DRAFT **** 5 **** DRAFT ****



KQML Overview

receivers of knowledge is the primary focus of the Knowledge Query and Manipulation Lan-
guage (KQML) group under the KSE. KQML is of primary concern when implementing
knowledge-based systems using knowledge repositories; the speci�c content language plays
an important role, but secondary to KQML here.

KB to KBR. Questions on how to store knowledge representations in an e�ective and
persistent way is part of our charter. While this topic is not a focus of the current docu-
ment, it is an important issue to address and to understand. Comment: Gio Wiederhold
notes: Even though this interface falls within the range of responsibility of our subgroup,
we currently view this interface as not very amenable to standards speci�cations because of
e�ciency demands. Such e�ciencies are gained today by very close coupling.

KB to DB. To make knowledge-based systems e�ective it is desirable that all voluminous
factual information be maintained outside of the KB, although this may engender high costs
in terms of performance. Research into suitable techniques, as caching, close coupling, etc.,
is in progress in many research sites. It appears that existing DB standards are insu�cient
to serve knowledge-based systems well. Object-oriented approaches are of interest. We are
not now focusing on this issue but the topic is within the scope of the KQML group.

KB to AS. A knowledge-based system can have an important role in abstracting and
monitoring sensor (AS) information. Certain information, when acquired, will force changes
in knowledge, so that some learning mechanism much be invoked. A special case here is an
active database system, which will also signal changes that may require knowledge update.
This �eld is not well understood now, and probably not ready for standardization.

KBR to KBR. Interchange of knowledge content is hard to distinguish from a knowledge-
based system to knowledge-based system interface, although it seems feasible if the internal
representations match. The Interlingua is of primary importance here and KQML takes on
a secondary role. The use of an Interlingua may motivate the internal consistency required
for shared ontologies. The development of experimental shared ontologies is another part
of the KSE.

KBR to DB. Active research and development is ongoing to use DB facilities for per-
sistent storage of knowledge. Although current DBs are too inexible, there seem to be
no principles that would inhibit use of DBs. The focus will be on e�ciency. Again |
object-oriented structures hold out some promise in this arena.

KBR to AS. This interface does not make sense.

DB to DB. Distributed databases use replicated data to enhance availability. Consis-
tency requires use of concurrency protocols. This is a relatively mature area, and outside
of the purview of the KQML work.

DB to AS. Databases can be used to make sensor data persistent, but the update facilities
provided by SQL are implementation and performance bottlenecks here. The DADAISM
database design is con�gured to accommodate sensor data.

**** DRAFT **** 6 **** DRAFT ****



KQML Overview

AS to AS. This is not a meaningful interface. Sensors are only senders of information,
not receivers. An extension of the AS module to encompass actuators could enable this
interface, but no intelligent processing would occur.

This enumeration of interfaces helps us in de�ning precisely what interfaces we are address-
ing now. The highest interest is in KB  KB and EUA  KB, with some need for EUA
 KBR, in order to have access to some internals of the knowledge representation.

1.4 A Framework for Knowledge Interchange

We identify three major dimensions which can be distinguished for communicating intel-
ligent agents: Connectivity, Architecture and Communication. We do not claim this is an
exhaustive list, but rather serves to distinguish a number of current and planned systems.

Connectivity. The connectivity dimension focuses on the connectedness among commu-
nicating components distinguishing the speci�c interconnections and dependencies among
components. For example, in many systems, the output of one component is the input
to the next component; a full system is supported via a series of point-to-point links. In
some systems, the output of one component is the input to several other components; a
full system is made up of a collection of multicast links. In some other systems, e.g., black-
board systems, the output of one component is the input to an unknown number of other
components; a full system is supported by broadcasting.

Architecture. The architecture dimension focuses on the degree to which agents may
be added or removed from a system. In a static architecture, all system components are
known at design time, and, the speci�c inputs as well as outputs are de�ned. In a dynamic
architecture, not all system components are known at design time, and, the speci�c source
of inputs as well as the destination of outputs are not �xed.

The architecture dimension captures the distinction between a system design in which all
components must be present for a system to operate versus a system design in which multiple
agents may be participating over time as well as entering and leaving active participation.
In the former case, a system is a completely designed and assembled from known and well-
understood interacting components. In the latter case, a dynamic architecture supports a
highly exible system in which intelligent agents may be added or removed at any time,
and, there is su�cient overlap to allow the system to function with fewer or more of the
components present.

Communication. The communication dimension focuses on the synchronicity of the
communication between intelligent agents. Communication can be synchronous in which
case a complete output is made available to another agent before the other agent can fully
process it as a valid or complete input. Asynchronous communication allows for incremental
processing via partial results and inputs.

Examples. We consider how three standard system architectures vary along these di-
mensions. First, consider a pipeline implementation where the complete output of one
knowledge-based system is the entire input to the next. Further, there are a number of
systems in a pipe to a�ect some system implementation. The �nal output may result ei-
ther in a new input for the �rst element of the pipe, or, more likely, the �nal output will

**** DRAFT **** 7 **** DRAFT ****



KQML Overview

be analyzed and changes made to the input of (or selections made by) the �rst element
of the pipe. Examples of this style of system include the PACT-0 demonstration of the
collaborative multi-system design of an electromechanical device, and the 1992 Integrated
Feasibility Demonstration of the DRPI where a planning system developed a detailed mili-
tary forces employment and deployment plan and a simulator analyzed the plan with respect
to transportation feasibility. The pipeline is characterized by

� Connectivity: a simple point-to-point connectivity, one knowledge-based system to
the next

� Architecture: a static architecure known at system design time

� Communication: synchronous

The second system architecture to consider is a loosely coupled system in which a small
number of components, approximately 10 or under, are to cooperate loosely in solving an
overall system problem. An example here from the DRPI military transportation applica-
tion domain is a planned architecture for a demonstration system to be put together over the
next 12 to 18 months. The system is depicted in Figure 3 and shows that some of the out-
put of one component is input to multiple other components. We call this a loose coupling
because while the interaction is more collaborative than the pipeline, each knowledge-based
system component is still acting independently. That is, the level of integration consists of
nearly complete output as available from a planning system, say, which is a complete input
to a force module generator. Thus, very little of the distributed environment in which the
knowledge-based systems participate is taken into account in the design or implementation
of the knowledge-based system. The loosely coupled system is characterized by

� Connectivity: point-to-point but with some use of multicasting

� Architecture: a static architecure known at system design time

� Communication: synchronous and asynchronus

The �nal architecture we will consider is a tightly coupled system in which a larger
number of components, approximately 100 or so, are to cooperate in a highly integrated
system. Again, we take the application example from the DRPI because we are familiar
with it. The ultimate military transportation system would use more components than in
Figure 3, but primarily di�ers in how the systems interact. A planning system can make
use of some of the incremental results from a scheduler but there may be several intervening
knowledge-based systems in either the pipeline or loosely coupled systems. If the output
of the scheduler's reasoning system which detected a scheduling conict were immediately
available to a planning system, the planning system may be able to respond with a di�erent
plan alternative immediately. The e�ect is to save potentially a considerable amount of
work wasted on a plan alternative which is causing identi�able problems in other parts of
the overall system. In order to accomplish this, each knowledge-based system component's
reasoning system must be able to incrementally update other knowledge-based systems and
be updatable itself in a dynamic manner. Further, for each knowledge-based system to
be developed by application programmers in a reasonable amount of time, the reasoning
systems should be augmented in as transparent a manner as possible. The tightly coupled
system is characterized by

� Connectivity: point-to-point, multicast and broadcast communication

**** DRAFT **** 8 **** DRAFT ****



KQML Overview

Intermediate
Range IFD
Architecture

Intelligence
Data

Support
Planning Rules

Transport
Resource Data

Force Module
Library

In-Transit
Visibility Data

Mission and
Scenario

(High Level
Employment and

Deployment)

Force Planner

Skeletal
Force Plan

and
Justifications

Force Module
Selection,

Editing and
Refinement

Operational
Forces

TPFDD

Support Unit
and

Sustainment
Generation

Annotated
Force List

Constraint-
Based

Scheduler

Employment
(& Gross Deployment)

Simulator
Simulation

Analysis
Closure
AnalysisTransportation

Asset
Allowance

VALIDATED
TPFDD

Transportation
Feasibility Analysis

(Simulation)

Full
(Annotated)

TPFDD

Intelligent KB/DB

Future
Components

Outputs
IFD-1

ComponentsIFD Data

Figure 3: This example of a loosely coupled architecture is drawn from the DRPI military transportation

application domain. It is a planned architecture for a demonstration system where some of the output

of one component is input to multiple other components. We call this a loose coupling because while

the interaction is more collaborative than the pipeline, each knowledge-based system component is still

acting independently.

**** DRAFT **** 9 **** DRAFT ****



KQML Overview

� Architecture: a dynamic architecure not fully known at system design time

� Communication: synchronous and asynchronus, but mostly asychronous

**** DRAFT **** 10 **** DRAFT ****



KQML Overview

2 KQML

The Knowledge Query and Manipulation Language (KQML) is a language and an associated
protocol to support the high level communication among intelligent agents. It can be used
as a language for an application program to interact with an intelligent system or for two
or more intelligent systems to interact cooperatively in problem solving. We argue that
KQML should be de�ned as more than a language with a syntax and semantics, but must
also include a protocol which governs the use of the language (e.g., a pragmatic component).

2.1 Design Issues and Assumption

Architectural assumptions. Agents will typically be separate processes which may be
running in the same address space or on separate machines. The machines will be accessible
via the internet. We need a protocol that is simple and e�cient to use to connect a few pre-
de�ned agents on a single machine or on several machines on the same local area network.
We also need the protocol to be an appropriate one to scale up to a scenario in which we
have a large number (i.e. hundreds or even thousands) of communicating agents scattered
across the global internet and who are dynamically coming on and o� line.

Communication Modes. KQML will support several modes of communication among
agents along several independent dimensions. Along one dimension, it supports interac-
tions which di�er in the number of agents involved { from a single agent to a single agent
(i.e., point-to-point), as well as messages from one agent to a set of agents (i.e., multi-
casting). Along another dimension, it permits one to specify the recipient agents either
explicitly (e.g., by internet address and port number), by symbolic address (e.g., to \to the
theTRANSCOMMapServer" or even by a declarative description form of broadcast (e.g., \to
any KIF-speaking agents interested in airport locations"). A �nal dimension involves syn-
chonicity { it must support synchronous (blocking) as well as (non-blocking) asynchronous
communication.

Syntactic assumptions. Messages in the content, message and communication layers
will be represented as Lisp s-expressions. They will be transmitted between processes in
the form of ascii streams. The forms at the content layer will depend on the content-language
being used and may be represented as strings, if necessary. The forms at the message and
communication layer will be ascii representations of lists with symbopl as the �rst element
and whose remaining elements use the Common Lisp keyword argument convention.

Security. Security is an issue in any distributed environment. We will need to develop
conventions and procedures for authentication which will allow an agent to verify that
another agent is who it purports to be. Comment: We should take advantage of the kerberos
system for secure authetication being developed as a part of Project Athena. It appears to
have all the right hooks and will be widely available on IBM, DEC, SUN and other Unix
platforms.

Transaction. Interactions among knowledge-based systems have a di�erent kind of trans-
action processing which will require something other than the now standard two-phase
commit. That is because interacting agents may use information and knowledge gained
from one information source for longer periods of time than read/write locks support. In

**** DRAFT **** 11 **** DRAFT ****



KQML Overview

Ethernet

Internet Protocol

Transport Control

SMTP HELO

TCP HELO

IP TCP HELO

E IP TCP HELO Ethernet

Internet Protocol

Transport Control

SMTP

Stream

Fac−to−Fac
Protocol

App−to−Fac
Protocol

(e.g. LOOM, Prolog)

Application Language

Stream

Fac−to−Fac
Protocol

App−to−Fac
Protocol

(e.g. LOOM, Prolog)

Application Language
(location x:airport long lat)

Deliver
 From: 
 Address:
 Msg:
 Protocol: 

MSG
 Type: {query}
 Language: Prolog
 Content: 
 To: "application"
 Topic: ....

(location x:airport long lat)

MSG
 Type: {query}
 Language: Prolog
 Content: 
 From: "appliation"
 To: .....

(location x:airport long lat)

Figure 4: Modern internet communication is governed by a "protocol stack" with distinct, well-de�ned

layers. Communication between intelligent agents should also be governed by a protocol stack with

distinct, well-de�ned layers.

one way, knowledge-based systems are similar to other advanced systems such as software
engineering or CAD/CAM design environments (see Computing Surveys, 1991). Further,
interactions among knowledge-based systems may better be cast in terms of belief spaces
and/or logics of belief than in terms of low level transactions. The development of a good
model to support transactions among intelligent agents is a research topic for the KQML
group to consider sometime in the future. Developing a workable solution which is incremen-
tally implementable may prove key to the ultimate success of the KQML e�ort. Comment:
Transactions for interacting knowledge-based systems are di�erent than what is standardly
thought of for conventional databases. But what is the relationship to versioned databases
and more advanced applications like software engineering and CAD/CAM databases.

Protocol Approach. The Knowledge Query and Manipulation Language (KQML) is a
language and a protocol to support the high level communication among intelligent agents.
It can be used as a language for an application program to interact with an intelligent system
or for two or more intelligent systems to interact cooperatively in problem solving. We
argue that KQML should be de�ned as more than a language with a syntax and semantics,
but must also include a protocol which governs the use of the language (e.g., a pragmatic
component).

Using a protocol approach is standard in modern communication and distributed pro-
cessing. The �rst diagram in Figure 4 shows a simpli�ed version of the standard protocol
stack for network communication over an internet. At the top of the stack is the application-
level protocol, in this case SMTP (Simple Mail Transfer Protocol) and at the bottom is the
low level protocol in which data is actually exchanged. From a mailer's point of view, it is
communicating with another mailer using the SMTP protocol. It need not know any of the
details of the protocols which support its communication.

We are developing a similar approach to support communication among intelligent
agents { de�ning a protocol stack for transferring knowledge across the internet. The
second diagram in Figure 4 shows a simple protocol stack we are using for the model of
KQML. We assume that the KQML protocol stack is an application protocol layer of the
standard OSI model and thus assume reliable communication.

SKTP, a Simple Knowledge Transfer Protocol, supports KQML interactions and is de-
�ned as a protocol stack with at least three layers: content, message and communication.

**** DRAFT **** 12 **** DRAFT ****



KQML Overview

Additional layers will appear below these three to supply reliable communication streams
between the processes. The content layer contains an expression in some language which
encodes the knowledge to be conveyed. The message layer adds additional attributes which
describe attributes of the content layer such as the language it is expressed in, the ontology
it assumes and the kind of speech act it represents (e.g., an assertion or a query). The �nal
communication layer adds still more attributes which describe the lower level communica-
tion parameters, such as the identity of the sender and recipient and whether or not the
communication is meant to by synchronous or asynchronous.

2.2 KQML Layers

KQML expressions can be thought of as consisting of a content expression encapsulated in a
message wrapper which is in turn encapsulated in a communication wrapper. Thus the lan-
guage is thought of as being divided into three alyers: content, message and communication.
The content layer contains an expression in some language which encodes the knowledge to
be conveyed. The message layer adds additional attributes which describe attributes of the
content layer such as the language it is expressed in, the ontology it assumes and the kind
of speech act it represents (e.g., an assertion or a query). The �nal communication layer
adds still more attributes which describe the lower level communication parameters, such
as the identity of the sender and recipient and whether the communication is meant to by
synchronous or asynchronous.

Content Layer. KQML makes no commitments about the content layer. One can use
it with any number of content languages, such as KRSL [3], KIF [8] or LOOM [4]. All the
two intelligent agents need to do is to agree on a language to use for communication. This
does not preclude the use of or diminish the need for an interlingua such as KIF to support
knowledge sharing, but it does permit two agents who are using the same internal language
to use it as the communication language in the protocol.

Message Layer. The message layer is used to encode a message that one application
would like to have transmitted to another application. These messages are of two general
types | content messages and declaration messages. A \content" message contains a de-
scription of a piece of knowledge being o�ered or sought. \Declaration" messages are used
to announce the presence of an agent, register its name, provide descriptions of the general
types of information that the agent will send/receive, and the actual content messages sent
between agents. The message layer can also be thought of as a \speech act layer". One of
the most important attributes to specify about the content is what kind of \speech act" it
represents { an assertion, a query, a response, an error message, etc.

Content Messages. A content message is used to describe a query, assertion or other
speech act involving some sentence in the content language. It is represented as a list whose
�rst element is the atom MSG and whose remaining elements are alternating attribute-value
pairs using the Common Lisp keyword argument format. The following example message
is a query expressed in KIF for which exactly one answer is sought.

(MSG

:TYPE query

:QUALIFIERS (:number-answers 1)

:CONTENT-LANGUAGE KIF

:CONTENT-ONTOLOGY (blocksWorld)

**** DRAFT **** 13 **** DRAFT ****



KQML Overview

:CONTENT-TOPIC (physical-properties)

:CONTENT (color snow ?C))

Declaration Messages. A declaration message is used to provide \meta" information
about the content messages that the agent will generate and would like to receive. These
declarations can be used to register a service (e.g., \I'll answer questions about the physical
properties of blocks") and to register a need for a service (e.g., \I want to be keep current
on the location of every block"). Syntactically, a declaration is a list whose �rst element
is the atom DCL and whose remaining elements are alternating attribute-value pairs using
the Common Lisp keyword argument format. The following example announces that agent
ap001 is willing to export assertions expressed in KIF about the color properties of things
in a blocks world ontology.

(DCL

:TYPE assert

:DIRECTION export

:MSG

(MSG

:TYPE assert

:CONTENT-LANGUAGE KIF

:CONTENT-ONTOLOGY (blocksWorld)

:CONTENT-TOPIC (physical-properties)

:CONTENT (color ?X ?Y)))

Communication Layer. At the communication layer, agents exchange packages. A pack-
age is a wrapper around a message which speci�es some communication attributes, such as
a speci�cation of the sender and recipients. A package is represented as a list whose �rst
element is the atom PACKAGE and whose remaining elements are alternating attribute-
value pairs using the Common Lisp keyword argument format. In the following example,
application ap001 is sending a synchronous query to application ap002:

(PACKAGE :FROM ap001

:TO ap002

:ID DVL-f001-111791.10122291

:COMM sync

:CONTENT

(MSG

:TYPE query

:QUALIFIERS (:NUMBER-ANSWERS 1)

:CONTENT-LANGUAGE KIF

:CONTENT (color snow _C)))

2.3 KQML Content Layer

KQML makes no commitments about the content layer. One should be able to use it with
any number of content languages, such as KIF [?] or LOOM. All the two intelligent agents
need to do is to agree on a language to use for communication. This does not preclude the use
of or diminish the need for an interlingua such as KIF to support knowledge sharing. It does
allow two agents who are using the same internal language to use it as the communication
language in the protocol.

**** DRAFT **** 14 **** DRAFT ****



KQML Overview

2.4 KQML Message Layer

The message layer is used to encode a message that one application would like to have
transmitted to another application. These messages are of two general types | content
messages and declaration messages. A \content" message contains a description of a piece
of knowledge being o�ered or sought. \Declaration" messages are used to announce the
presence of an agent, register its name and provide descriptions of the general types of
information that the agent will send and would like to receive and the actual content baring
messages sent between agents.

The message layer can also be thought of as a \speech act layer". One of the most
important attributes to specify about the content is what kind of "speech act" it represents
{ an assertion, a query, a response, an error message, etc.

2.4.1 Content Messages

A content message is used to describe a query, assertion or other speech act involving some
sentence in the content language. It is represented as a list whose �rst element is the atom
MSG and whose remaining elements are alternating attribute-value pairs using the Common
Lisp keyword argument format. Possible keyword arguments are:

:TYPE - <Speech Act>
The speech act type of the message (e.g., query, assert, retract, etc.).

:QUALIFIERS - <keyword list> A keyword tagged list of quali�ers appropriate to
the message type.

:CONTENT-LANGUAGE -<A language name>
A term naming the language in which the CONTENT �eld is expressed.

:CONTENT-ONTOLOGY - <An ontology name>
A term or list of terms chosen from a standard list naming the ontologies assumed.

:CONTENT-TOPIC - <topic name>
A term or list of terms describing the topic of the knowledge within the given
ontology.

:CONTENT - <A sentence in the content language>
The actual knowledge to by conveyed expressed as a sentence in the content-
language.

The following example message is a query expressed in KIF for which exactly one answer
is sought.

(MSG

:TYPE query

:QUALIFIERS (:number-answers 1)

:CONTENT-LANGUAGE kif

:CONTENT-ONTOLOGY (blocksWorld)

:CONTENT-TOPIC (physical-properties)

:CONTENT (color snow ?C))

2.4.2 Declaration Messages

A declaration message is used to provide \meta" information about the content messages
that the agent will generate and would like to receive. These declarations can be used to
register a service (e.g., \I'll answer questions about the physical properties of blocks") and

**** DRAFT **** 15 **** DRAFT ****



KQML Overview

to register a need for a service (e.g., \I want to be keep current on the location of every
block").

Syntactically, a declaration is a list whose �rst element is the atom DCL and whose
remaining elements are alternating attribute-value pairs using the Common Lisp keyword
argument format. Possible keyword arguments are:

:TYPE - <Speech act>
The speech act type of the embedded (MSG ...) expression (e.g., assert, query).

:DIRECTION - <OneOf(IMPORT, EXPORT)>
Speci�es whether the information is to be imported or exported.

:COMM - Speci�es whether the service is being o�ered or sought in a synchronous or
asynchronous communication mode.

:MSG - a (MSG ...) expression which speci�es the content level information that is to
be imported or exported.

The following example announces that agent a001 is willing to export assertions ex-
pressed in KIF about the color properties of things in a blocks world ontology.

(DCL

:TYPE assert

:DIRECTION export

:MSG (MSG

:TYPE assert

:CONTENT-LANGUAGE KIF

:CONTENT-ONTOLOGY (blocksWorld)

:CONTENT-TOPIC (physical-properties)

:CONTENT (color ?X ?Y)))

2.5 KQML Communication Layer

At the communication layer, agents exchange packages. A package is a wrapper around
a message which speci�es some communication attributes, such as a speci�cation of the
sender and recipients. A package is represented as a list whose �st element is the atom
PACKAGE and whose remaining elements are alternating attribute-value pairs using the
Common Lisp keyword argument format. Possible keyword arguments are:

:TYPE - <Message type>.
This is the type of the embedded message, i.e. either a content message or a
declaration message. Comment: If we have separate facilitator agents, then we
know that packages of type declaration DCL or MSG.

:FROM - <Agent ID>
The unique identi�er of the sending agent.

:TO - <Agent ID>
The unique identi�er or identi�ers of the recipient agent(s).

:ID - <Package ID>
A unique identi�er for this message. This should be generated at this layer (e.g.
by the facilitator agent if one is being used) and is used to refer to the message
later.

:COMM - <Oneof(sync,async)>
Speci�es whether or not the communication is to be carried out in a synchronous
or asynchronous mode.

**** DRAFT **** 16 **** DRAFT ****



KQML Overview

:IN-RESPONSE-TO - <Package ID>
A list of one or more package IDs which refer to earlier messages that this package
is in response to.

:CONTENT - an (DCL ...) or (MSG ...) expression.

In the following example, application ap001 is sending a synchronous query to applica-
tion ap002:

(PACKAGE

:FROM ap001

:TO ap002

:ID DVL-f001-111791.10122291

:COMM sync

:CONTENT

(MSG

:TYPE query

:QUALIFIERS (:NUMBER-ANSWERS 1)

:CONTENT-LANGUAGE KIF

:CONTENT (color snow _C)))

2.6 KQML Performatives

Message types play an important part in this protocol. They appear at the message level in
both content and declaration messages and are akin to a \speech act" type in the theory of
natural language communication. Message types determine what one can \do" or \perform"
with the sentences in the content language.

2.6.1 Content Language

The de�nition of the various KQML performatives described below is based on the following
model of a knowledge base: A knowledge base (KB) is a set of sentences in a language L. L
can be the object language of the knowledge base, or a set of sentences of another language
for which a computable mapping into L exists. Candidates for languages other than the
object language of a KB are, for example, the Interlingua, or, if the object language for a
KB are graphs, a linear notation describing these graphs.

Since KQML is not assumed to be a superset of the Interlingua, it has to identify
sentences of the KB by way of quoted sentences of a language that can be translated into
the object language of the KB. This language is called the content language (CL).
The languages for the contents of requests and replies can be declared with declare-content-languages:

(MSG

:TYPE { declare-content-languages

:REQUEST-CONTENT-LANGUAGE { <content-language>
Declares what the content language for requests will be. From then on
all content language sentences of requests received by the provider should
be assumed to be in that language. The language for requests can be
interlingua (the default), local to use the object language of the local
KB of the provider, or a string that speci�es some other content language
known by the provider. This request can only be handled successfully
if the provider knows how to translate sentences of the request CL into
sentences of the object language of its local KB.

**** DRAFT **** 17 **** DRAFT ****



KQML Overview

:REPLY-CONTENT-LANGUAGE { <content-language>
Request what the content language for replies should be. Default is the
content language used for requests. This request can only be handled
successfully if the provider knows how to translate sentences of the object
language of its local KB into sentences of the reply CL.

)

2.6.2 Discourse Contexts

Requests and replies should be relativized to a current discourse context. A discourse
context is a subset of the sentences that de�ne the local KB of the provider.

The following messages allow to establish a discourse context that contains a subset
of the sentences of the local KB of the provider. With set-discourse-context we can
explicitly set the current discourse context to a subset of the sentences that de�ne the local
KB:

(MSG

:TYPE { set-discourse-context

:REQUEST-CONTENT-LANGUAGE { <content-language>
Content language to be used for this particular message. Default is the lan-
guage set by a declare-content-languages message, or interlingua.

:CONTENT { <sentence-pattern>
Request the current discourse context to be set to the set of all sentences
which match the supplied sentence pattern in the local KB of the provider.
We will assume that every knowledge representation language will have
a notion of a pattern or an open sentence and a matching or uni�cation
operation associated with it. If the value of pattern is empty the current
discourse context will be set to the empty set, if its value is all the whole
KB of the provider will be used (the default).

)

add-to-discourse-context allows to add additional sentences to the current discourse
context:

(MSG

:TYPE { add-to-discourse-context

:REQUEST-CONTENT-LANGUAGE { <content-language> (see above)

:CONTENT { <sentence-pattern>
Request that all sentences in the local KB of the provider which match
the supplied sentence pattern are added to the current discourse context.

)

assert allows to add a sentence which is not necessarily a member of the local KB to the
current discourse context:

(MSG

**** DRAFT **** 18 **** DRAFT ****



KQML Overview

:TYPE { assert

:REQUEST-CONTENT-LANGUAGE { <content-language> (see above)

:CONTENT { <sentence>
Request the supplied sentence to be added as an assertion to the current
discourse context.

)

With remove-from-discourse-context we can remove a set of sentences from the current
discourse context:

(MSG

:TYPE { remove-from-discourse-context

:REQUEST-CONTENT-LANGUAGE { <content-language> (see above)

:CONTENT { <sentence-pattern>
Request that all sentences in the current discourse context which match
the supplied sentence pattern are removed from the current discourse con-
text.

)

assign-truth-value allows to change truth values associated with sentences in the current
discourse context:

(MSG

:TYPE { assign-truth-value

:REQUEST-CONTENT-LANGUAGE { <content-language> (see above)

:TRUTH-VALUE { <phrase>
A CL phrase that describes a valid truth value which should get assigned
to the sentences identi�ed by the :CONTENT slot (what a valid truth value
is is de�ned by the local KB of the provider). Some KBs might not deal
with truth values explicitly, but rather implicitly by assuming a sentence
to be true if it is an element of the KB (or the current discourse context).
A truth value does not necessarily have to be one of true or false, it could
be a belief status, an assertion ag, or a numerical value representing some
kind of certainty.

:CONTENT { <sentence-pattern>
Request that all sentences in the current discourse context that match the
supplied pattern get assigned the value of the :TRUTH-VALUE slot.

)

2.6.3 De�nitions

At the moment we will treat de�nitions as special cases of assertions which assert sen-
tences that express de�nitions. However, this approach might be too simplistic and special
performatives for de�nition and un-de�nition might be necessary.

**** DRAFT **** 19 **** DRAFT ****



KQML Overview

2.6.4 Question Answering

Once we have established a discourse context we want to ask questions. One type of question
asks about the truth value of sentences. If the question is a closed sentence of the CL we
want to know whether it has a certain truth value. If the question is an open sentence we
are interested in a number of instances of the question that have a certain truth value. Some
questions might be easy to answer, others might be very di�cult or impossible to answer.
To tell the provider how much work it should invest to �nd an answer we introduce the
concept of a worklevel which is basically a speci�cation of how much resources should be
spent at the most to answer a question. Depending on the supplied worklevel the provider
might choose a particular inference strategy suited for that level.

Unless otherwise indicated for all the following messages it is assumed that derived
answers will be automatically added to the current discourse context.
query-sentence-status handles queries about the truth value (or belief status) of sen-
tences:

(MSG

:TYPE { query-sentence-status

:REQUEST-CONTENT-LANGUAGE { <content-language> (see above)

:REPLY-CONTENT-LANGUAGE { <content-language> (see above)

:WORKLEVEL { <worklevel type>
Answers to the query in the :CONTENT slot will be found by perform-
ing some kind of inference. The total amount of inference (or work)
to be invested to �nd all requested answers is controlled by the value
of :WORKLEVEL. Its value can be minimal to request quick but probably
incomplete answers, maximal to request the provider to derive answers
without any (or maximal) resource bounds, or a number that speci�es a
maximal number of work units to be invested by the provider. What a
work unit is is de�ned by the local KB of the provider.

:HOW-MANY { <natural number>
The provider should report new answers at the earliest possible point after
it has derived at least :HOW-MANY new answers since the last report (default
is 1). If the number of allotted resources got exhausted all answers derived
so far will be reported. This kind of control is important if there is more
than one answer, e.g., if the query is an open sentence or a pattern.

:REPORT-MODE { <Oneof(suspend,continuous)>
Controls what the provider should do after it has reported a number of
answers as speci�ed by :HOW-MANY. If the value is suspend the provider
will suspend its answering activity until it receives a continuation message.
If the value is continuous the provider will continuously try to �nd new
answers until either no more answers can be found, the allotted resources
are exhausted, or it receives a control message that tells it to stop. New
answers will be reported whenever at least :HOW-MANY new answers are
available.

:TRUTH-VALUES { <(phrase, phrase)>
A pair of CL phrases that describe valid truth values. All derived answers
are required to have a truth value that is within the range of truth values

**** DRAFT **** 20 **** DRAFT ****



KQML Overview

de�ned by the two supplied values. If the local KB of the provider does
not have a notion of an ordering of truth values then the range is just
the set of the two values. If the two values are identical this set will be
a singleton set. The default is a special value any which indicates that
answers of any truth value are acceptable.

:CONTENT { <sentence-pattern>
This slot contains the actual query whose truth value should be found. If
the query is an open sentence or a pattern then all instances of it that
have the speci�ed truth value are potential answers.

)

Another type of question is topical in nature, i.e., it requests information related to a certain
topic, for example, as in the question \tell me (everything you know) about dogs". Here
we are not interested in the truth value of particular sentences, rather we want sentences
that are related to the topic expressed by the question. Depending on the di�erent levels of
expertise of the requester and the provider there might be answers that the requester will
not be able to understand.

(MSG

:TYPE { query-about-topic

:REQUEST-CONTENT-LANGUAGE { <content-language> (see above)

:REPLY-CONTENT-LANGUAGE { <content-language> (see above)

:WORKLEVEL { <worklevel type> (see above)

:HOW-MANY { <natural number> (see above)

:REPORT-MODE { <Oneof(suspend,continuous)> (see above)

:TRUTH-VALUES { <(phrase, phrase)> (see above)

:CONTENT { <phrase or pattern>
ACL phrase denoting some entity about which relevant information should
be found. What is considered as relevant is de�ned by the local KB of
the provider. If the supplied value is a pattern then it is to be viewed as
something like a predicate that describes a class of entities about which
answers should be found.

)

The next message handles queries of the kind \what can you infer from X", that is some
kind of forward inference. There are two variations to this kind of query: One where the
answerer actually assumes the initial assertions as its own, and another one in which these
assertions are only hypothetically assumed to answer the question:

(MSG

:TYPE { assert-and-infer

:REQUEST-CONTENT-LANGUAGE { <content-language> (see above)

:REPLY-CONTENT-LANGUAGE { <content-language> (see above)

:WORKLEVEL { <worklevel type> (see above)

**** DRAFT **** 21 **** DRAFT ****



KQML Overview

:HOW-MANY { <natural number> (see above)

:REPORT-MODE { <Oneof(suspend,continuous)> (see above)

:TRUTH-VALUES { <(phrase, phrase)> (see above)

:ASSERTION-MODE { <Oneof(actual,hypothetical)>
If the value of this slot is actual then the sentences will be added as
normal assertions to the current discourse context of the provider. If the
value is hypothetical the sentences will be hypothetically assumed in the
current discourse context (added to it) until all the answers are reported.
Then all these assumptions and the answers depending on them will be
removed again.

:CONTENT { <sentence list>
Answers should be found by starting inference from the sentences supplied
in this slot.

)

2.6.5 Control Messages

control messages allow some control of ongoing work performed by the provider.

(MSG

:TYPE { control

:CONTROL-TYPE { <Oneof(suspend,continue,stop)>
If the value of this slot is suspend then at the next possible point the
provider should suspend working on the request identi�ed by :REQUEST-ID
and allow for a continuation if requested. If the request has already been
completed this is a noop. If the value is continue then the provider should
�nish whatever it is doing right now and then continue to work on the re-
quest identi�ed by :REQUEST-ID. If that request has already been �nished
this is a noop. It cannot be assumed that a previously suspended task
will �nd the exact same state that existed when the interrupt occurred. If
the value is stop then at the next possible point the provider should ter-
minate to work on the request identi�ed by :REQUEST-ID. If that request
has already been �nished this is a noop.

:REQUEST-ID { <Package ID>
Holds the ID of the package that contained the request to which this
message refers. Defaults to the ID of the most recently sent request.

)

2.6.6 Replies

Similar to requests we need a set of performatives for replies. Every reply has to refer to
a particular request by the identi�er of the package that contained the request. There are
basically two kinds of answers:

Success/Failure replies tell the requester whether a certain request could get handled
successfully or not. Some requests only expect that kind of reply, e.g., the messages
that deal with setting up a discourse context.

**** DRAFT **** 22 **** DRAFT ****



KQML Overview

Content replies contain a set of sentences that are answers to queries. An empty set
indicates that no answers could be found. Yes/no type queries will get a singleton set
as a reply if the answer was yes, an empty set otherwise. The possibility to supply a
range of acceptable truth values to a query makes it necessary to indicate the truth
value of a particular answer. Instead of associating sets of answers with sets of truth
values we will assume that the truth value of an answer is expressed as part of the
content language sentence.

Success/Failure replies can be sent with the following message:

(MSG

:TYPE { success-reply

:VALUE { <Oneof(success,failure)>

:REQUEST-ID { <Package ID>
Holds the ID of the package that contained the request to which this
message refers.

:EXPLANATION { <string>
If the value of :VALUE was failure this slot can be used to hold an english
sentence that explains to any humans involved why a certain request could
not be handled.

)

content-reply messages transfer actual answers to queries back to the requester.

(MSG

:TYPE { content-reply

:REQUEST-ID { <Package ID> (see above)

:REPLY-NUMBER { <natural number>
The di�erent report modes for queries allow for multiple replies to a par-
ticular query. The value of this slot indicates the number of this particular
reply. Default is 1.

:CONTENT { <sentence set>
Contains a set of sentences that constitute replies to the query identi�ed
by :REQUEST-ID.

)

2.6.7 To Do

So far the various performatives do not account for ontologies. Updated versions will have
to.

**** DRAFT **** 23 **** DRAFT ****



KQML Overview

F
A
C
I
L
I
T
A
T
O
R

Internet

F

I

LApplication

Application Language F
A
C
I
L
I
T
A
T
O
R

F

I

L Application

Application Language

Figure 5: SKTP architecture for implementing KQML.

3 SKTP

3.1 Introduction

SKTP is a designed implementation of the KQML protocol stack. Like the KQML de-
sign, it is inspired by layered protocol implementations. One section of the code handles the
encapsulation and labeling of content expressions (implementing the message layer). An-
other section determines the destination of the messages and arranges (via some standard
transport mechanism) their delivery and the return of any immediate responses.

An important feature of SKTP is its tight integration with the implementation language
of an application. This provides a nearly seamless interface between the application and
the communication protocols, signi�cantly reducing the di�culty of programming commu-
nicating agents and allowing a much tighter collaboration between processes than has been
easily achievable before.

A preliminary implementation of SKTP has been written in Common Lisp and currently
links applications written in a dialect of Prolog. We are designing interfaces to additional
languages and systems.

There are four protocol layers shown in �gure 4. Each has a matching component
in the implementation design shown in �gure 5. The overall communication is between
applications written in an application language. Applications exchange expressions which
have some meaning. This is the content layer. Expressions are selected for transmission to
remote sites and wrapped in messages. This is the message layer and is implemented in
�gure 5 by the module labeled Facilitator Interface Library (FIL).

Messages might not have unambiguously speci�ed destinations; they may have multiple
destinations; they may require special handling. The layer which handles this \routing"
of messages is the communication layer and is implemented by a separate agent called a
facilitator. The underlying stream which carries the structured data between facilitators
is, of course, the TCP/IP protocols provided by the Internet.

Each application is associated with a facilitator. Figure 6 shows an imagined collection of
application communicating via SKTP over an Internet. While the diagram looks complex,
the important gain made by the communication layer (implemented by the facilitators) is
that all network communication is made using the same protocol, instead of a di�erent
protocol for each pairing of systems.

**** DRAFT **** 24 **** DRAFT ****



KQML Overview

LoomProlog

Spice
Clips

Classic

???

Mediator Mediator

Figure 6: A network of processes communicating using the SKTP architecture.

**** DRAFT **** 25 **** DRAFT ****



KQML Overview

3.2 Facilitator Interface Library

The Facilitator Interface Library (FIL) is the code which connects the varying worlds of
di�erent AI languages and systems to the communication world of KQML. The FIL performs
three functions

� It interprets a set of declarations which describe the internal knowledge base trans-
actions (e.g. de�nitions, queries, assertions) should be imported from or exported to
remote systems.

� It contains code which monitors those internal transactions and arranges for the ap-
propriate expressions to be transmitted as messages to a facilitator which will route
them appropriately.

� It contains code which provides access points for a facilitator to deliver messages to
the application (e.g. queries to be answered, assertions to be stored, etc.)

Because the FIL is tightly integrated with the application system, it is partly imple-
mented in the underlying implementation language. For example, in our current prototype
we have applications written in a dialect of Prolog which is implemented in Common Lisp.
The FIL for these applications is written partly in Prolog and partly in Common Lisp.

3.2.1 Declarations

When using SKTP, an application program does not need to be modi�ed to make \calls"
on communication primitives. Instead, it is written as though the information that it needs
was available locally (or, if it is primarily a supplier of information, as though there was
no need to communicate with anyone). The program is augmented by a set of declarations
that describe which internal transactions are to be exported to remote sites and what types
of transactions it is willing to process from remote sites. Declarations describe the following
attributes of expression:

� Whether the expression is being imported or exported

� The type of the expression (e.g. assertion, query, de�nition)

� Some characterization of which expressions of this type are to be selected. E.g. in
a relational system, the description might contain the name of the relation and the
number of arguments, or in an object-oriented system it might be the class of the
object.

Declarations which describe exports have to result in code which monitors the internal
ow of expressions, selects appropriate ones for encapsulation, and is prepared to insert any
replies into the the applications internal ow as though they originated locally.

Programming Models The basic idea of this approach is to completely hide the commu-
nication primitives from the application programmer. This is why the FIL will frequently
need to be written, in part, in the underlying implementation language: it needs access to
the internal routines of the language itself to help determine when expressions need to be
transmitted and which expressions should be selected.

**** DRAFT **** 26 **** DRAFT ****



KQML Overview

While this is a di�cult job for the implementor of the FIL, it has a couple of signi�cant
advantages. The �rst is that it makes application programming much easier. The ap-
plication programmer doesn't have to think about communication issues while writing the
application, just prepare a set of declarations to go with it. The declarations themselves
are written at a higher level of abstraction than communication code and so are easier to
write. The second advantage is that it relieves the implementor of the FIL from having to
design and implement a creative and clever way to integrate the communication primitives
with the non procedural languages used in AI systems.

Tighter Collaboration This approach also makes it possible for applications to collab-
orate at a much tighter level of coupling than the simple \pipe" model of communication
which is the only model currently used in DRPI or PACT. For example, in the current
SKTP, if an application's internal processes require a particular goal to be satis�ed re-
motely, the system will transmit that goal to a particular remote system and the answers
will be seamlessly integrated into the local system's inferencing cycle. The system answer-
ing the remote query may also generate additional remote queries (possibly back to the
originating system). All of this is transparent to the originating application which operates
as though all the necessary information was being provided locally. Because the library
intercepts internal transactions, two processes can actively collaborate, in parallel, on a
single goal, without explicitly programming that collaboration.

This greatly elevates the state-of-the-practice for collaboration among separately written
processes.

3.2.2 Exporting Messages

Declarations which state the the application is going to be exporting expressions require
that the FIL contain code which will monitor the generation of these expressions, and act
on appropriate ones.

When an application declares that it needs to export some of its queries to remote agents,
the FIL creates code which monitors the internal generation of queries, queries which are
normally generated for use by an internal inference engine, looking for ones which match the
declared description. Queries which match the declarations are encapsulated as messages
and passed to a facilitator. Depending on the application, the language, and the designer
of the FIL, the FIL might wait for answers, or it might not; it might merge the answers
from remote sites with local answers, or replace the local answers outright. These and other
design decisions are made by the designer of the FIL.

Similar considerations apply for declarations that the application is going to be exporting
assertions. The primary di�erence is where in the implementation the FIL has to look for
the expressions and what to do with any replies that are received.

3.2.3 Importing Messages

If an application is willing to answer queries for remote agents, or it is interested in receiving
assertions from remote agents, it declares this in the same way as it would declare a need to
export expressions. However, in this case the FIL has to establish a set of properly advertised
functions or entry point to which a facilitator can deliver the queries or assertions.

The actual implementation of this connection depends on the design of the facilitator
and the type of connection it has with its FILs. In various implementations the facilitator

**** DRAFT **** 27 **** DRAFT ****



KQML Overview

might be part of the same lisp image, or it might be a separate process connected by
shared memory or some type of interprocess communication channel. Naturally the kind of
\advertisement" needed to let the facilitator know how to deliver messages would depend
on the type of connection between the two modules.

3.3 Facilitators

Facilitators bridge the gap between KQML messages and the Internet world of host names
and TCP/IP streams. Using the metaphor of the Internet protocol stack, they are the
KQML equivalent of Internet routers.

They accept messages from FILs and rely on the information in the message's �elds
to determine the appropriate destinations for the message. In some cases an application
may identify a particular site as being the target of a message, either by host name (e.g.
To: louise.v.paramax.com) or more symbolically (e.g. to: whichever machine is currently
advertising itself as \geosys server A"). In other cases, the application may not know what
an appropriate site is. The facilitator must rely on values of other message �elds and a
knowledge of what other sites are available in order to decide where to route the message.

3.3.1 Routing

Among the �elds of the a KQML messages are:

� language - The language in which the encapsulated expression is written.

� type - \query", \assertion", \de�nition", etc.

� ontology - The general \framework" or \context" which the sender of the messages
assumes and which the receiver must share.

� topic - The speci�c subject matter of the message. This �eld can only be interpreted
in the context of a given ontology.

The declarations written for a program must provide su�cient information to allow the
FIL to provide values for these �elds. The facilitator uses them to search a database of
remote agents who have declared that they are suitable targets for these messages. For
example, if a facilitator receives (from a FIL) a message which is described as being:

� Type: query

� Language: relational

� Ontology: DRPI-93

� Topic: Airports:Location

it must look for one or more systems, somewhere on its connected network, which have
advertised that they are willing to import queries of this type and answer them (By having
matching \import" declarations.). It must do this by searching a database of declarations
looking for entries which match those of the question. When it �nds them, it delivers the
message to facilitators which are \representing" them and, waits for either an acknowledg-
ment of receipt or actual replies.

While this process does not seem di�cult on the surface, there are several problems
which will require extensive work, especially as the number of agents available on a network
increases and as the complexity of the information being exchanged increases.

**** DRAFT **** 28 **** DRAFT ****



KQML Overview

3.3.2 Ontology and Topic Matching

The task of matching the declared ontology and topic of a message against a database of
similar declarations is not well de�ned. While it is not di�cult to develop simple examples
and simple implementations to handle them it is also not di�cult to create complex examples
with no obvious implementation strategy.

Consider the case of a small and simply structure ontology which is divided into a small
and shallow class hierarchy, such as travel, divided into fewer than ten possible subclasses
such as air, rail, car, etc. Queries may be tagged as having one of these classes as their
topic; knowledge bases can choose to advertise that they are willing to answer queries about
one or more of these classes. As long as all of the participants understand which queries
are about which topic and abide by the rules implicit in the simple ontology, the problem
of matching messages with remote systems is reduced to simple string matching.

However, if the ontology is not quite as trivial, for example if it is described by a class
hierarchy of moderate depth, such as the animal kingdom, then the problem is not so trivial.
For example, if a knowledge base advertises that it is willing to IMPORT QUERIES about
the class of mammals and a facilitator has a client trying to EXPORT a QUERY about
cows, making the match is more di�cult.

The routing task must be relatively simple in order to keep the facilitators relatively
small and fast. The design of ontologies to be used for this purpose must be made with
these problems and constraints in mind.

3.3.3 Database of Knowledge Based Services.

The second problem to be overcome is how a database of currently available applications is
to be maintained. Actually gathering the data is not di�cult. An assumption of this design
is that all applications provide their FILs with declarations of the queries they can import
and the assertions they can export, and that their associated facilitators will transmit these
announcements over the network. The question is where and how should the database be
implemented; there are several alternatives.

The database can take a variety of forms. It may be replicated in every facilitator,
it may be centralized on an advertised machine, it may be stored in a distributed form
across the network. Implementation strategies are based on the requirements of a particular
environment.

For small sets of machines, a replicated implementation may be easiest. That is, each
machine maintains its own complete copy of the list of network services. Maintenance of
this list has to be performed in realtime; whenever a service begins or ends operation it has
to be added to or removed from the list. With a small number of machines the overhead
for each machine is not too great.

However, for even modest collections of machines (e.g., more than ten or twenty) the
burden of broadcasting service announcements to every known machine, and the burden of
processing such announcements from every known machine becomes noticeable, making a
centralized approach is more suitable. One machine could serve as a repository for a single
database. All processes would send both assertions of services they are making available
and queries for needed services to this single machine.

In a very large network, e.g. a large campus network or the internet itself, any central
server will be both a bottleneck and a single point of failure. On this scale, a distributed
approach is needed. A good example of this is the internet distributed name service.

**** DRAFT **** 29 **** DRAFT ****



KQML Overview

3.4 Implementation

Prototype versions of the components described above have been implemented. We have
implemented

� A facilitator interface library for an implementation of the language Prolog.

� A facilitator which runs as a separate process within the same Common Lisp image
as the Prolog language.

� A TCP/IP based communication package which links multiple Common Lisp images
on di�erent machines.

3.4.1 Prolog Facilitator Interface Library

An implementation of a FIL for Prolog has to handle the following events:

� A declaration by the local application of its communication status (what it needs and
what it can provide)

� An assertion by the local application which needs to be transmitted to a remote
application.

� A query by the local application which needs to be transmitted to a remote application.

� An assertion by a remote application which has been received by the local facilitator

� A query by a remote application which has been received by the local facilitator and
needs to be answered

Declarations by the Local Application This facilitator provides routing for four types
of application declarations:

� Export Queries Applications which want to send queries to remote sites.

� Export Assertions Applications willing to transmit new assertions to remote sites.

� Import Queries Applications willing to receive (and answer) queries from remote sites.

� Import Assertions Applications which want to receive assertions from remote sites.

Each declaration is accompanied by a description of the type of assertion or query to be
exported or imported.

Declaration: Exporting Queries When a Prolog application declares that it needs to
export some of its queries to remote sites, the facilitator interface creates code which will
automatically transmit queries of the appropriate type to the facilitator.

The current implementation handles this by generating a Prolog rule of the form:

(query) :-

=(L, (call-lisp (remote-solve (query))))

member( (args), L)

**** DRAFT **** 30 **** DRAFT ****



KQML Overview

For example, if an application declares that it wishes to export queries of the form:

(color X Y)

The facilitator interface will assert the following rule:

(color X Y) :-

= (L, (call-lisp (remote-solve (color X Y))))

member ( (X Y), L)

The function remote-solve transmits the query (with substitution performed on bound vari-
ables) to the facilitator which arranges for it to be answered by a remote site. The result is
expected to be a list of variable bindings, e.g.

((sky blue) (emerald green))

This method of dealing with locally generated queries is simple and provides an e�ective
way of dealing with the fact that the remote site returns a list of all solutions while the local
site only expects one at a time while it backtracks through them and solves the problem of
merging local answers with remote ones in a simple way. It is also very easy to implement.

Declaration: Exporting Assertions Exporting assertions is a declaration primarily
used by forward chaining applications and not those implemented in Prolog, but we have
included it here for the sake of completeness.

When a Prolog application declares that it is willing and able to export assertions of
a particular type, it needs to create code to arrange that assertions which match those
described by the declaration are forwarded to the facilitator. The current implementation
has modi�ed the low level \assert" and \retract" functions in the Prolog implementation
to intercept and transmit matching assertions (and retractions) to the facilitator.

3.4.2 Declaration: Import Queries and Import Assertions

When a Prolog application declares that it is willing to accept queries of a particular type or
that it is interested in receiving assertions of a particular type, all it needs to do is transmit
that declaration to its local facilitator. The facilitator is responsible for insuring that other
applications are aware of this service. The transmission is performed by a simple function
call provided by the facilitator package.

When a Prolog system is willing to support this type of activity it it needs to provide
the facilitator with functions to call whenever remote queries or assertions arrive from a
remote site. This registration is made by a call to a function provided by the facilitator
package.

**** DRAFT **** 31 **** DRAFT ****



KQML Overview

Handling Locally Generated Queries and Assertions When the local Prolog gen-
erates a query or assertion which needs to be transmitted to a remote site, the preliminary
work of the declaration handling (see above) has already arranged for the expression (the
query or assertion) to reach the facilitator interface code. The next step is to package the
expression into a message.

The facilitator provides a function for making messages. The interface package simply
provides values for the following message �elds:

� content The expression itself.

� language In this case, the name of the particular Prolog dialect, Frolic.

� type query, assertion, retraction, ...

� ontology This is a name which signi�es the shared assumptions that the programs
have about the knowledge they are using. It is a keyword shared among programs to
keep other programs with the same topic from answering.

� topic For one simple ontology, this is simply the particular predicate used in the
expression, e.g. COLOR/2. For another we used a list which represented the predicate
and its arguments which were represented by either constants or untyped variables,
e.g. (available JohnSmith ?Time ?Date ?Duration).

Prolog is not a good language in which to experiment with ontology de�nitions because
most \real" ontologies tend to be object oriented while Prolog is relation oriented. For
example, a service which can answer queries of the form:

(location ?x:airport ?y:coordinates)

which can be translated as \What is the location of a particular airport?" is not likely to
advertise itself as a \location" server, providing information about the location of various
objects. It is more likely to be an \airport" server, able to answer questions about various
characteristics about airports, including their location. That is, it is more likely to be able
to answer

(number-of-runways ?x:airport ?n:number)

than

(location ?x:museum ?y:coordinates)

A given application is likely to be able to provide some information about a set of objects in
some \knowledge space". What kind of knowledge space is described by the ontology �eld.
But the task of describing which objects in that space, and what relations about thoses
objects, falls to the topic �eld.

A second function, send-msg-to-facilitator passes it on to the facilitator for routing.

Handling Remotely Generated Queries and Assertions To handle remotely gen-
erated queries and assertions all the interface package has to do is provide a function for
the facilitator to call when it needs to pass a query to be processed or an assertion to be
added/retracted from the database.

**** DRAFT **** 32 **** DRAFT ****



KQML Overview

3.4.3 Common Lisp Facilitator

The facilitator's role is to route messages to appropriate recipients. Messages are not
usually addressed to a speci�c individual site but to either a symbolically named service
(e.g. Shipping-database or Planning-System-7) or a service which has advertised that it is
willing to accept messages of this type. The facilitator is responsible for tracking which
remote applications are interested in receiving assertions or are willing to answer queries on
various topics.

To accomplish this, each facilitator maintains its own database of remote applications.
Each entry in the database provides the Internet address of the host that the application
is running on and a TCP/IP port address for the facilitator on that host. The entries
are indexed by the types of messages the applications are willing to accept. Messages are
characterized, as described earlier, by the same �elds used to construct them: type, language,
ontology, topic and also communication style.

The database is maintained jointly by all active facilitators using the following rules:

� When a local application declares that it is willing to import queries or assertions, the
facilitator broadcasts that to all sites which may be running a facilitator.

� When a facilitator receives a declaration from another facilitator it acknowledges it
by sending a list of imports that its applications are willing to accept.

The �rst rule lets everyone know about any new services. The current implementation is
awkward in that it requires a list of machines where facilitators might be running. We will
be replacing this with a separate service which tracks running facilitators and distributes
new messages to them.

The second rule insures that new facilitators which announce their services are imme-
diately apprised of other facilitators on the net and can build their own database.

3.4.4 Common Lisp TCP/IP

The facilitator is implemented using a locally written TCP/IP interface which allows Com-
mon Lisp applications to act as TCP/IP stream clients or servers. It provides client func-
tions to open streams to remote TCP/IP ports using hostnames (or Internet addresses) and
service names (or numbers). It also creates a separate process (within a Lucid Common
Lisp image) which monitors a speci�ed port and will spin o� additional subprocesses when
remote system communicate with that port. (That is, it implements a standard UNIX
server program.)

**** DRAFT **** 33 **** DRAFT ****



KQML Overview

5 Conclusions

KQML is a language which supports the high level communication among intelligent agents.
It can be used as a language for an application program to interact with an intelligent sys-
tem or for two or more intelligent systems to interact cooperatively in problem solving.
SKTP, a Simple Knowledge Transfer Protocol, supports KQML interactions and is de�ned
as a protocol stack with at least three layers: content at the application level, message
at the application to facilitator level, and communication at the facilitator to facilitator
level. Additional layers appear below these three to supply reliable communication streams
between the processes. The content layer contains an expression in some language which
encodes the knowledge to be conveyed. The message layer adds additional attributes which
describe attributes of the content layer such as the language it is expressed in, the ontology
it assumes and the kind of speech act it represents (e.g. an assertion or a query). The �nal
communication layer adds still more attributes which describe the lower level communica-
tion parameters, such as the identity of the sender and recipient and whether or not the
communication is meant to by synchronous or asynchronous.

We have implemented an experimental prototype of SKTP which uses communication
facilitators as intelligent \routers" to simplify the application interface and realize the proto-
col. Facilitators provide a declarative framework in which applications specify their knowl-
edge needs and the knowledge services they o�er, establish communication channels between
appropriate agents, and mediate the resulting dialogue.

KQML is part of a larger DARPA-sponsored Knowledge Sharing e�ort focused on de-
veloping techniques and tools to promote the sharing on knowledge in intelligent systems.
The next steps in this research will be apply this integration approach in several distributed
testbeds. Examples of applications envisioned include intelligent multi-agent design systems
supporting collaborative designs of complex circuits and devices by multiple design teams
as well as intelligent planning, scheduling and replanning agents supporting distributed
transportation planning and scheduling applications.

**** DRAFT **** 35 **** DRAFT ****



KQML Overview

6 Acknowledgements

The concepts and ideas in this paper are the result of contributions from a great many
people. We list here some of their names.

Jose-Luis Ambite
Hans Chalupsky
Surajit Chaudhari
Steve Cross
Jim Davis
Tim Finin
Rich Fritzson
Mike Genesereth
Bruce Hitson
Michael Huhns
Eric Mays
Don McKay
Bob Neches
Cli�ord Neuman
Ramesh Patil
Peter Rathmann
Stu Shapiro
Marty Tenenbaum
Craig Thompson
Jay Weber
Gio Wiederhold
Mike Williams

**** DRAFT **** 36 **** DRAFT ****



KQML Overview

References

[1] H. Chalupsky. Belief ascription by way of simulative reasoning. Unpublished disserta-
tion proposal, 1991.

[2] Tim Finin, Rich Fritzson, Don McKay, Robin McIntire, and Tony Ohare. The intel-
ligent system server delivering AI to complex systems. In Proceedings of the IEEE
International Workshop on Tools for Arti�cial Intelligence { Architectures, languages
and Algorithms, October 1989.

[3] N. Lehrer. KRSL Version 2.0. Language speci�cation and manual, 1992.

[4] Robert MacGregor and Robert Bates. The LOOM knowledge representation language.
In Proceedings of the Knowledge-Based Systems Workshop, April 1987.

[5] A. S. Maida and S. C. Shapiro. Intensional concepts in propositional semantic networks.
In R. J. Brachman and H. J. Levesque, editors, Readings in Knowledge Representation,
pages 291{330. Morgan Kaufmann, Los Altos, CA, 1985.

[6] Don McKay, Tim Finin, and Anthony O'Hare. The intelligent database interface. In
Proceedings of the 7th National Conference on Arti�cial Intelligence, 1990.

[7] J. G. Neal and S. C. Shapiro. Knowledge representation for reasoning about language.
In J. C. Boudreaux, B. W. Hamill, and R. Jernigan, editors, The Role of Language in
Problem Solving 2, pages 27{46. Elsevier Science Publishers, 1987.

[8] R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, T. Senator, and W. Swartout.
Enabling technology for knowledge sharing. AI Magazine, 12(3):36 { 56, Fall 1991.

[9] Anthony B. O'Hare. The intelligent data interface language. Technical Report PRC-
LBS-8908, Unisys Paoli Research Center, June 1989.

[10] Anthony B. O'Hare and Amit Sheth. The architecture of BrAID: A system for e�cient
AI/DB integration. Technical Report PRC-LBS-8907, Unisys Paoli Research Center,
June 1989.

[11] N. Roussopoulos. An incremental access method for ViewCache: Concept, algorithms,
and cost analysis. ACM TODS, 16(3):535{563, 1991.

[12] N. Roussopoulos and A. Delis. Modern client-server DBMS architectures. Technical
report, Computer Science, 1991.

[13] S. C. Shapiro. The SNePS semantic network processing system. In N. V. Findler, editor,
Associative Networks: The Representation and Use of Knowledge by Computers, pages
179{203. Academic Press, New York, 1979.

[14] S. C. Shapiro andW. J. Rapaport. SNePS considered as a fully intensional propositional
semantic network. In N. Cercone and G. McCalla, editors, The Knowledge Frontier:
Essays in the Representation of Knowledge, pages 262{315. Springer-Verlag, New York,
1987.

**** DRAFT **** 37 **** DRAFT ****



KQML Overview

[15] S. C. Shapiro and W. J. Rapaport. Models and minds: knowledge representation for
natural-language competence. In R. Cummins and J. Pollock, editors, Philosophical
AI: Computational Approaches to Reasoning, pages 215{259. MIT Press, Cambridge,
MA, 1992.

**** DRAFT **** 38 **** DRAFT ****


