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Speech interfaces have the potential to address the
data entry bottleneck of many applications in the
field of medical informatics. An experimental study
evaluated the effect of perceptual structure on a
multimodal speech interface for the collection of
histopathology data. A perceptually structured
multimodal interface, using speech and direct
manipulation, was shown to increase speed and
accuracy. Factors influencing user acceptance are
also discussed.

INTRODUCTION

Data entry has been identified as a key bottleneck in
many biomedical applications [1,2,3]. Large volumes
of information must be gathered by clinicians and
researchers to support patient care and clinical trials.
This data must be collected and managed according
to specific protocols. Often the situation exists where
a clinician is occupied with patient care and cannot
document his or her findings until later. This interval
of time between the generation of information and its
recording can compromise the data collection
process. Despite considerable advances in computer
architectures over the last 20 years, the keyboard and
video display remain the principal means of entering
and retrieving data. New human-computer interface
modalities are needed which can automate the data
collection process at the source, where the
information is actually generated.

One possibility is to develop interfaces using speech
recognition technology. Speech is a natural form of
communication that is pervasive, efficient, and can be
used at a distance. However, widespread acceptance
of speech as a computer interface has yet to occur.
The reasons for this include limitations in technology
as well as the need for theoretical models which can
be used as guidelines for incorporating speech into
the user interface. The objective of this paper is to
review the application of speech in biomedical
interfaces, discuss acceptance issues, and summarize
a study of perceptual structure on a multimodal
speech interface.

Speech In Biomedical Applications

Speech-driven computer interfaces can address two
key concerns in biomedical computer interfaces: the
demand for ease of use and constraints on the user’s
ability to work with the keyboard or mouse. Speech
technology is still limited, however, with most
successful systems using medium-sized vocabularies
with well-defined grammar rules. As described in the
literature, the main applications of speech include
template-based reporting, natural language
processing, multimodal integration of speech with
other methods of input, and hands-busy data entry.
The first two reflect the need for more intuitive
interfaces. The latter two deal with limitations of
traditional input using the keyboard or mouse. This
topic is covered in greater detail elsewhere [4].

Template-based reporting has been applied to
radiology, pathology, endoscopy, and emergency
medicine [5,6,7]. The potential advantage is that
turnaround time is decreased and accuracy is
increased by eliminating the need for dictation and
transcription by clerical personnel. An alternative to
template-based reporting explored methods that
circumvent shortcomings in the current technology
while maintaining the flexibility and naturalness of
speech [8,9].

Several efforts studied the use of speech interfaces to
overcome limitations in traditional input devices. One
such system, designed to assist in the collection of
stereological data, combined speech input for object
identification with a digitizing pad to enter X and Y
coordinates [3]. For hands-busy and eyes-busy
environments, systems have been developed to input
clinical data during dental examinations [10], record
information for anesthesiologists during medical
procedures [11], and enter findings while reading
images during the analysis of bone scintigraphic data
[12].



Acceptance

A positive attitude from the user community is often
the most critical factor determining the success of a
computer application. End-users, frustrated by a
system they believe does not enhance or possibly
interferes with their work, will most likely abandon
that application altogether.

Acceptance can be viewed as a measure of how well a
system implements the original requirements or
operational goals of the client. It can also been seen
as some function of software quality, such as
usability, reliability, resilience, or complexity. With
respect to speech interfaces, user acceptance is
complicated by additional factors such as limitations
in current technology. Often expectations of how a
speech interface should work are biased by our
experience with human-to-human interaction.

A recent effort studied the use of a speech interface to
facilitate the collection of cardiovascular data by
nurses at the patient’s bedside [2]. They reported that
as nurses interact with the speech interface over time,
the interface becomes more acceptable. Another study
showed that a positive attitude toward computers
could be a predictor of future use [13].

Initial work by the author includes a feasibility study
of a speech interface for the collection of
histopathology data [1]. A prototype speech-driven
data collection system for histopathology data using
only speech input and computer-generated speech
responses was developed and tested. It was concluded
that this architecture could be considered a viable
alternative for hand-free, eyes-free data collection in
animal toxicology studies with reasonable recognition
accuracy. Based on user interviews, the main
problems relating to acceptance were to minimize
training requirements and improve audible feedback.

PROBLEM

Perception occurs in the head, somewhere between
the observable stimulus and the response, and
consists of various kinds of processing that have
distinct costs [14]. By understanding and capitalizing
on the underlying structure, it is believed that a
perceptual system could reduce these costs and gain
advantages in speech and accuracy. The dimensions
of a structure are integral if they cannot be attended to
individually, one at a time; otherwise, they are
separable.

For human-computer interfaces, the theory of
perceptual structure was extended to show that
performance of a unimodal graphical environment
improves when the structure of the perceptual space
matches the control space of the input device [15]. A
two-dimensional mouse and a three-dimensional
tracker were used as input devices. Two graphical
input tasks with three inputs each were evaluated, one
where the inputs were integral (x location, y location,
and size) and the other where the inputs were
separable (x location, y location, and color). Common
sense might say that a three-dimensional tracker is a
logical superset of a two-dimensional mouse and
therefore always as good and sometimes better than a
mouse. Instead, the results showed that the tracker
performed better when the three inputs were
perceptually integral, while the mouse performed
better when the three inputs were separable.

Another effort reported that the most significant
factor in predicting the use of integrated multimodal
speech and handwriting was contrastive functionality
[16]. Here, the two modalities were used in a
contrastive way to designate a shift in context or
functionality, such as original input versus corrected,
data versus command, digits versus text, or digits
versus referring description.

Based on these results and the framework of
complementary behavior between speech and direct
manipulation [17], a research hypothesis was
proposed which extended the theory of perceptual
structure to multimodal interfaces using speech and
direct manipulation.

Our general research hypothesis predicted that the
speed, accuracy, and acceptance of the interface
would increase if a single input device was used to
enter attributes which are perceptually integral and
two devices were used to enter attributes which are
perceptually separable. For example, consider the
following histopathology observation consisting of an
organ, site, qualifier, and morphology: lung alveolus
marked inflammation. It was assumed that the
qualifier/morphology relationship was integral, since
the qualifier describes the morphology, such as
marked inflammation. The site/qualifier relationship
was assumed to be separable, since the site identifies
where in the organ the tissue was taken from, such as
alveolus lung, not alveolus marked. The
site/morphology relationship was assumed to be
separable for the same reason. Additional background
material can be found elsewhere [18].



METHOD

A software prototype was developed with two
interfaces to test this hypothesis. The first was a
baseline interface that used speech and mouse input
in a way that did not match the perceptual structure of
the attributes while the second interface used speech
and mouse input in a way that best matched the
perceptual structure. The software projected images
of tissue slides on a computer monitor while subjects
entered histopathologic observations in the form of
topographical sites, qualifiers, and morphologies. The
tissue slides for the experiment were provided by the
National Center for Toxicological Research
(Jefferson, AK). The vocabulary was based on the
Pathology Code Table [19].

Twenty subjects from among the biomedical
community participated in this experiment as unpaid
volunteers. The sample population consisted of
professionals with doctoral degrees (D.V.M., Ph.D.,
or M.D.), ranged in age from 33 to 51 years old, 11
were male, 9 were female, 15 were from academic
institutions, 13 were born in the U.S., and 16 were
native English speakers. The majority indicated they
were comfortable using a computer and mouse and
only one had any significant speech recognition
experience. Since the main objective was to evaluate
different user interfaces, participants did not
necessarily have a high level of expertise in animal
toxicology studies, but at a minimum, were familiar
with tissue types and reactions.

The independent variables were the interface
(baseline, perceptually structured) and the task order
(slide group 1, slide group 2). These were
counterbalanced between the subjects using a within-
groups experiment design. The dependent variables
were task completion time, speech errors, mouse
errors, diagnosis errors, and user acceptance. Time
and errors were tracked by the software prototype.
Acceptance was measured with a subjective
questionnaire containing 13 bi-polar adjective pairs
used in previous human-computer interaction studies
[2, 20]. Users rated each question on a scale of 1 to 7.

RESULTS

Speed and accuracy increased when a single modality
was used to enter attributes which were integral and
two modalities were used to enter attributes which
were separable. Task completion time improved 41.5
seconds or 22.5% using the perceptually structured
interface (t(19) = 4.791, p < .001, two-tailed). The
results are summarized by task in Figure 1. ANOVA

was used to show that interface order and task order
had no significant effect on the results. Speech
recognition errors were reduced by 36%, which was
significant (paired t(19) = 2.924, p < .01, two-tailed).
Error rates by task are shown in Figure 2. Mouse
errors increased slighlty and diagnosis errors
decreased slightly for the baseline interface, but
where not significant (p = .733, p = .858,
respectively).

Figure 1: Mean Task Completion Times
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Figure 2: Mean Speech Error Rates
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Figure 3: Acceptability Index by Question
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An acceptability index (AI), based on the average
ranking for each of the 13 bi-polar adjective pairs,
showed an improvement of  2.4%. However, one
subject’s score was more than 2 standard deviations
outside the mean AI. With this outlier removed, the
perceptually structured interface showed a 6.7%
improvement. A 2x13 ANOVA with repeated
measures, to compare the 2 interfaces for the 13
questions, was significant (p < .05). The results were
summarized by question in Figure 3, where a lower
AI was indicative of greater acceptance.

DISCUSSION

The results of this experiment support the hypothesis
when using a multimodal interface on
multidimensional biomedical tasks. Task completion
time and the number of speech errors were reduced
when a single modality was used to enter attributes
which were integral and two modalities were used to
enter attributes which were separable. Results from
mouse and diagnosis errors were not significant. This
was most likely because very few mouse errors were
recorded. Also, since each subject was allowed to
review the slides before the test, the effect of
perceptual structure on the ability to apply domain
expertise was not measured.

From the subjective questionnaire, subjects felt the
perceptually structured interface was faster and more
accurate. This was substantiated by quantitative data
on time and speech errors. Subjects also felt the
perceptually structured interface was more consistent,
pleasing, dependable, natural, complete, comfortable,
friendly, facilitating, simple, useful, and acceptable.

Pearson’s correlation coefficients were used to
identify other factors which might influence
acceptance. A positive correlation was observed
between acceptance and the number of speech errors
(p < .01), highlighting the importance of increasing
recognition accuracy. The reduction of speech errors
is typically viewed as a technical problem. However,
this effort successfully reduced the rate of speech
errors by applying user-interface principles based on
perceptual structure. Similar to this, another study
reported a reduction in spoken disfluencies by using
more structured interfaces [21].

A significant positive correlation was also observed
between the increased acceptance and decreased
diagnosis errors (p < .01). Diagnosis errors were
assumed to be inversely proportional to the domain
expertise of each subject. What this finding suggests
is that the more domain expertise a person has, the

more he or she is likely to embrace the computer
interface. This also suggests that including domain
knowledge into the user interface would be
advantageous.

No correlation was observed between acceptance and
task completion time (p > .05). This occurred, even
though the subjects believed the perceptually
structured interface was faster, and quantitative data
corroborated this as well. Thus, finding no
relationship between acceptance and time suggests
that overall user acceptance is predominantly
influenced by something other than speed.

CONCLUSION

This effort applied the theory of perceptual structure
to improve the speed, accuracy, and acceptance of a
speech-driven biomedical computer interface. The
perceptually structured interface significantly reduced
task completion time and the number of speech
errors. A moderate increase in user acceptance was
also observed. User acceptance was influenced more
by accuracy than speed. In addition, factors unrelated
to the software itself affected acceptance, such as the
level of domain expertise. In light of the need for
increased automation for biomedical data collection,
a better understanding of these issues is essential
before the widespread acceptance of speech as a user
interface can occur.
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