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Abstract

We have produced an ontology specifying a model of
computer attack. Our ontology is based upon an analysis of
over 4,000 classes of computer intrusions and their corre-
sponding attack strategies and is categorized according to:
system component targeted, means of attack, consequence of
attack and location of attacker. We argue that any taxonomic
characteristics used to define a computer attack be limited in
scope to those features that are observable and measurable
at the target of the attack. We present our model as a
target-centric ontology that is to be refined and expanded
over time. We state the benefits of forgoing dependence upon
taxonomies, in favor of ontologies, for the classification
of computer attacks and intrusions. We have specified our
ontology using the DARPA Agent Markup Language and
have prototyped it using DAMLJessKB. We present our
model as a target-centric ontology and illustrate the benefits
of utilizing an ontology lieu of a taxonomy, by presenting
a use case scenario of a distributed intrusion detection system.

1 Introduction

Based upon empirical evidence we have produced a model
of computer attacks categorized by: the system component tar-
geted, the means and consequence of attack, and the location
of the attacker. Our model is represented as a target-centric
ontology, where the structural properties of the classification
scheme is in terms of features that are observable and measur-
able by the target of the attack or some software system acting
on the target’s behalf. In turn, this ontology is used to facilitate
the reasoning process of detecting and mitigating computer in-
trusions.

Traditionally, the characterization and classification of
computer attacks and other intrusive behaviors have been lim-
ited to taxonomies. Taxonomies, however, lack the necessary
and essential constructs needed to enable an intrusion detec-
tion system (IDS) to reason over an instance that is represen-
tative of the domain of a computer attack. Alternatively, on-
tologies provide powerful constructs that include machine in-
terpretable definitions of the concepts within a domain and the

relations between them. Ontologies, therefore, provide soft-
ware systems with the ability to share a common understand-
ing of the information at issue, in turn empowering the soft-
ware system with a greater ability to reason over and analyze
this information.

As detailed by Allen, et al. [1], and McHugh [24], the taxo-
nomic characterization of intrusive behavior has typically been
from the attacker’s point of view, each suggesting that alterna-
tive taxonomies need to be developed. Allen et al., state that
intrusion detection is an immature discipline and has yet to es-
tablish a commonly accepted framework. McHugh suggests
classifying attacks according to protocol layer or, as an alter-
native, whether or not a completed protocol handshake is re-
quired. Likewise, Guha [9] suggests an analysis of each layer
of the TCP/IP protocol stack to serve as the foundation for an
attack taxonomy.

As an alternative to a taxonomy, we propose a data model
implemented with an ontology representation language such
as the Resource Description Framework Schema (RDFS) [28]
or DARPA Agent Markup Language [12]. We illustrate the
benefits of using ontologies by presenting an implementation
of our ontology being utilized by a distributed intrusion detec-
tion system. Accordingly, we have specified our target-centric
ontology in DAML and have implemented it using DAML-
JessKB [19], an extension to the Java Expert System Shell [6].

Because IDS’s are either adjacent to or co-located with
the target of an attack it is imperative that any classification
scheme used to represent an attack be target-centric, where
each taxonomic character is comprised of properties and fea-
tures that are observable by the target of the attack. Conse-
quently, our ontology only defines properties and attributes
that are observable and measurable by the target of an attack.
As a basis for establishing our a posteriori target-centric attack
ontology, we evaluated and analyzed over 4,000 computer vul-
nerabilities and the corresponding attack strategies employed
to exploit them.

The remainder of this paper is organized as follows: Sec-
tion 2 presents related work in the form of alternative attack
taxonomies as well as presenting related work in the area of
ontologies for intrusion detection. Section 3 presents the char-
acteristics of a sufficient taxonomy. Section 4 details the moti-
vation for abandoning taxonomies in favor of ontologies. Our
target-centric attack taxonomy is presented in Section 5. Sec-



tion 6 details our implementation and Section 7 provides an
example scenario illustrating the utility of the ontology within
a distributed intrusion detection system. We conclude with
Section 8.

2 Related Work

As previously stated, most of the existing research in the
area of the classification of computer attacks is limited to tax-
onomies. Because a taxonomy is contained within an ontology
we address the research in the area of defining intrusion tax-
onomies before we address ontologies. Accordingly, this sec-
tion is subdivided, with Subsection 2.1 presenting related work
in the area of taxonomies for intrusion detection and Subsec-
tion 2.2 presenting related work in the area of ontologies for
intrusion detection.

2.1 Related Work: Taxonomies

There are numerous attack taxonomies proposed for use in
intrusion detection research.

In [21] Landwehr et al., present a taxonomy categorized ac-
cording to genesis (how), time of introduction (when) and lo-
cation (where). They include sub-categories of: validation er-
rors, boundary condition errors and serialization errors, which
we incorporate into our ontology as the means of an attack.

During the 1998 and 1999 DARPA Off Line Intrusion De-
tection System Evaluations [11] [23] [17] Weber provided a
taxonomy defining the categories of consequence, to include
Denial of Service, Remote to Local and User to Root, which
we incorporate into our work.

Lindqvist and Jonsson [22] state that they “focus on the ex-
ternal observations of attacks and breaches which the system
owner can make”. Our effort is consistent with their focus.

2.2 Related Work: Ontologies

There is little, if any, published research formally defining
ontologies for use in Intrusion Detection.

Raskin et al. [27], introduce and advocate the use of on-
tologies for information security. In arguing the case for using
ontologies, they state that an ontology organizes and system-
atizes all of the phenomena (intrusive behavior) at any level
of detail, consequently reducing a large diversity of items to a
smaller list of properties.

In commenting on the IETF’s IDMEF, Kemmerer and Vi-
gna [16] state “it is a but a first step, however additional effort
is needed to provide a common ontology that lets IDS sensors
agree on what they observe”.

3 Characteristics of a Sufficient Taxonomy

At this point, a clear understanding of the definition, pur-
pose and objective of a taxonomy is in order. Accordingly,
a taxonomy is a classification system where the classification
scheme conforms to a systematic arrangement into groups or
categories according to established criteria [32]. Glass and

Vessey [8] contend that taxonomies provide a set of unifying
constructs so that the area of interest can be systemically de-
scribed and aspects of relevance may be interpreted. The over-
arching goal of any taxonomy, therefore, is to supply some
predictive value during the analysis of an unknown specimen,
while the classifications within the taxonomy offer an explana-
tory value.

According to Simpson [29] classifications may be created
either a priori or a posteriori. An a priori classification is
created non-empirically whereas an a posteriori classification
is created by empirical evidence derived from some data set.
Simpson defines a taxonomic character as a feature, attribute
or characteristic that is divisible into at least two contrasting
states and used for constructing classifications. He further
states that taxonomic characters should be observable from the
object in question.

Amoroso [2], Lindqvist, et al. [22] and Krusl [20] each have
identified what they believe to be the requisite properties of
a sufficient and acceptable taxonomy for computer security.
Collectively, they have identified the following properties as
essential to a taxonomy: Mutually Exclusive, Exhaustive, Un-
ambiguous, Repeatable, Accepted, Useful, Comprehensible,
Conforming, Objective, Deterministic and Specific. Accord-
ingly, as an ontology subsumes a taxonomy these characteris-
tics form the underpinnings of our work.

4 From Taxonomies to Ontologies: The case for
ontologies in Intrusion Detection

Ning et al. [25], propose a hierarchical model for attack
specification and event abstraction using three concepts essen-
tial to their approach: System View, Misuse Signature and View
Definition. Their model is based upon a thorough examination
of attack characteristics and attributes and is encoded within
the logic of their proposed system. Consequently, this model
is not readily interchangeable and reusable by other systems.

The Intrusion Detection Working Group of Internet Engi-
neering Task Force (IETF) has proposed the Intrusion Detec-
tion Message Exchange Requirements [34] which, in addition
to defining the requirements for the Intrusion Detection Mes-
sage Exchange Format, also specifies the architecture of an
IDS. The Intrusion Detection Message Exchange Format Data
Model (IDMEF) and accompanying Extensible Markup Lan-
guage Document Type Definition [3] is a profound effort to
establish an industry wide data model which defines computer
intrusions. IDMEF, however, has its shortcomings. Specifi-
cally, it uses XML which is limited to a syntactic represen-
tation of the data model which does not convey the seman-
tics, relationships, attributes and characteristics of the objects
which it represents.. This limitation requires that each individ-
ual IDS interpret and implement the data model programmati-
caly.

According to Davis et al. [4], knowledge representation is
a surrogate or substitute for an object under study. In turn,
the surrogate enables an entity, such as a software system, to
reason about the object. Knowledge representation is also a set
of ontological commitments specifying the terms that describe



the essence of the object. In other words, meta-data or data
about data describing their relationships.

Frame Based Systems are an important thread in knowledge
representation. According to Koller et al. [18], Frame Based
Systems provide an excellent representation for the organiza-
tional structure of complex domains. Frame Based Languages,
which support Frame Based Systems, include RDF, and are
used to represent ontologies. According to Welty et al. [33], an
ontology, at its deepest level, subsumes a taxonomy. Similarly,
Noy and McGuinness [26] state the process of developing an
ontology includes arranging classes in a taxonomic hierarchy.

In applying ontologies to the problem of intrusion detec-
tion, the power and utility of the ontology is not realized by
the simple representation of the attributes of the attack. In-
stead, the power and utility of the ontology is realized by
the fact that we can express the relationships between col-
lected data and use those relationships to deduce that the
particular data represents an attack of a particular type.
Moreover, specifying an ontological representation decouples
the data model defining an intrusion from the logic of the in-
trusion detection system. The decoupling of the data model
from the IDS logic enables non-homogeneous IDS’s to share
data without a prior agreement as to the semantics of the data.
To effect this sharing, an instance of the ontology is shared
between IDS’s in the form of a set of DAML (or RDF) state-
ments. If the recipient does not understand some aspect of the
data, it obtains the ontology in order to interpret and use the
data as intended by its originator.

Ontologies therefore, unlike taxonomies, provide powerful
constructs that include machine interpretable definitions of the
concepts within a specific domain and the relations between
them. In our case the domain is that of a particular computer
or a software system acting on the computer’s behalf in order
to detect attacks and intrusions. Ontologies may be utilized
to not only provide an IDS with the ability to share a com-
mon understanding of the information at issue but also further
enable the IDS with improved capacity to reason over and an-
alyze instances of data representing an intrusion. Moreover,
within an ontology, characteristics such as cardinality, range
and exclusion may be specified and the notion of inheritance
is supported.

5 Target-Centric Ontology

We have constructed our ontology in accordance with
the results of a detailed analysis of the CERT/CC Advi-
sories maintained by the “Computer Emergency Response
Team/Coordination Center” of Carnegie Mellon University’s
Software Engineering Institute and the “Internet Catalog of
Assailable Technologies” (ICAT) maintained by the National
Institute of Standards [13, 14]. Accordingly, the attributes of
the Class Intrusion consist of:

� System Component Most Often Targeted. This includes
the Protocol Stack, Operating System and Applications.

� Means of Attack. Consisting of: Input Validation Errors,
Buffer Overflows, Boundary Condition Errors and other
Malformed Input.

� Consequences of Attack. Where the result of the attack
is manifested as a Denial of Service, Unothrozed Access
(user or root), Loss of Confidentiality and Information
Leakage resulting from a probe.

� Location of Attack. We categorize “Location of Attack”
as Remote, Local, or Remote/Local.

Our ontology modeling the domain of computer attacks, is
specified in the DARPA Agent Markup Language (DAML).
DAML is a description logic language (DLL), which as a
knowledge representation language is tailored for expressing
knowledge about concepts and concept hierarchies and is well
grounded in axiomatic and model semantics. DAML defines a
number of constructs, such as intersection, union, and quan-
tification, which can be used to define concepts and roles.
DAML, like all description logics, supports classification and
satisfiability, subsumption and instance checking.

At the top most level of the ontology, we define the classes
Host, State and Intrusion. The relationship between Host and
State is Current State while the relationship between Host and
Intrusion is Victim of. It is important to note that while the
ontology defines classes, properties, and their relationships,
instances of the class Intrusion will only be instantiated if cer-
tain properties of the class Current State are found to exist.

Figure 1 presents a high level graphical illustration of our
target-centric ontology. In the illustration, an ellipse denotes a
subject and object while an arc represents the predicate (rela-
tionship).
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Figure 1. High Level Illustration of the Target-
Centric Attack Ontology

Figure 2 depicts the class Host and its subclasses. The
classes Network, System and Process are comprised of prop-
erties that reflect the current state of the particular host. For
example, and as will be later demonstrated, the network class
includes the properties TCP MAX which defines the maximum
number of TCP connections, WAIT STATE defining the num-
ber of connections waiting on the final ack of the three-way



handshake required to establish a TCP connection, THRESH-
OLD which specifies the allowable ratio between maximum
connections, and partially established connections and EX-
CEED T a boolean value indicating that the allowable ratio
has been exceeded. It should be noted that these are only four
of several network properties.

State

Network ProcessSystem

Figure 2. The State Class

Likewise, the class Process contains properties that mea-
sure conformance of that specific process (e.g.: sendmail,
sshd, httpd, etc.) to its baselined profile. The class System
is comprised of properties such as memory usage, processor
load, etc., that describe the overall system state.

The class Intrusion is comprised of the classes Conse-
quence and Input where the relationship (predicate) between
Intrusion and Consequence is Resulting in. Likewise, the pred-
icate connecting Intrusion and Input is Effected by. In turn,
the class Input is comprised of the classes Component, Means
and Location. Similarly, the predicates defining the relation-
ship between Input and Component is Directed to, Input and
Means is Causing, and Input and Location is Received From.

Figure 3 illustrates the class System Component and all of
its subclasses. The class Protocol Stack has the subclasses
IP, TCP and UDP which inherit their properties directly from
the class Network that is defined under State. Accordingly,
the class TCP inherits the properties WAIT STATE, TCP MAX,
THRESHOLD, and EXCEED T with restrictions. (We address
DAML restrictions shortly).
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Figure 3. The System Component Class and its
Subclasses

The class Means is comprised of the subclasses Input Vali-
dation and Logic Exploit both of which have subclasses asso-
ciated with them. The subclass Buffer Overflow has a boolean

attribute, inherited from the class State, providing it is true,
that indicates if the instruction pointer points to an address
within the process’ stack frame. Figure 4 illustrates the class
hierarchy rooted at the class Means.
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Figure 4. The Means Class and its Subclasses

Figure 5 illustrates the class Consequence and its sub-
classes. Although it is not illustrated, Denial of Service
has a subclass called Syn Flood which has a property that
is a boolean value restricted by the property EXCEED T. In
DAML, a restriction means that a property of one class will be
inherited by another class providing the property is of a spe-
cific value. We provide an example of this in the DAML listing
in Section 6, where the class Syn Flood inherits the property
Exceed T from the class Network if the value of Exceed T is
true.

Consequence

Sub Class of Sub Class of

Denial of Service ProbeLoss of Conf.User to RootRemote to Local

Figure 5. The Consequence Class and its Sub-
classes

Currently, we are focusing on TCP/IP traffic, hence the
class Location is comprised of the subclasses Local and Re-
mote. Figure 6 illustrates the class Location and its children.
As was the case with the class Protocol Stack the class TCP/IP
inherits some of its properties, with restrictions, from the class
Network. Moreover, in the event that additional networking
protocols were to be supported by the specific host, the ontol-
ogy is easily extensible and additional protocols may added as
subclasses.

6 Implementation

We have prototyped our ontology using DAMLJessKB [19],
an extension to the Java Expert System Shell (JESS) [6]. JESS
is a Java implementation of the C Language Integrated Pro-
duction System (CLIPS) [7]. Accordingly, we use DAML-
JessKB to reason over instances of our target centric ontol-
ogy. Upon initialization we convert the DAML statements
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representing the ontology into N-Triples and assert them into
a knowledge base as rules. The assertions are of the form:

(assert
(PropertyValue (predicate) (subject) (object)))

Once asserted, DAMLJessKB it evaluates them and produces
additional statement to include all of the chains of implication
derived from the ontology.

The following is the DAML representation of a subset of
our ontology. It consists of the classes Host, State, Network,
Intrusion, Consequence, DoS, and Syn Flood and some of
their properties:

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<!DOCTYPE rdf:RDF [
<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<!ENTITY IntrOnt "http://security.umbc.edu/IntrOnt#">
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">
<!ENTITY xsd "http://www.w3.org/2000/10/XMLSchema#">
<!ENTITY daml "http://www.daml.org/2001/03/daml+oil#">
<!ENTITY dex "http://www.daml.org/2001/03/daml+oil-ex#">
<!ENTITY exd "http://www.daml.org/2001/03/daml+oil-ex-dt#">]>

<rdf:RDF xmlns:rdf="&rdf;"
xmlns:IntrOnt="&IntrOnt;"
xmlns:rdfs="&rdfs;"
xmlns:daml="&daml;"
xmlns:xsd="&xsd;"
xmlns:dex="&dex;"
xmlns:exd="&exd;"
xmlns ="http://www.daml.org/2001/03/daml+oil-ex#">

<daml:Class rdf:ID="BooleanValue">
<daml:oneOf rdf:parseType="daml:collection">

<BooleanValue rdf:ID="true"/>
<BooleanValue rdf:ID="false"/>

</daml:oneOf>
</daml:Class>

<daml:Class rdf:about="&IntrOnt;Host"
rdfs:label="Host">

<rdfs:subClassOf rdf:resource="&rdfs;Resource"/>
</daml:Class>

<rdf:Property rdf:about="&IntrOnt;IP_Address"
rdfs:label="IP_Address">

<rdfs:domain rdf:resource="&IntrOnt;Host"/>
<rdfs:range rdf:resource="&rdfs;Literal"/>

</rdf:Property>

<rdf:Property rdf:about="&IntrOnt;Current_state"
rdfs:label="Current_state">

<rdfs:domain rdf:resource="&IntrOnt;Host"/>
<rdfs:range rdf:resource="&IntrOnt;State"/>

</rdf:Property>

<rdf:Property rdf:about="&IntrOnt;Target_of"
rdfs:label="Target_of">

<rdfs:domain rdf:resource="&IntrOnt;Host"/>
<rdfs:range rdf:resource="&IntrOnt;Intrusion"/>

</rdf:Property>

<daml:Class rdf:about="&IntrOnt;State"
rdfs:label="State">

<rdfs:subClassOf rdf:resource="&rdfs;Resource"/>
</daml:Class>

<daml:Class rdf:about="&IntrOnt;Network"
rdfs:label="Network">

<rdfs:subClassOf rdf:resource="&IntrOnt;State"/>
</daml:Class>

rdf:Property rdf:about="&IntrOnt;TCP_Max"
rdfs:label="TCP_Max">

<rdfs:domain rdf:resource="&IntrOnt;Network"/>
<rdfs:range rdf:resource="&rdfs;nonNegativeInteger"/>

</rdf:Property>

<rdf:Property rdf:about="&IntrOnt;Wait_State"
rdfs:label="Wait_State">

<rdfs:domain rdf:resource="&IntrOnt;Network"/>
<rdfs:range rdf:resource="&rdfs;nonNegativeInteger"/>

</rdf:Property>

<rdf:Property rdf:about="&IntrOnt;Threshold"
rdfs:label="Threshold">

<rdfs:domain rdf:resource="&IntrOnt;Network"/>
<rdfs:range rdf:resource="&rdfs;nonNegativeInteger"/>

</rdf:Property>

<rdf:Property rdf:about="&IntrOnt;Exceed_T"
rdfs:label="Exceed_T">

<rdfs:domain rdf:resource="&IntrOnt;Network"/>
<rdfs:range rdf:resource="&IntrOnt;BooleanValue"/>
</rdf:Property>

<rdf:Property rdf:about="&IntrOnt;result_in"
rdfs:label="restult_in">

<rdfs:range rdf:resource="&IntrOnt;Consequence"/>
<rdfs:domain rdf:resource="&IntrOnt;Intrusion"/>

</rdf:Property>

<rdfs:Class rdf:about="&IntrOnt;Consequence"
rdfs:label="Consequence">

<rdfs:subClassOf rdf:resource="&rdfs;Resource"/>
</rdfs:Class>

<rdfs:Class rdf:about="&IntrOnt;DoS"
rdfs:label="DoS">

<rdfs:subClassOf rdf:resource="&IntrOnt;Consequence"/>
</rdfs:Class>

<daml:Class rdf:about="&IntrOnt;Syn_Flood"
rdfs:label="Syn_Flood">

<rdfs:subClassOf rdf:resource="&IntrOnt;DoS"/>
<rdfs:subClassOf rdf:resource="&IntrOnt;Network">
<daml:Restriction>

<daml:onProperty rdf:resource="&IntrOnt;Exceed_T"/>
<daml:hasValue rdf:resource="&IntrOnt;true"/>

</daml:Restriction>
</rdfs:subClassOf>

</daml:Class>

As previously stated, our IDS model is distributed intrusion
detection system that includes the use of data mining tech-
niques to profile the quiescent state of a host [13] and [14].
Once a host has been profiled our IDS model calls for the
continual sampling of network, process and system data, sub-



sequently comparing it to the profiled baseline. If we detect
more than a marginal deviation between the sample and the
baseline, the data, consisting of hundreds of low-level system
parameters, are asserted into the knowledge base and reasoned
over.

The following rule, when applied to the knowledge base,
will indicate the occurrence of a denial of service attack if an
instance of it or any of its subclasses exist.

(defrule isDOS

(PropertyValue
(p http://www.w3.org/1999/02/22-rdf-syntax-ns#type)
(s ?attack-id)
(o http://security.umbc.edu/Intrusion#DoS))

=>

(printout t ‘‘A DoS attack has occured.’’ crlf
‘‘with ID number: ‘‘ ?var))

Because of DAML’s notion of classes and subclasses, a denial
of service attack is inclusive of Syn Floods, Mailstorms, Pings
of Death, or any other denials of service.

A DAML representation of an instance of a Syn Flood at-
tack is illustrated below. The first statement indicates that an
event numbered 00035 has occurred which has the resulting in
property instantiated to an instance of a Syn Flood attack and
is uniquely identified as 00038. Note: the following instance
was produced by querying the knowledge base for instances
of a denial of service attack, not for instances of a Syn Flood
attack.

<Intrusion:Intrusion rdf:about="&IntrOnt;00035"
Intrusion:IP_Address="130.85.112.231"

<Intrusion:resulting_in rdf:resource="&IntrOnt;00038"/>
</Intrusion:Intrusion>

<Intrusion:Syn_Flood rdf:about="&IntrOnt;00038"
Intrusion:Exceed_T="true"
Intrusion:time="20021212 154312">

</Intrusion:Syn_Flood>

Because our IDS model is distributed each individual IDS
shares information with the other IDS’s in its coalition. To
that effect, the instance of the Syn Flood attack is sent to each
IDS in the coalition where it is asserted into the corresponding
knowledge bases.

7 Using the Ontology to Detect a Distributed
Attack

The following example of a distributed attack illustrates the
utility of our ontology.

The Mitnick attack is multi-phased; consisting of a De-
nial of Service attack, TCP sequence number prediction and
IP spoofing. When this attack first occurred a Syn Flood was
used to effect the denial of service, however any denial of ser-
vice attack would have sufficed.

In the following example, which is illustrated in figure 7,
Host B is the ultimate target and Host A is trusted by Host B.

The attack is structured as follows:

1. The attacker initiates a Syn/Flood attack against Host A
to prevent Host A from responding to Host B.

2. The attacker sends multiple TCP packets to the target,
Host B in order to be able to predict the values of TCP
sequence numbers generated by Host B.

3. The attacker then pretends to be Host A, by spoofing
Host A’s IP address, and sends a Syn packet to Host B
in order to establish a TCP session between Host A and
Host B.

4. Host B responds with a SYN/ACK to Host A. The at-
tacker does not see this packet. Host A, since its in-
put queue is full due to number of half open connections
caused by the Syn/Flood attack, cannot send a RST mes-
sage to Host B in response to the spurious Syn message.

5. Using the calculated TCP sequence number of Host B
(recall that the attacker did not see the Syn/ACK mes-
sage sent from Host B to Host A) the attacker sends an
Ack with the predicted TCP sequence number packet in
response to the Syn/Ack packet sent to Host A.

6. Host B is now in a state where it believes that a TCP
session has been established with a trusted host Host A.
The attacker now has a one way session with the target,
Host B, and can issue commands to the target.
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Figure 7. Illustration of the Mitnick Attack

It should be noted that an intrusion detection system run-
ning exclusively at either host will not detect this multi-phased
and distributed attack. At best, Host A’s IDS would see a rel-
atively short lived Syn Flood attack, and Host B’s IDS might
observe an attempt to infer TCP sequence numbers, although
this may not stand out from other non-intrusive but ill-formed
TCP connection attempts.

The following explains the utility of our ontology, as well
as the importance of forming coalitions of IDSs. In our IDS



model, we form coalitions of IDS services each of which is re-
sponsible for specific parts of an enterprise or domain. For ex-
ample, one IDS service may be responsible for a specific host,
while another is responsible for a group of hosts, while yet
still another is responsible for monitoring network traffic. The
IDS’s all share a common ontology and utilize a secure com-
munications infrastructure that has been optimized for IDS’s.
We present such a infrastructure in [15, 30, 31].

Consider the case of the instance of the Syn Flood attack
presented in Section 6 and that it was directed against Host
A in our example scenario. As the IDS responsible for Host
A is continually monitoring for anomalous behavior, asserting
and de-asserting data as necessary, it will detect the occurrence
of an inordinate number of partially established TCP connec-
tions, and transmit the instance of the Syn Flood to the other
IDS’s in its coalition.

That instance is repeated below:

<IntrOnt:Intrusion rdf:about="&IntrOnt;00035"
IntrOnt:IP_Address="130.85.112.231">
<IntrOnt:resulting_in

rdf:resource="&IntrOnt;00038"/>
</IntrOnt:Intrusion>

<IntrOnt:Syn_Flood rdf:about="&IntrOnt;00038"
IntrOnt:Exceed_T="true"
IntrOnt:int_time="20021212 154312"/>

This instance is converted into a set of N-Triples and as-
serted into the knowledge base of each IDS in the coalition.
Those sameN-Triples will be de-asserted when the responsi-
ble IDS transmits a message stating that the particular host is
no longer the victim of a Syn Flood attack. This situation,
especially in conjunction with Host B being subjected to a se-
ries of probes meant to determine its TCP sequencing, could
be the prelude to a distributed attack the current connections
and pending connections are also asserted into the knowledge
base.

The following is a set DAML statements describing con-
nections:

<IntrOnt:Connection rdf:about="&IntrOnt;00038"
IntrOnt:IP_Address="130.85.112.231"
IntrOnt:conn_time="20021212 154417"/>

<IntrOnt:Connection rdf:about="&IntrOnt;00101"
IntrOnt:IP_Address="202.85.191.121"
IntrOnt:conn_time="20021212 151221"/>

<IntrOnt:Connection rdf:about="&IntrOnt;00102"
IntrOnt:IP_Address="68.54.101.78"
IntrOnt:conn_time="20021212 150152"/>

In order to detect an Mitnick type attack, we include the
following DAML statements that partially specify an ontology
of the Mitnick attack (the class is identified as P Mitnick for
partial):

<daml:Class rdf:about="&Intrusion;P_Mitnick"
rdfs:label="P_Mitnick">
<daml:intersectionOf rdf:parseType=’’daml:collection’’>
<daml:Class rdf:about="&IntrOnt;DoS"/>
<daml:Class rdf:about="&IntrOnt;Connection"/>

</daml:intersectionOf>
</daml:Class>

The ontology is partial because the Mitnick attack has the ad-
ditional property that the connection time with the victim must
be greater than or equal to the time of the denial of service at-
tack. An instance of this ontology will be instantiated provided
that there exists an instance of a denial of service attack that
has the same unique identifier as that of an established con-
nection. In fact there will be an instance created in each case
where this condition holds. In our prototype, we check each
instance to determine if the time of the connection is greater
than or equal the time of the attack.

The following rules are used to check each instance:

(defrule isMitnick

(PropertyValue
(p http://security.umbc.edu/IntrOnt#P\_Mitnick )
(s ?eventNumber) (o "true"))

(PropertyValue
(p http://security.umbc.edu/IntrOnt#Int_time)
(s ?eventNumber) (o ?Int_Time))

(PropertyValue
(p http://security.umbc.edu/IntrOnt#Conn_time)
(s ?eventNumber) (o ?Conn_Time))

=>
(if (>= ?Conn_Time ?Int_Time) then
(printout t ‘‘event number: ‘‘
?eventnumber ‘‘ is a Mitnick Attack: crlf)))

this rule will fire and event number 00038, the instance of the
intersection of the connection and the denial of service attack,
will be displayed.

At this point it is important to review the sequence of events
leading up to the discovery of the Mitnick attack. Recall, that
the IDS responsible for the victim of the Syn Flood attack
queried its knowledge base for an instance of a DoS denial
of service attack. The query returned an instance of a Syn
Flood which was instantiated solely on the condition that the
Exced T property of the Network class was true.

The instance (its properties) of the Syn Flood attack was
transmitted in the form of a set of DAML statements to the
other IDS’s in the coalition. In turn, these IDS’s converted the
DAML to a set of N-Triples and asserted them into their re-
spective knowledge bases. As a Syn Flood is a precursor to
a more insidious attack, instances of established and pending
connections were asserted into the knowledge base. As the
state of the knowledge base is dynamic due to the assertions
and de-assertions, the rule set of each IDS is continually ap-
plied to the knowledge base.

The ontology specifying the Mitnick class states that it is
the intersection of both the DoS and Connection classes. Be-
cause each IDS instantiates an instance when this constraints
imposed by intersection is true, we need to examine each in-
stance to ensure that
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8 Conclusion and Future Work

We have analyzed vulnerability and intrusion data derived
from CERT advisories and NIST’s ICAT meta-base resulting
in the identification of the components (network, kernel, appli-
cation and other) most frequently attacked. We have also iden-
tified the most common means and consequences of the attack



as well as the location of the attacker. Our analysis shows that
non-kernel space (non operating system) applications, running
as either root or user, are the most frequently attacked and are
attacked remotely. The most common means of attack are ex-
ploits. According to the CERT advisories issued in response
to severe vulnerabilities, root access is the most common con-
sequence of an exploit whereas the ICAT data shows denial of
service to be the most common consequence.

Our analysis was conducted in order to identify the observ-
able and measurable properties of computer attacks and intru-
sions. Accordingly, we have developed a target-centric on-
tology characterized by System Component, Means of Attack,
Consequences of Attack and Location of Attacker. We have
stated the case for replacing simple taxonomies with ontolo-
gies for use in IDS’s and have presented an initial ontology
specifying the class Intrusion. Our ontology is available at:
http://security.cs.umbc.edu/Intrusion.

We have prototyped our ontology using the DAMLJessKB,
which has some limitations. We intend to either modify
DAMLJessKB in order to make it a full and complete rea-
soner or use Stanford’s Java Theorem Prover [5] or Rename
ABox and Concept Expression Reasoner [10].
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