
Introduction

Many computer systems are structured as collections of
independent processes these are frequently distributed
across multiple hosts linked by a network. Database
processes, real-time processes and distributed AI systems
are a few examples. Furthermore, in modern network
systems, it should be possible to build new programs by
extending existing systems; a new small process should be
conveniently linkable to existing information sources and
tools (such as filters or rule based systems).

The idea of an architecture where this is easy to do is quite
appealing. (It is regularly mentioned in science fiction.)
Many proposals for intelligent user-agents such as
Knowbots [Kahn] assume the existence of this type of
environment. One type of program that would thrive in
such an environment is a mediator [Wiederhold].
Mediators are processes which situate themselves between

“provider” processes and “consumer” processes and
perform services on the raw information such as providing
standardized interfaces; integrating information from
several sources; translating queries or replies. Mediators
(also known as “middleware”) are becoming increasingly
important as they are commonly proposed as an effective
method for integrating new information systems with
inflexible legacy systems.

However, networks environments which support “plug and
play” processes are still rare, and most distributed systems
are implemented with ad hoc interfaces between their
components. Many Internet resources, such as library
catalog access, finger, and menu based systems are
designed to support only process-to-user interaction.
Those which support process-to-process communication,
such as ftp or the Mosaic world wide web browser, rely on
fairly primitive communication protocols. The reason for
this is that there are no adequate standards to support

KQML - A Language and Protocol for
 Knowledge and Information Exchange

Tim Finin and Rich Fritzson
Computer Science Department
University of Maryland, UMBC

Baltimore MD 21228

Don McKay and Robin McEntire
Valley Forge Engineering Center

Unisys Corporation
Paoli PA 19301

Abstract. This paper describes the design of and experimentation with the Knowledge Query and Manipulation
Language (KQML), a new language and protocol for exchanging information and knowledge. This work is part of
a larger effort, the ARPA Knowledge Sharing Effort which is aimed at developing techniques and methodology for
building large-scale knowledge bases which are sharable and reusable. KQML is both a message format and a
message-handling protocol to support run-time knowledge sharing among agents. KQML can be used as a
language for an application program to interact with an intelligent system or for two or more intelligent systems to
share knowledge in support of cooperative problem solving.

KQML focuses on an extensible set of performatives, which defines the permissible operations that agents may
attempt on each other's knowledge and goal stores. The performatives comprise a substrate on which to develop
higher-level models of inter-agent interaction such as contract nets and negotiation. In addition, KQML provides a
basic architecture for knowledge sharing through a special class of agent called communication facilitators which
coordinate the interactions of other agents The ideas which underlie the evolving design of KQML are currently
being explored through experimental prototype systems which are being used to support several testbeds in such
areas as concurrent engineering, intelligent design and intelligent planning and scheduling .

complex communication among processes. Existing
protocols, such as RPC, are insufficient for several
reasons. They are not all that standard; there are currently
several successful and incompatible RPC standards (e.g.
ONC and DCE). They are also too low level; they do not
provide high level access to information, but are intended
only as “remote procedure calls.”

Nor are there standard models for programming in an
environment where some of the data is supplied by
processes running on remote machines and some of the
results are needed by other similarly distant processes.
While there are many ad hoc techniques for
accomplishing what is needed, it is important that
standard methods are adopted as early as is reasonable in
order to facilitate and encourage the use of these new
architectures. It is not enough for it to be possible to
communicate, it must be easy to communicate. Not only
should low level communication tasks such as error
checking be automatic, but using and observing protocol
should be automatic as well.

KQML is a language and a protocol that supports this type
of network programming specifically for knowledge-based
systems or intelligent agents. It was developed by the
ARPA supported Knowledge Sharing Effort [Neches 91,
Patil 92] and separately implemented by several research
groups. It has been successfully used to implement a
variety of information systems using different software
architectures.

The Knowledge Sharing Effort

The ARPA Knowledge Sharing Effort (KSE) is a
consortium to develop conventions facilitating the sharing
and reuse of knowledge bases and knowledge based
systems. Its goal is to define, develop, and test
infrastructure and supporting technology to enable
participants to build much bigger and more broadly
functional systems than could be achieved working alone.

Current approaches for building knowledge-based systems
usually involve constructing new knowledge bases from
scratch. The ability to efficiently scale up AI technology
will require the sharing and reuse of existing components.
This is equally true of software modules as well as
conceptual knowledge. AI system developers could then
focus on the creation of the specialized knowledge and
reasoners new to the task at hand. New systems could
interoperate with existing systems, using them to perform
some of its reasoning. In this way, declarative knowledge,
problem solving techniques and reasoning services could

all be shared among systems. The ability to build, manage
and use sharable and reusable knowledge resources is
thought to be a key to the realization of large-scale
intelligent systems. The definition of conventions
enabling sharing among collaborators is the essential first
step toward these goals.

The KSE is organized around four working groups each of
which is addressing a complementary problem identified
in current knowledge representation technology:

•The Interlingua Group is concerned with translation
between different representation languages, with
sub-interests in translation at design time and at run-
time.

•The KRSS Group (Knowledge Representation
System Specification) is concerned with defining
common constructs within families of representation
languages.

•The SRKB Group (Shared, Reusable Knowledge
Bases) is concerned with facilitating consensus on
the contents of sharable knowledge bases, with sub-
interests in shared knowledge for particular topic
areas and in topic-independent development
tools/methodologies.

•The External Interfaces Group is concerned with
run-time interactions between knowledge based
systems and other modules in a run-time
environment, with sub-interests in communication
protocols for KB-to-KB and for KB-to-DB.

The KQML language is one of the main results which
have come out of the external interfaces group of the KSE.

KQML

We could address many of the difficulties of
communication between intelligent agents described in the
Introduction by giving them a common language. In
linguistic terms, this means that they would share a
common syntax, semantics and pragmatics.

Getting information processes, especially AI processes, to
share a common syntax is a major problem. There is no
universally accepted language in which to represent
information and queries. Languages such as KIF
[Genesereth et. al. '92], extended SQL, and LOOM
[McGreggor] have their supporters, but there is also a
strong position that it is too early to standardize on any
representation language. As a result, it is currently
necessary to say that two agents can communicate with

each other if they have a common representation language
or use languages that are inter-translatable.

Assuming a common or translatable language, it is still
necessary for communicating agents to share a framework
of knowledge (i.e. a shared structured vocabulary) in order
to interpret the messages they exchange. This is not really
a shared semantics, but a shared ontology. There is not
likely to be one shared ontology, but many. Shared
ontologies are under development in many important
application domains such as planning and scheduling,
biology and medicine.

Pragmatics among computer processes includes

1) knowing who to talk with and how to find them

2) knowing how to initiate and maintain an exchange.

KQML is concerned primarily with pragmatics (and
secondarily with semantics). It is a language and a set of
protocols which support computer programs in
identifying, connecting with and exchanging information
with other programs.

KQML Protocols

There are a variety of interprocess information exchange
protocols. There is the simple case of one process (a
client) sending a query to another process (a server) and
waiting for a reply as is shown in Figure 1. This occurs
commonly when a backward-chaining reasoner retrieves
information from a remote source. As it needs data, it
places queries and waits for the replies before attempting
any further inferences. A far as protocol is concerned, this
case includes those where the server’s reply message
actually contains a collection of replies.

Another common case is when the server’s reply is not the
complete answer but a handle which allows the client to
ask for the components of the reply, one at a time as
shown in Figure 2. A common example of this type of
exchange is a simple client querying a relational database

or a reasoner which can produce a sequence of
instantiations in response to a query. Although this
exchange requires that the server maintain some internal
state, the individual transactions are each the same as in
the single reply case. I.e., each transaction is a “send-a-
query / wait / receive-a-reply” exchange. We refer to these
transactions as being synchronous because messages arrive

at the client only when they are expected.

It is a different situation in real-time systems, among
others, where the client subscribes to a server’s output and
then an indefinite number of replies arrive at irregular
intervals in the future, as shown in Figure 3. In this case,

the client does not know when each reply message will be
arriving and may be busy performing some other task
when they do. We refer to these transactions as being
asynchronous.

There are other variations of these protocols. For example,
messages might not be addressed to specific hosts, but
broadcast to a number of them. The replies, arriving
synchronously or asynchronously have to be collated and,

ServerClient

Query

Reply

Figure 1 - In this example of a synchronous communication
query, a blocking query waits for an expected reply.

ServerClient

Query
Handle

Next
Reply

Next
Reply

Figure 2 - The remote server can maintain state by
remembering the partial answer. Replies are sent
individually, each at the request of the client.

ServerClient

Subscribe

Reply
Reply
Reply

Reply

Figure 3 - Using an asynchronous communication protocol, a
non-blocking subscribe request can result in an irregularly
spaced, indeterminate number of incoming messages.

optionally, associated with the query that they are replying
to.

The KQML Language

KQML supports these protocols by making them an
explicit part of the communication language. When using
KQML, a software agent transmits messages composed in
its own representation language, wrapped in a KQML
message.

KQML is conceptually a layered language. The KQML
language can be viewed as being divided into three layers:
the content layer, the message layer and the
communication layer. The content layer is the actual
content of the message, in the programs own
representation language. KQML can carry any
representation language, including languages expressed as
ASCII strings and those expressed using a binary notation.
All of the KQML implementations ignore the content
portion of the message except to the extent that they need
to determine its boundaries.

The communication level encodes a set of features to the
message which describe the lower level communication
parameters, such as the identity of the sender and
recipient, and a unique identifier associated with the
communication.

The message layer forms the core of the language. It
determines the kinds of interactions one can have with a
KQML-speaking agent. The primary function of the
message layer is to identify the protocol to be used to
deliver the message and to supply a speech act or
performative which the sender attaches to the content. The

performative signifies that the content is an assertion, a
query, a command, or any of a set of known
performatives. Because the content is opaque to KQML,
this layer also includes optional features which describe

the content: its language, the ontology it assumes, and
some type of more general description, such as a
descriptor naming a topic within the ontology. These
features make it possible for KQML implementations to
analyze, route and properly deliver messages even though
their content is inaccessible.

Conceptually, a KQML message consists of a
performative, its associated arguments which include the
real content of the message, and a set of optional
arguments which describe the content in a manner which
is independent of the syntax of the content language. For
example, a message representing a query about the
location of a particular airport might be encoded as:

(ask-one :content (geoloc lax (?long ?lat))
:ontology geo-model3)

In this message, the KQML performative is ask-one, the
content is (geoloc lax (?long ?lat)) and the assumed
ontology is identified by the token :geo-model3. The same
general query could be conveyed using standard Prolog as
the content language in a form that requests the set of all
answers as:

(ask-all :content "geoloc(lax,[Long,Lat])"
:language standard_prolog
:ontology geo-model3)

The syntax of KQML is based on a balanced parenthesis
list. The initial element of the list is the performative and
the remaining elements are the performative’s arguments
as keyword/value pairs. Because the language is relatively
simple, the actual syntax is relatively unimportant and can
be changed if necessary in the future. (The current syntax
was selected because most of the original implementation
efforts were done in Common Lisp.)

The set of KQML performatives is extensible. There is a
set of reserved performatives which have a well defined
meaning. This is not a required or minimal set; a KQML
agent may choose to handle only a few (perhaps one or
two) performatives. However, an implementation that
chooses to implement one of the reserved performatives
must implement it in the standard way. A community of
agents may choose to use additional performatives if they
agree on their interpretation and the protocol associated
with each.

Some of the reserved performatives are shown in Figure
5. In addition to standard communication performatives
such as ask, tell, deny, delete, and more protocol oriented
performatives such as subscribe, KQML contains
performatives related to the non-protocol aspects of
pragmatics, such as advertise - which allows an agent to

Communication

Message

Content

• Mechanics of communication

• Logic of communication
(performative or speech act)

• Content of communication (in
agreed upon language, e.g.,
KIF, KRSL, etc.)

Figure 4 - The KQML language can be viewed as being divided
into three layers: the content layer, the message layer and the
communication layer.

announce what kinds of asynchronous messages it is
willing to handle; and recruit - which can be used to find
suitable agents for particular types of messages.

For example, agent B might send the following
performative to agent A:

 (advertise
 :language KQML
 :ontology K10
 :content (subscribe :language KQML
 :ontology K10
 :content (stream-about
 :language KIF
 :ontology motors
 :content motor1)))

to which agent B might respond with:

 (subscribe :reply-with s1
 :language KQML
 :ontology K10
 :content (stream-about
 :language KIF
 :ontology motors
 :content motor1))

Agent A would then send B a stream of tell and untell
performatives over time with information about motor1, as
in:

 (tell :language KIF
 :ontology motors
 :in-reply-to s1
 :content (= (val (torque motor1) (sim-time 5))
 (scalar 12 kgf))
 (tell :language KIF
 :ontology structures
 :in-reply-to s1
 :content (fastens frame12 motor1))
 (untell :language KIF
 :ontology motors
 :in-reply-to s1
 :content (= (val (torque motor1) (sim-time 5))
 (scalar 12 kgf))

KQML Semantics. Currently there are no formal
semantics defined for the basic KQML performatives or
for the protocols associated with them. A semantic model
is under development that assumes that a KQML-speaking
agent has a virtual knowledge base with two separate
components: an information store (i.e., “beliefs”) and a
goal store (i.e., “intentions”). The primitive
performatives are defined in terms of their effect on these
stores. A TELL(S), for example, is an assertion by the
sending agent to the receiving agent that the sentence S is
in its virtual belief store. An ACHIEVE(S) is a request of
the sender to the receiver to add S to its intention store.

The protocols that govern the allowable responses when
an agent receives a KQML message must also be defined.
These are currently defined informally in English
descriptions, but work is underway to provide formal
definitions in terms of a grammar using the definite
clause grammar (DCG) formalism.

KQML Internal Architectures

KQML was not defined by a single research group for a
particular project. It was created by a committee of
representatives from different projects, all of which were
concerned with managing distributed implementations of
systems. One project was a distributed collaboration of
expert systems in the planning and scheduling domain.
Another was concerned with problem decomposition and
distribution in the CAD/CAM domain. A common
concern was the management of a collection of
cooperating processes and the simplification of the
programming requirements for implementing a system of
this type. However, the groups did not share a common
communication architecture. As a result, KQML does not
dictate a particular system architecture, and several
different systems have evolved.

Basic query performatives:
 evaluate, ask-if, ask-in, ask-one, ask-all
Multi-response query performatives:
 stream-in, stream-all
Response performatives:
 reply, sorry
Generic informational performatives:
 tell, achieve, cancel, untell, unachieve
Generator performatives:
 standby, ready, next, rest, discard, generator
Capability-definition performatives:
 advertise, subscribe, monitor, import, export
Networking performatives:
 register, unregister, forward, broadcast, route

Figure 5 - There are about two dozen reserved
performative names which fall into seven basic
categories.

Our group has two implementations of KQML. One is
written in Common Lisp, the other in C. Both are fully
interoperable and are frequently used together.

The design of these two implementations was motivated
by the need to integrate a collection of preexisting expert
systems into a collaborating group of processes. Most of
the systems involved were never designed to operate in a
communication oriented environment. The
communication architecture is built around two
specialized programs, a router and a facilitator, and a
library of interface routines, called a KRIL.

KQML Routers. Routers are content independent
message routers. Each KQML-speaking software agent is
associated with its own separate router process. All routers
are identical; each is just an executing copy of the same
program. A router handles all KQML messages going to
and from its associated agent. Because each program has
an associated router process, it is not necessary to make
extensive changes to the program’s internal organization
to allow it to asynchronously receive messages from a
variety of independent sources. The router provides this
service for the agent and provides the agent with a single
point of contact for communicating with the rest of the
network. It provides both client and service functions for
the application and can manage multiple simultaneous
connections with other agents.

The router never looks at the content fields of the
messages it handles. It relies solely on the KQML
performatives and its arguments. If an outgoing KQML
message specifies a particular Internet address, the router
directs the message to it. If the message specifies a
particular service by name, the router will attempt to find
an Internet address for that service and deliver the
message to it. If the message only provides a description of
the content (e.g. query, :ontology “geo-domain-3”,
:language “Prolog”, etc.) the router may attempt to find a
server which can deal with the message and it will deliver
it there, or it may choose to forward it to a smarter
communication agent which may be willing to route it.
Routers can be implemented with varying degrees of
sophistication -- they can not guarantee to deliver all
messages.

In the C implementation, a router actually is a separate
UNIX process. It is a child process which is forked by the
application. The communication channel between the
router and the application carries KQML messages but
may carry more than is specified by the formal protocol.
That is, since it is a private channel between the router
and application it does not have to observe KQML
protocol. The router only has to observe the formal KQML
rules when speaking to the outside world. The

communication channel is currently implemented by a
UNIX pipe, but we are planning on experimenting with a
higher bandwidth channel which can be implemented with
shared memory.

The Lisp implementation uses Lucid’s multitasking
primitives to implement the router as a separate Lisp task
within the application’s Lisp image. It would be too
inefficient to fork a separate Lisp image for the router.
However, we are planning on experimenting with using
the C router with Common Lisp applications.

KQML Facilitators. To deliver messages that are
incompletely addressed, routers rely on facilitators. A
facilitator is a network application which provides useful
network services. The simplest service it provides is to
maintain a registry of service names; routers rely on
facilitators to help them find hosts to route information to.
In this role, facilitators serve only as consultants to the
communication process.

However, facilitators can provide many other
communication services. On request, a facilitator may
forward messages to named services. Or, it may provide
matchmaking services between information providers and
consumers. They include

content based routing of information between agents,

brokering of information between an advertising
supplier and an advertising consumer,

 recruiting suppliers to deal directly with advertising
consumers,

smart multicasting of information to interested agents

Agent

Network

Router

KQML
objects

Network
Connections

Figure 6 - A router gives an application a single interface
to the network, providing both client and server
capabilities, managing multiple simultaneous
connections, and handling some KQML interactions
autonomously.

These activities can be performed in a relatively simple
manner (as shown in Figure 8) or they may be performed
by an intelligent agent capable of synthesizing information
from multiple sources.

Facilitators are actual network software agents; they have
their own KQML routers to handle their traffic and they
deal exclusively in KQML messages. There is typically
one facilitator for each local group of agents. This can
translate into one facilitator per local site or one per
project; there may be multiple local facilitators to provide
redundancy. The facilitator database may be implemented
in any number of ways depending on the number of hosts
served and the quality of service required. An early

implementation of a facilitator replicated the database on
every machine in the local net, to reduce communication
overhead for routing. This was replaced with a more
centralized implementation which is supplemented by
caching of information in the routers. For larger networks,
and for facilitators serving multiple networks, a
distributed implementation (analogous to the Internet
domain name service) may be more appropriate.

When each application starts up, its router announces
itself to the local facilitator so that it is registered in the
local database. When the application exits, the router
sends another KQML message to the facilitator, removing
the application from the facilitator’s database. In this way
applications can find each other without there having to be
a manually maintained list of local services.

KQML KRILs. Since the router is a separate process
from the application, it is necessary to have a
programming interface between the application and the
router. This interface is called a KRIL (KQML Router
Interface Library). While the router is a separate process,

with no understanding of the content field of the KQML
message, the KRIL is embedded in the application and has
access to the application’s tools for analyzing the content.
While there is only one piece of router code, which is
instantiated for each process, there can be various KRILs,
one for each application type or one for each application
language. The general goal of the KRIL is to make access
to the router as simple as possible for the programmer.

To this end, a KRIL can be as tightly embedded in the
application, or even the application’s programming
language, as is desirable. For example, an early
implementation of KQML featured a KRIL for the Prolog
language which had only a simple declarative interface for
the programmer. During the operation of the Prolog
interpreter, whenever the Prolog database was searched for
predicates, the KRIL would intercept the search;
determine if the desired predicates were actually being
supplied by a remote agent; formulate and pose an
appropriate KQML query; and return the replies to the
Prolog interpreter as though they were recovered from the
internal database. The Prolog program itself contained no
mention of the distributed processing going on except for
the declaration of which predicates were to be treated as
remote predicates. Figure 9 shows an example of this
together with a facilitation agent which provides a central
content-based routing service.

It is not necessary to completely embed the KRIL in the
application’s programming language. A simple KRIL for
a language generally provides two programmatic entries.
For initiating a transaction there is a send-kqml-message

A B
tell(X)

ask(X)

Address Routing

A BF
tell(X)

subscribe(tell(X))

tell(X)

Content Based
Routing

A BF
tell(X)

broker(ask(X))

tell(X)

advertise• (ask(X))

ask(X)Brokering

A BF
tell(X)

broker(ask(X)) advertise• (ask(X))

ask(X)Recruiting

Figure 7 - Facilitators are agents that deal in knowledge
about the information services and requirements of other
agents. They can offer services such as forwarding,
brokering, recruiting and content-based routing.

Agent

Network

Facilitator

Figure 8 - A communication Facilitator is an agent that performs
various useful services, e.g. maintaining a registry of service
names, forwarding messages to named services, routing messages
based on content, providing “matchmaking” between
information providers and clients, and providing mediation and
translation services.

function. This accepts a message content and as much
information about the message and its destination as can
be provided and returns either the remote agent’s reply (if
the message transmission is synchronous and the process
blocks until a reply is received) or a simple code
signifying the message was sent. For handling incoming
asynchronous messages, there is usually a declare-
message-handler function. This allows the application
programmer to declare which functions should be invoked
when messages arrive. Depending on the KRIL’s
capabilities, the incoming messages can be sorted
according to performative, or topic, or other features, and
routed to different message handling functions.

In addition to these programming interfaces, KRILs accept
different types of declarations which allow them to
register their application with local facilitators and contact
remote agents to advise them that they are interested in
receiving data from them. Our group has implemented a
variety of experimental KRILs, for Common Lisp, C,
Prolog, Mosaic, SQL, and other tools.

KQML Performance. We have developed a simple
performance model, shown in Figure 11, for KQML
communication which has allowed us to analyze the
efficiency of communication and to identify and eliminate
bottlenecks by tuning the software and adding additional
capabilities. For example, various compression
enhancements have been added which cut the
communication costs by reducing the message sizes and

also by eliminating a substantial fraction of symbol lookup
and string duplication.

Experiences with KQML

We have used KQML as the communication language in
several technology integration experiments in the

R

R

Application

Application R
R

R

R

Application

r(b)
export(r
/1)

Application

A6
Application

A1

A5

A4

A2

Facilitator

A3

q(a)
export(q
/1)

Knows Q

p(X,Y):-
q(X),r(Y).

export(p/2).

import(q/1).

import(r/1).

Knows “P if Q and R”

Knows R name(a1,
128.62.39.4) . . .
import(a1,p/2)
export(a4,r/1)
export• (a6,p2) . . .

Knows who knows what

?- p(A,B)

import(p/2)

Wants to know P

Figure 9 - This example shows the use of a facilitator to do content-based routing allowing a set of Prolog-based agents to work
together to prove goals.

Network

KRIL

KQML
objects

function
calls

Agent

Figure 10 - The KRIL is part of the application and has access to
its internals. It provides internal access points to which the
router delivers incoming messages, analyzes outgoing messages
for appropriate domain tagging and routing, and provides
application specific interface and procedures for communication
access.

ARPA/Rome Lab Planning Initiative. These experiments
linked a planning agent (in SIPE), with a scheduler (in
Common Lisp), a knowledge base (in LOOM), and a case
based reasoning tool (in Common Lisp). All of the
components integrated were preexisting systems which
were not designed to work in a distributed environment.

We have also successfully used KQML in demonstrations
for the ARPA-supported Integrated Weapons Systems
Database, integrating distributed clients (in C) with
mediators which were retrieving data from distributed
databases. Additional work was done under this project
using KQML to link a World Wide Web browser with
mediators designed to locate documents for them.

The Computer Systems Division of the Aerospace Corp.
has used KQML to integrate commercial off-the-shelf

software into systems by wrapping them in KQML-
speaking shells.

The Lockheed AI Center and the Palo Alto Collaboration
Testbed have also made extensive use of KQML to
decompose and distribute problems in the CAD/CAM
domain.

Conclusion

This paper has described KQML -- a language and
associated protocol by which intelligent software agents
can communicate to share information and knowledge.
We believe that KQML, or something very much like it,
will be important in building the distributed agent-
oriented information systems of the future. One must ask
how this work is to be differentiated from the work in two
related areas -- distributed systems (DS) and distributed
AI (DAI).

KQML and DS. KQML offers an abstraction of an
information agent (provider or consumer) at a higher level
that is typical in other areas of Computer Science. In
particular, KQML assumes a model of an agent as a
knowledge-based system (KBS). Although this will not
seem to be surprising or profound in our AI community, it

is a significant advance (we hope!) for the general CS
community. The KBS model easily subsumes a broad
range of commonly used information agent models,
including database management systems, hypertext
systems, server-oriented software (e.g. finger demons,
mail servers, HTML servers, etc), simulations, etc. Such
systems can usually be modeled as having two virtual
knowledge bases -- one representing the agent's
information store (i.e., beliefs) and the other representing
its intentions (i.e., goals).

We hope that future standards for interchange and
interoperability languages and protocols will be based on
this very powerful and rich model. This will avoid the
built-in limitations of more constrained models (e.g., that
of a simple remote procedure call or relational database
query) and also make it easier to integrate truly intelligent
agents with simpler and more mundane information
clients and servers.

In addition to having something to offer, KQML also has
something it seeks from distributed systems work -- the
right abstractions and software components to provide
basic communication services. Current KQML-based
systems have been built on the most common transport
layers in use today -- TCP/IP and EMAIL. The real
contributions that KQML makes are independent of the
transport layer. We anticipate that KQML interface
implementations will be based on whatever is seen as the
best transport mechanism.

KQML and DAI. The contribution that KQML makes to
Distributed AI research is to offer a standard language and
protocol that intelligent agents can use to communicate
among themselves as well as with other information
servers and clients. We believe that permitting agents to
use whatever content language they prefer will make
KQML appropriate for most DAI research. In designing
KQML, our goal is to build in the primitives necessary to
support all of the interesting agent architectures currently
in use. If we have been successful, then KQML should
prove to be a good tool for DAI research, and, if used
widely, should enable greater research collaboration
among DAI researchers.

KQML and the Future. The ideas which underlie the
evolving design of KQML are currently being explored
through experimental prototype systems which are being
used to support several testbeds in such areas as
concurrent engineering [Cutkowski, McGuire,
Tenenbaum, Kuokka], intelligent design [Genesereth] and
intelligent planning and scheduling. Figure 12 shows the

A

Reading & decoding reply

Encoding & writing queryReading & decoding query

Encoding & writing reply

B
Waiting

Figure 11 - A simple performance model for KQML
communication has allowed us to analyze the efficiency of
KQML-based communication and to eliminate bottlenecks.

architecture of a system in which KQML is being used to
support the interchange of knowledge among a planner, a
plan simulator, a plan editor and a knowledge server,
which is the repository for the shared ontology and access
point to common databases through the Intelligent
Database Interface [McKay, Pastor].

The design of KQML has continued to evolve as the ideas
are explored and feedback is received from the prototypes
and the attempts to use them in real testbed situations.
Furthermore, new standards for sharing persistent object-
oriented structures are being developed and promulgated,
such as OMG’s CORBA specification and Microsoft’s
OLE 2.0. Should any of these become widely used, it will
be worthwhile to evolve KQML so that its key ideas the
collection of reserved performatives, the support for a
variety of information exchange protocols, the need for an
information based directory service can enhance these
new information exchange languages.

Bibliography

External Interfaces Working Group ARPA Knowledge Sharing
Effort. KQML Overview. Working paper, 1992.

External Interfaces Working Group ARPA Knowledge Sharing
Effort. Specification of the KQML agent-communication
language. Working paper, December 1992.

S. Bussmann and J. Mueller. A communication architecture for
cooperating agents. Computers and Artificial Intelligence,
12:37--53, 1993.

M. Cutkosky, E. Engelmore, R. Fikes, T. Gruber, M.
Genesereth, and W. Mark. PACT: An experiment in integrating
concurrent engineering systems. 1992.

Edmund H. Durfee, Victor R. Lesser, and Daniel D. Corkill.
Trends in cooperative distributed problem solving. IEEE
Transactions on Knowledge and Data Engineering, 1(1):63--83,
March 1989.

Dan Kuokka et. al. Shade: Technology for knowledge-based
collaborative. In AAAI Workshop on AI in Collaborative
Design, 1993.

James McGuire et. al. Shade: Technology for knowledge-based
collaborative engineering. Journal of Concurrent Engineering:
Research and Applications, to appear.

Tim Finin, Rich Fritzson, and Don McKay et. al. An overview
of KQML: A knowledge query and manipulation language.
Technical report, Department of Computer Science, University
of Maryland Baltimore County, 1992.

Tim Finin, Rich Fritzson, and Don McKay. A language and
protocol to support intelligent agent interoperability. In
Proceedings of the CE& CALS Washington `92 Conference.
June 1992.

Tim Finin, Don McKay, Rich Fritzson, and Robin McEntire.
KQML: an information and knowledge exchange protocol. In
International Conference on Building and Sharing of Very Large-
Scale Knowledge Bases, December 1993.

M. Genesereth and R. Fikes et. al. Knowledge interchange
format, version 3.0 reference manual. Technical report,
Computer Science Department, Stanford University, 1992.

Mike Genesereth. Designworld. In Proceedings of the IEEE
Conference on Robotics and Automation, pages 2,785--2,788.
IEEE CS Press.

Mike Genesereth. An agent-based approach to software
interoperability. Technical Report Logic-91-6, Logic Group,
CSD, Stanford University, February 1993.

Carl Hewitt and Jeff Inman. DAI betwixt and between: From
``intelligent agents'' to open systems science. IEEE Transactions
on Systems, Man and Cybernetics, 21(6), December 1991.
(Special Issue on Distributed AI).

Michael N. Huhns, David M. Bridgeland, and Natraj V. Arni. A
DAI communication aide. Technical Report ACT-RA-317-90,
MCC, Austin TX , October 1990.

R. E. Kahn, Digital Library Systems, Proceedings of the Sixth
Conference on Artificial Intelligence Applications CAIA-90
(Volume II: Visuals), Santa Barbara CA, pp. 63-64, 1990.

Robert MacGregor and Raymond Bates, The Loom Knowledge
Representation Language, Proceedings of the Knowledge-Based
Systems Workshop, St. Louis, Missouri, April, 1987.

Don McKay, Tim Finin, and Anthony O'Hare. The intelligent
database interface. In Proceedings of the 7th National
Conference on Artificial Intelligence, August 1990.

Force
Module

Selection
Force

Planner

Support Unit
and

Sustainment
Generation

Simulator

Force Plan
and

Skeletal
Justification

Operational
Forces

(TPFDD)

Intelligent KB/DB

Full
(Annotated)

TPFDD

Validated
TPFDD

Constraint
Based

Scheduler

Asset
Allowance

Closure
Analysis

Simulation
Analysis

Simulator

Figure 12 - KQML has been used in the ARPA Rome Planning
Initiative to support communication between components of an
intelligent planning system.

R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, T. Senator,
and W. Swartout. Enabling technology for knowledge sharing.
AI Magazine, 12(3):36 -- 56, Fall 1991.

Jeff Y-C Pan and Jay M. Tenenbaum. An intelligent agent
framework for enterprise integration. IEEE Transactions on
Systems, Man and Cybernetics, 21(6), December 1991. (Special
Issue on Distributed AI).

Mike P. Papazoglou and Timos K. Sellis. An organizational
framework for cooperating intelligent information systems.
International Journal on Intelligent and Cooperative Information
Systems, 1(1), (to appear) 1992.

Jon Pastor, Don Mckay and Tim Finin, View-Concepts:
Knowledge-Based Access to Databases, First International
Conference on Information and Knowledge Management,
Baltimore, November 1992.

R. Patil, R. Fikes, P. Patel-Schneider, D. McKay, T. Finin, T.
Gruber, and R. Neches. The darpa knowledge sharing effort:
Progress report. In B. Nebel, C. Rich, and W. Swartout, editors,
Principles of Knowledge Representation and Reasoning:
Proceedings of the Third International Conference (KR'92), San
Mateo, CA, November 1992. Morgan Kaufmann.

J. R. Searle. What is a speech act? In M. Black, editor, From
Philosophy in America, pages 221--239. Allen & Unwin, Ort??,
1965.

Reid G. Smith. The contract net protocol: High-level
communication and control in a distributed problem solver.
IEEE Transactions on Computers, C-29(12):1104--1113,
December 1980.

Reid G. Smith and Randall Davis. Framework for cooperation
in distributed problem solving. IEEE Transactions on System,
Man, and Cybernetics, SMC-11(1):61--70, January 1981.

M.Tenenbaum, J. Weber, and T. Gruber. Enterprise integration:
Lessons from shade and pact. In C. Petrie, editor, Enterprise
Integration Modeling. MIT Press, 1993.

Gio Wiederhold Peter Wegner and Stefano Ceri. Toward
megaprogramming. Communications of the ACM, 33(11):89--
99, November 1992.

Steven T. C. Wong and John L. Wilson. COSMO: a
communication scheme for cooperative knowledge-based
systems. IEEE Transactions on Systems, Man and Cybernetics,
to appear.

