
An Architecture for Information Agents

Donald P McKay, Jon Pastor and Robin McEntire
Loral Defense Systems

Tim Finin
Computer Science and Electrical Engineering
University of Maryland - Baltimore County

Abstract

Information agents include a significant class of applications
which mediate information structures of domain objects to
instance representations in a storage manager. Over the past
several years, we have been experimenting with an
information agent architecture in the context of the ARPI.
Our information agent architecture uses the Knowledge
Query and Manipulation Language (KQML) to implement
access the knowledge services of such an information agent.
The information agent itself, which we call the Loom
Interface Module (LIM), uses knowledge structures to
represent domain objects and contains an explicit mapping
of knowledge structures to representations in an external
storage manager, a relational database management system.
We have developed several performance metrics and
features for information agents constructed using this
architecture. We described several key component
algorithms and performance measurements We have
developed the performance metrics, analysis and examples
as a part of ARPI TIEs, introduction into the Common
Prototyping Environment and, most importantly, under
collaboration with the SIMS project at USC ISI and with the
CoBASE project at UCLA.

Introduction

Knowledge-based systems can provide a key
information processing aid to operational planning,
scheduling and monitoring of operations. Specifically,
these systems can provide key information support for
current deficiencies in crisis action planning for
transportation logistics. Requirements for these systems
include the ability to access, manipulate, and modify the
information stored in existing databases, and, a high level

1 This work was supported by Rome Laboratory and the
Advanced Research Projects Agency under USAF contracts
F30602-93-C-0177 and F30602-93-C-0028. The views
and conclusions are the authors' and should not be
interpreted as the official opinion or conclusions of the US
Government, the USAF, Rome Laboratory, or ARPA.

of collaborative and cooperative processing with the other
planning agents including people and software components.
Within the ARPA/Rome Lab Planning Initiative (ARPI),
Loral Defense Systems, in collaboration with USC ISI and
UCLA, developed an intelligent information services
architecture which integrates cooperative user interaction
and information location via domain/user-oriented object
representations. This effort, involving participants and
software components developed by Loral Defense Systems,
USC ISI and UCLA, demonstrated an experimental
prototype operating in real-time over the internet capable of
providing information satisfying user requests making
transparent to the user 1) query relaxation
and reformulation despite over-specific queries and lack of
data, 2) location and selection of information sources
based upon multiple selection criteria, 3) transformation of
low-level data source information from databases into
domain and user relevant information structures, and 4) the
query language utilized. Internal communications over the
internet were implemented using KQML, the Knowledge
Query and Manipulation Language, an ARPA-sponsored
emerging language and protocol for information exchange.

In this paper, we describe technology components to
support persistent storage and retrieval of plans and other
military transportation relevant entities. This includes the
integration of knowledge-based (KB) representation and
reasoning systems with standard database (DB)
management systems and the development of new
standards for interface languages between knowledge-based
systems and other software components including
knowledge-based systems themselves. The integration of
knowledge bases and databases is accomplished by the
Loom Interface Module (LIM). LIM allows Loom
(MacGregor & Bates 1987) applications to reason
efficiently over a large collection of data from a database
by utilizing the efficient computational capabilities of a
database management system and by avoiding the need to
create regular Loom objects to represent intermediate data.
In order to enhance the integration of multiple knowledge-
based systems, Loral Defense Systems and UMBC are
designing and prototyping a new high-level protocol for
conveying knowledge between systems. This protocol,

KQML (Knowledge Query and Manipulation Language), is
being developed in conjunction with a number of university
and industry laboratories under the ARPA Intelligent
Information Integration program and the Knowledge
Sharing Initiative.

These two components, when integrated with other
intelligent information system components being
developed at USC ISI (SIMS) and at UCLA (CoBASE),
provide intelligent access to distributed information sources
in a fault tolerant and cooperative manner supporting
military planners. The SIMS (Arens 1992) and CoBASE
(Chu & Chen 1994) systems are described elsewhere.

ARPI Information Agent

This section describes the basic architecture of an
Information Agent --- a knowledge server or source capable
of handling all requests for information in a given domain,
in this case, the transportation logistics planning domain.
We have constructed an Information Agent prototype based
on the Loom Interface Module (LIM). Using LIM, we
have constructed an Information Agent (see Figure 1)
which mediates between knowledge structures defined for
use by intelligent system components and database
structures. This information agent responds to queries and
other commands which operate upon knowledge structures

and translates them to the appropriate target system, e.g.,
SQL queries and data manipulation commands. This
information agent has been used to support experimental
representations of transportation assets (e.g., planes and
ships), geographical locations (e.g., airports and seaports)
as well as transportation relevant information about forces
and transportation schedules. This LIM information agent
is used in conjunction with the CoBASE and SIMS systems
described elsewhere to provide a flexible and distributed
cooperative intelligent information agent for transportation
data which can be accessed at each of these interface
points. If only mediation to shared representations is
desired, the LIM information agent can be accessed
directly; if information access planning is required the
SIMS agent can be accessed; finally, if cooperative
processing is desired, CoBASE can be used as the point of
contact. All three systems can be accessed independently
depending on the desired functionality. The Knowledge
Query and Manipulation Language is used to support this
level of communication transparency.

We have built an Information Agent prototype which
involved the integration of the three knowledge-base/data-
base components: LIM, SIMS, and CoBASE and focused
upon the data and information collected for the
transportation logistics domain. The prototype also tested
the robustness of its three component systems in a realistic

Col4 Col5 Col6

Tbl2
Col4 Col5 Col6

Tbl2
Col4 Col5 Col6

Tbl2
Col4 Col5 Col6

Tbl2
Col4 Col5 Col6

Tbl2
Col4 Col5 Col6

Tbl2

Col4 Col5 Col6

Tbl2

LIM Information Agent

Lin e 1

L in e 2

L in e 3

L in e 4

L in e 5

L in e 6

L in e 7

L in e 8

JAN FEB MA R A PR MA Y JUN JUL A UG SEP OCT NOV DEC

Col4 Col5 Col6

Tbl2 Col4 Col5 Col6

Tbl2

Planning
or

Scheduling
Component

CPE Agent

Planning
or

Scheduling
Component

CPE Agent

Planning
or

Scheduling
Component

CPE Agent

Multiple
Information

Source
Access

SIMS (USC ISI)

Cooperative
Processing for
Approximate

Queries

CoBASE (UCLA)

Figure 1. LIM Information Agent. LIM provides domain relevant
representations of transportation assets and other resources in a high-level
representation. It mediates between the storage structures and the
representations used by other intelligent agents.

3

information environment. Performance of tasks in the
transportation planning domain typically requires access to
data stored in a multiplicity of databases, by people (or
computer systems) unfamiliar with their specific structure
and contents. It is thus necessary to provide for the
possibility of retrieving required data using a uniform
language, independently of where the data is actually
located and how complicated the actual process of
retrieving it may be.

The Information Agent architecture currently address
separate aspects of this problem. This prototype united
them into one system that:
• accepted a query in an extension of the Loom

language,
• relaxed the query, if appropriate, to enable retrieval of

additional information of relevance to the user,
• planned a series of queries to databases and data

manipulations that
• brought about the retrieval and/or computation of the
• requested data, and finally
• execute the plan, issuing the necessary queries to the

appropriate databases, and returned the resulting data
to the user

LIM, SIMS, and CoBase have been combined in
various ways, including both a single Common Lisp
program which shared one Loom model of the application
domain and the databases as well as a distributed
Information Agent architecture in which the LIM
Information Agent, acting as a server, was at a remote site.
Queries were submitted in the Loom language, extended by
the approximation operators supported by the CoBASE
system. CoBASE translated the user’s query into one in the
standard Loom language. SIMS broke down the resulting
query into a series of LIM queries (again in the Loom
language), each restricted to a single databases. The
databases were accessed over a network, using the LIM
database interface.

KQML Agent Communication Language

This section provides a brief overview of the agent
communication language used in the Information Agent
architecture. Many computer systems are structured as
collections of independent processes, frequently distributed
across multiple hosts linked by a network. Database
processes, real-time processes and distributed AI systems
are a few examples. Furthermore, in modern network
systems, it should be possible to build new programs by
extending existing systems; a new small process should be
conveniently linkable to existing information sources and
tools such as filters or rule based systems.

One type of program that would thrive in such an
environment is a mediator (Wiederhold 1992), or

information agent in this paper. Mediators are processes
which situate themselves between “provider” processes and
“consumer” processes and perform services on the raw
information such as providing standardized interfaces;
integrating information from several sources; translating
queries or replies. Mediators are becoming increasingly
important as they are commonly proposed as an effective
method for integrating new information systems with
inflexible legacy systems.

Standards and intercommunication approaches such as
CORBA, ILU, OpenDoc, OLE, etc., are efforts that are
often promulgated as solutions to the agent communication
problem. Driving such work is the difficulty of running
applications in dynamic, distributed environments. The
primary concern of these technologies is to ensure that
applications can exchange data structures and invoke
remote methods across disparate platforms. Although the
results of such standards efforts will be useful in the
development of software agents, they do not provide
complete answers to the problems of agent communication.
After all, software agents are more than collections of data
structures and methods on them. Thus, these standards and
protocols are best viewed as a substrate on which agent
languages might be built.

KQML is a language and a protocol that supports this
type of agent communication specifically for knowledge-
based systems or information agents. It was developed by
the ARPA supported Knowledge Sharing Initiative (Neches
et al. 1991, Patil et al. 1992) and separately implemented
by several research groups. It has been successfully used to
implement a variety of information systems using different
software architectures.

KQML is a layered agent communication language
(Finin et al. 1994; Finin et al. 1995; Mayfield et al. 1996).
The KQML language can be viewed as being divided into
two layers: the content layer, and the message layer or the
communication layer. The content layer is the actual
content of the message, in the agent’s representation
language; in the Information Agent described in this paper
the content language was an extension of the Loom
language developed under the Planning Initiative. KQML
can carry any representation language, including languages
expressed as ASCII strings and those expressed using a
binary notation. All of the KQML implementations ignore
the content portion of the message except to the extent that
they need to determine where it ends.

The communication level encodes a set of features to
the message which describe the lower level communication
parameters, such as the identity of the sender and recipient,
and a unique identifier associated with the communication.
It also determines the kinds of interactions one can have
with a KQML-speaking agent. The primary function of the
communication layer is to identify the protocol to be used
to deliver the message and to supply a speech act or

performative which the sender attaches to the content. The
performative signifies that the content is an assertion, a
query, a command, or any of a set of known performatives.
Because the content is opaque to KQML, this layer also
includes optional features which describe the content, e.g.,
its language.

Conceptually, a KQML message consists of a
performative, its associated arguments which include the
real content of the message, and a set of optional arguments
which describe the content in a manner which is
independent of the syntax of the content language. For
example, a message representing a query about the location
of a particular airport might be encoded as:

(ask-one :content (GEOLOC LAX (?long
?lat)) :ontology GEO-MODEL3)

In this message, the KQML performative is ask-one, the
content is (geoloc lax (?long ?lat)) and the assumed
ontology is identified by the token :geo-model3. The same
general query could be conveyed using standard Prolog as
the content language in a form that requests the set of all
answers as:

(ask-all :content

"geoloc(lax,[Long,Lat])"

:language standard_prolog

:ontology GEO-MODEL3)

Loom Interface Module

LIM acts as an intermediary between a Loom application
and one or more DBs. The inter-relationships among the
various components of the overall system are illustrated in
Figure 2. LIM uses the DB schema, building a Loom
representation of the schema based on this information.
Subsequently, in response to a query or update request from
a Loom application that requires access to the DB, LIM
parses the request and generates the appropriate data
manipulation language (DML) statements for the DBMS; in
the case of a query, it then processes the tuples returned to
it by the DB into the form requested by the application.
The details of the design and implementation appear
elsewhere (Pastor & McKay 1994; Pastor, McKay & Finin
1992).

Processing within LIM is directed by a multi-layer KB
architecture that is built in a mixed-initiative process. Figure
3 depicts the layers in this architecture. The Semantic
Mapping KB (SMKB) is an isomorphic representation of
the DB schema; it defines one Loom concept for each table
and one Loom relation for each column. Application KBs
(AKBs) define view-concepts which are concepts or objects
in the domain and refer to concepts and relations in the
SMKB. Within the ARPI Information Agent, concepts such

as Seaport are defined over underlying SMKB primitive
data elements. View-concepts in the AKB do not
necessarily map in any simple way to the tables in the DB,
and can have arbitrary hierarchical structure. Connections
to the DB are implemented via DB-mapping declarations,
in which a concept-role pair in the AKB is mapped to a
SMKB role. View-concepts are checked at definition time
to assure that they specify an unambiguous database query
and, if declared to be updatebale, are unambiguously so.
For updates, LIM determines whether the resulting DB
action should result in an insert or an update.

LIM, given a query or update request involving a
concept in the SMKB or AKB, first obtains schema
mapping information from the SMKB, then translates the
request into an equivalent DML statement, submits the
statement to the DBMS and assembles the result; and
finally (for a query), restructures the returned tuples as
necessary, generating any KB structures required to satisfy

DB DBDB

LIM

Loom
ApplicationLoom KB

Loom objects
and values

Queries
and updates

Loom objects
and values

Queries
and updates

Schema
information

Schema
information,
tuples

Schema
information,
tuples

DML queries
and updates

(e.g., SQL)
Schema
information,
tuples

DML queries
and updates

(e.g., SQL)

DML queries
and updates

(e.g., SQL)

Figure 2. LIM Overview

seaports.
port_name

name latitude

geoloc.
glc_cd geoloc.

glc_ltcn

seaports.
glc_cd

Semantic
Mapping

KB
(SMKB)

External
Database

primary-
port-name lat

Application
KB

(AKB)

geoloc-code

Seaport

lon

geoloc.
glc_ltcn

longitude

glc_ltcn glc_lncnglc_cd

GEOLOC

glc_cdport_name ...

SEAPORTS

...cy_cd

GEOLOCSEAPORTS

Figure 3. LIM Knowledge Base Architecture

5

the query. With regard to the last point, a fundamental
principle of LIM is that KB structures are created only on
demand: queries are satisfied without creation of KB
objects whenever possible, to minimize overhead and
bookkeeping. Control over object creation is entirely at the
discretion of the application.

A LIM query consists of a list of output variables to be
bound, and one or more statements that produce sets of
bindings for these variables. It is easily determined from
the positions of variables in the output list and the query
expressions whether a particular output variable
corresponds to a role value or a concept. For a variable
corresponding to a role value, the value retrieved from the
DB can be returned to the application, possibly with some
conversion due to the differences between semantic types
used in the KB and simple DB types. For a variable
corresponding to a concept, however, the application will
expect to have returned to it an instance of that concept;
this requires that LIM be capable of creating Loom
instances using values retrieved from the DB. LIM’s object
generation module extracts from the returned tuples all
values requested specifically for the purpose of building
Loom objects, creates the objects, and returns them to the
application. In the Information Agent, the result, either a
set of tuples or instance objects is then described in a
KQML message using a content expression to desribe each
tuple or object instance.

LIM uses a few different caching schemes, for two
purposes. The first purpose is the conventional one of
improving performance; the second is related to preserving
referential integrity. When a user queries LIM for an
instance of a view-concept, and then subsequently queries
for an instance with the same key values, it is usually the
case that one expects the same KB object to be returned in
both cases. For this reason, LIM checks the Loom instance
database (ABox) prior to creating instances. Given an
object query, after submitting a query to the IDI and
receiving return values, LIM queries the Loom ABox
before creating a new instance. If the view-concept that is
to be the type for the instance has keys defined, LIM uses
these (in conjunction with Loom’s indexing capabilities) to
speed the search; otherwise, all values are used. This
mechanism is also used to support incremental creation of
object instances over several LIM queries. Other caching
strategies avoid reissuing the same query.

Note that “ABox cache” checking is not an efficiency
measure: on the contrary, it carries a performance penalty
that can become significant on extremely large queries,
e.g., many hundred to several thousand objects. For this
reason, and because of situations such as dynamic DB
contents where ABox cache checking is undesirable, it is
controllable both globally and at the individual query level.

LIM Example

Let us presume that an application requires information
about the location of various seaports. In the databases,
information about seaports is stored in a table called
SEAPORTS, and information about geographic locations in
a table called GEOLOC. The various KB layers representing
the mapping from application to DB are shown in Figure 3.
The bottom panel shows a simplified tabular representation
of the schema definitions for the two tables, SEAPORTS
and GEOLOC. The middle panel shows the SMKB
concepts representing the two tables. The SMKB definition
is:

(defconcept Geoloc
:is-primitive
(:and db-concept

(:the Geoloc.Glc_cd Geoloc_Code)
(:the Geoloc.glc_lncn Longitude)
(:the Geoloc.glc_ltcn Latitude)))

The top panel shows a simple application-level concept
derived from information in both DB tables. The following
is the Loom concept definition for the AKB concept
seaport:

(defconcept seaport
:is-primitive
(:and View-Concept

(:the primary-port-name string)
(:the lat latitude)
(:the lon longitude)))

This is mapped to the DB by making additional
declarations, which are stored as assertions in the Loom
KB. Queries can be posed referencing either the SMKB or
the AKB. For example, the query:

(db-retrieve (?name)
(:and

(Seaports ?port)
(Geoloc ?geoloc)
(Seaports.Glc_cd ?port ?geocode)
(Geoloc.Port_Code ?geoloc

?geocode)
(Seaports.port_name ?port ?name)
(Geoloc.Country_State_Code

?geoloc “DP”)
(Seaports.Clearance_Rail_Flag

?port “Y”)))

(“What are the names of seaports in Dogpatch that have
railroad capabilities at the port?”) can be posed using the
SMKB. The SQL generated by LIM for this query is:

SELECT DISTINCT RV1.name
FROM SEAPORTS RV1, GEOLOC RV2
WHERE RV2.glc_cd = RV1.glc_cd

AND RV2.country_state_code = ‘DP’
AND RV1.clearance_rail_flag = ‘Y’

The values returned are a set of tuples:

(“Cair Paravel” “Minas Tirith”
“Coheeries Town” “Lake Woebegon” “Oz”)

The query:

(db-retrieve ?port
(:and

(seaport ?port)
(primary-port-name ?port “Oz”)))

(“Return a seaport object for the port whose name is ‘Oz’”)
can be posed using the AKB. The SQL generated for this
query is:

SELECT DISTINCT RV1.name,
RV2.latitude,
RV2.longitude

FROM SEAPORTS RV1, GEOLOC RV2
WHERE RV2.glc_cd = RV1.glc_cd

AND RV1.name = ‘Oz’

The value returned by this query is an object whose Loom
definition is:

(TELL
(:ABOUT SEAPORT59253

SEAPORT
(LON 98.6)
(LAT 3.14159)
(PRIMARY-PORT-NAME “Oz”)))

The Information Agent uses a slightly different form of the
above s-expressions for sets of tuples and instances to
return answers to other agents. The particulars are outside
the scope of this paper.

Information Agent Performance

We have defined metrics for performance evaluation and
have been using them continuously throughout the
development of the Information Agent for both KQML and
LIM. The performance model for KQML is described
elsewhere. The LIM Information Agent metrics include
components of total execution time:
• Augmentation: CPU time required to add concept-

derived restrictions to the query
• Translation: CPU time required to translate LIM

query into internal canonical form
• Query Generation: CPU time required to translate

internal canonical form into DML
• Connection: Real time required to establish

connection with DBMS server
• Execution: Real time required to execute the query on

a DBMS server
• Collection: CPU time required to accumulate results

of the query
• Object Generation: CPU time required to post-process

results including creation of Loom instances if
appropriate

• ABOX Cache: CPU time required to search Loom
instance database (Abox) to prevent creation of
duplicate instance (included in Object Generation
time)

• Total Execution Time: Sum of all the above excluding
the ABOX Cache time

Using benchmarks derived from queries collected
during early uses of the LIM Information Agent under
ARPI technology integration experiments, we have
developed a performance profile. The queries vary from
small functional tests to the retrieval of large view-concepts
for force modules for combat services and combat services
support; each force module is retrieved independently. The
benchmark consists of executing the LIM query 25 times
with all caching turned off, i.e., queries are sent to Oracle
each time. Figure 4 below compares performance from
initial baseline performance in November 1992, LIM 1.1
performance in May 1993, LIM 1.2 performance in May
1994, and LIM 1.4 performance in May 1995.

It should be noted that these queries retrieve and create
a significant number of object instances with relatively
large numbers of slot value sets; performance is now well
below one second for total execution time. One test results
in over 700 force module instances created and about
60,000 attribute value sets within those instances. The total
execution time for this query set as of May 1994 was on the
order of ten minutes; current execution time (LIM 1.4) is
approximately 1 minute 25 seconds.

We have improved LIM performance dramatically over
the course of the Planning Initiative. The most notable
improvements are due to the following factors:
• We now use of faster Loom primitives where available,

or adopted them they became available, which has
dramatically improved basic execution speed.

• In cases where repeated use of the same Loom
inferencing chain might otherwise result, we cache
information retrieved from Loom knowledge base to
“memoize” knowledge base access

• We use improved fundamental data structures within
the LIM database interface

• We improved algorithms; for example, it is now
possible to specify that results be returned from the
Oracle interface in batches, rather than tuple-at-a-time.

• We tuned fundamental data structures extensively for
speed and space.

All data has been collected on SUN SPARC 2 CPU
with 96MB memory. Since a component of LIM
processing is due to actual execution of queries on a remote
Oracle database, the times measured below are dependent
on the actual system used to support Oracle as well.

7

We have begun to compare critical portions of the LIM
execution profile, specifically, object creation and slot
filling algorithms, with those available in a commercial
product expert system shell (ES). Initial results are
preliminary, but, illustrate some of the performance issues
for Information Agents. LIM, implemented in Common
Lisp and Loom, outperforms the commercial ES, one
written in C. We have measured the performance of LIM
with that of the expert system shell (ES) on two query sets,
showing both DB execution and Object Creation. The
database and queries were selected from a set developed in
another project. We have observed about a 10:1 ratio for
object creations per second of DB execution time in favor
of LIM. In addition, at least a 10:1 ratio for object
creations per second of object creation time, again in favor
of LIM. The most accurate metric is based upon slot-value
sets, since this accurately reflects the total amount of data
being transmitted and processed; in our initial
measurements this is significantly over 10:1.

Conclusion

We have described an Information Agent architecture in
which two key components are an agent communication

language and a collection of information agents.
Specifically, we have described KQML, the communication
portion of the agent communication language. In addition,
we have described the LIM Information Agent which
interfaces the Loom knowledge representation and
reasoning system with relational databases. We have
described some of the performance measures we have
developed for the LIM Information Agent and reviewed
some of our current performance results. One set of
preliminary measurements indicates that the performance of
object creation and manipulation components for
information agents is a key measure, and, that LIM
outperforms at lest one widely available expert system
shell. We intend to follow up on this result and investigate
this measurement approach further.

The LIM Information Agent relies on a view-concept
model which uses a knowledge representation language,
Loom, to define the semantic schema of a database. This
definition has two levels, each of which is of utility to a
knowledge-based application. The semantic mapping layer
defines the relevant concepts supported by the database
domain; in our current knowledge bases, the semantic
mapping layer adds semantic types to the automatically-
generated schema model. We envision additional

Performance Comparison,
November 1992 TIE through LIM 1.4

0

1

2

3

4

5
IM

B

C
S

I

C
M

I

C
F

A

C
A

V

C
S

S

A
C

R

IM
F

IF
S

IF
C

IF
A

89
B

A
C

S

A
R

R

8T
6

Z
Z

Z

R
E

N

R
E

F

B
U

P

M
U

P

A
U

P

M
ea

n

FM Query ID

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

TIE (Nov '92)

LIM 1.2

LIM 1.4

Figure 4 LIM Information Agent performance summary.

information in the semantic mapping layer, including
composites of database objects which form larger
conceptual structures. The view-concept model includes an
application-specific layer that defines the mapping between
an application domain’s conceptual structures and the
semantic definition of database concepts. We believe that
the structured approach embodied in the view-concept
model significantly elucidates the knowledge-base-to-
database interface problem.

The system described above has operated in single
module form where each of SIMS and CoBASE have LIM
loaded into the same Common Lisp program,
independently using LIM as a server remotely over the
network (local or internet) and together in an architecture
where SIMS acts both as a server to CoBASE and as a
client to multiple LIM-based knowledge agents available
on the network in a mixture of local and internet
configurations. The basic issue addressed in all of the
above work is the actual running of demonstrations in a
reliable and repeatable manner. This goal forces one to pay
attention to details of normal operations including
performance and interpretation. Further, without the
attempt to integrate, some of the issues described above
would have not been identified as well as other integration
issues.

Acknowledgments

The authors wish to acknowledge the contributions of the
LIM development team, specifically Rebecca Davis, Robin
McEntire, Rich Fritzson, Tim Finin, and Barry Silk (US
Government). Earlier contributors to the first version of the
Intelligent Database Interface include Tony O'Hare,
currently at IBM, Research Triangle, and Larry Travis of
the University of Wisconsin. Also, we acknowledge the
useful comments and suggestions of users of LIM
specifically Yigal Arens and Craig Knoblock of USC ISI,
Wes Chu, Berthier Ribiero and Galdys Chow of UCLA,
Scott Fouse, Nancy Lehrer, Mark Hoffman and Louis
Rumanes of ISX, and, Glenn Abrett and Mark Burnstein of
BBN. Finally, we have appreciated participating in the
ARPA Rome Lab Planning Initiative and acknowledge the
stimulating interactions with the participants in the
program, Steve Cross and Tom Garvey the APPA Program
Managers as well as the staff and program management at
Rome Laboratory specifically Ray Liuzzi, Lou Hoebel,
Don Roberts and Nort Fowler.

References

Yigal Arens 1992. Planning and Reformulating Queries for
Semantically-Modeled Multidatabase Systems, In

Proceedings of the First International Conference on
Information and Knowledge Management.

Wesley W. Chu and Q. Chen 1994. A structured approach
for cooperative query answering. IEEE Transactions on
Knowledge and Data Engineering, 6(5):738--749.

Tim Finin, Richard Fritzson Don McKay and Robin
McEntire 1994. KQML as an Agent Communication
Language, In Proceedings of the Third International
Conference on Information and Knowledge Management,
ACM Press.

Tim Finin, Yannis Labrou, and James Mayfield 1995.
KQML as an agent communication language, In Jeff
Bradshaw (Ed.), ``Software Agents'', MIT Press,
Forthcoming.

Robert MacGregor and Raymond Bates 1987 The Loom
Knowledge Representation Language, Proceedings of the
Knowledge-Based Systems Workshop, St. Louis, Missouri.

James Mayfield, Yannis Labrou, and Tim Finin 1996.
Evaluation of KQML as an Agent Communication
Language. In Intelligent Agents Volume II -- Proceedings
of the 1995 Workshop on Agent Theories, Architectures,
and Languages. M Wooldridge, J. P. Muller and M. Tambe
(eds). Lecture Notes in Artificial Intelligence, Springer-
Verlag.

R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, T.
Senator, and W. Swartout 1991. Enabling technology for
knowledge sharing. AI Magazine, 12(3):36 -- 56.

Jon Pastor and Don McKay 1994. View Concepts -
Persistent Storage for Planning and Scheduling,
Proceedings of the ARPA/Rome Lab 1994 Knowledge-
Based Planning and Scheduling Initiative Workshop,
Tucson, AZ.

Jon Pastor, Don McKay and Tim Finin 1992. View-
Concepts: Knowledge Based Access to Databases. In
Proceedings of the First Conference on Information and
Knowledge Management.

R. Patil, R. Fikes, P. Patel-Schneider, D. McKay, T. Finin,
T. Gruber, and R. Neches 1992. The DARPA Knowledge
Sharing Effort: Progress Report. In B. Nebel, C. Rich, and
W. Swartout, editors, Principles of Knowledge
Representation and Reasoning: Proceedings of the Third
International Conference.

Gio Wiederhold, 1986 Views, Objects, and Databases,
IEEE Computer, 19(12):37–44.

Gio Wiederhold, 1992 Mediators in the Architecture of
Future Information Systems, IEEE Computer, 25(3):38-49.

