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ABSTRACT
�is paper presents the implemented solution for the CIKM Ana-
lytiCup in DataSparkMobility Open-Task Challenge. Using publicly
available APIs we have built a system able to extract both recur-
rent and unsystematic pa�erns of mobility from data registered
in Singapore in terms of human mobility. �e implemented data
architecture combines Big data and data science technologies with
the aim to discover the rhythm of the city.
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1 PROBLEM STATEMENT
Nowadays, more and more cities roll out testbeds for the Internet
of �ings across districts (e.g. ”iCITY” in the Olympic Park in
London) or even the entire city (e.g. ”City of �ings” in Antwerp -
Belgium, ”SmartSantander” in Santander - Spain). While useful for
monitoring environmental parameters (e.g. temperature, humidity,
noise, air quality, light), road tra�c congestion and utilities supply
(e.g. water, gas, electricity), the data collected from these sensors
has limited ability to tell the story of the city’s daily life.

�e task that we proposed to address is the identi�cation of
pa�erns in human mobility within a large and densely populated
city such as Singapore. We aim to understand the city’s rhythm.

From the current state of the art in the literature on this topic,
three main practical approaches are spread the most. �e �rst is
based on tracking volunteered individuals (through crowd-sourcing
mobile apps or through on-board GPS loggers in private cars/taxis),
thus operating on collections of individual GPS traces. In the second
approach, call detail records (CDR) from telecom providers are used.
However, rarely is the case that the cellular network cells follow the
shapes of administrative subzones and thus frequently this relation
is o�en overlooked. �e third approach is to use geo-tagged social
media (e.g. Tweets, Instagram photos, FourSquare check-ins and
others) to infer the travel pa�erns and trajectories in town.
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2 OVERALL ARCHITECTURE
As described in the next sections, the application combines multiple
technologies for ingesting, managing and analyzing the data. An
overview of the architecture is depicted in Figure 1.

Figure 1: Overall solution architecture

3 DATA SOURCES AND DATA COLLECTION
�e data sources used in this application comprised:

• DataSpark APIs 1: footfall and origin-destination matrix;
• Environmental data 2 : air temperature, rainfall and wind

speed;
• e-Government open data 3: residents by subzone age group

and gender (june 2016), residents by subzone and type of
dwelling (june 2016), historic sites, museums, monuments,
park facilities, tourist a�ractions;

• OpenStreetMap data 4: buildings, o�ces, amenities, shops,
leisure, cultural and tourism places.

• Public bus transport network (LTA DataMall) 5: bus stops,
bus routes.

Historic data was collected and preprocessed in batch, however
for the live application, data is ingested using data�ows developed
1h�ps://apistore.datasparkanalytics.com:8243/
2h�ps://api.data.gov.sg/v1/environment/
3h�ps://data.gov.sg/dataset/
4h�ps://www.openstreetmap.org
5h�p://datamall2.mytransport.sg/ltaodataservice
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in Apache NiFi. �is choice of technology was based on speci�c
bene�ts of Apache NiFi in terms of development simplicity (being
con�guration-based), queues on all inter-processor communica-
tions to handle back-pressure, data provenance tracking as objects
�ow through the system, timer-based triggering of components’
execution, JOLT for JSON manipulation, connectors to NoSQL.

4 DATA MODELLING AND MANAGEMENT
Dealing with this variety of data formats and models lead us to opt
for a polyglot data store. It consists of:

• a document-oriented database in MongoDB which stores
spatial and structured data about Singapore subzones;

• a graph database in Neo4j which stores spatial data about
Singapore subzones and bus transportation network - in
the form of vertices and edges;

• a timeseries database in In�uxDB which stores the time-
series corresponding to footfall and ODmatrix (fromDataS-
park APIs) as well as the environment recordings from the
weather APIs.

For the various functionalities described in the following sections,
data from one or more of these databases were integrated. For
example, when computing complex networks metrics using the
recorded OD matrix, we took advantage of Neo4j’s APOC to select
data from In�uxDB through its REST endpoint and then create
temporary ”od” edges between the subzone nodes.

Neo4j spatial plugin was used for many spatial integrations of
the datasets, an example being depicted in Figure 2, where the
bus stop geo-points were intersected with the subzones polygons
to create ”inside” relationships. Multiple edges connect pairs of
BUSSTOP vertices, one for each bus route. �e same spatial plugin
was used for creating relationships between subzones nodes which
were geographically adjacent.

Figure 2: Subgraph from Neo4j, showing subzones(blue),
busstops(green), roads(yellow) and their relationships

As for data modeling in In�uxDB, data from each DataSpark API
is stored in a distinct measurement. For discrete visits, data for
each subzone is stored in a separate �eld and the tags hold the API
request parameters (e.g. time granularity, �lter dimensions) and
metric (e.g. footfall, total visits). Instead, for OD matrix data, we
modelled to have a single �eld named ”value” and to keep in tags
the origin subzone and destination subzone - which gives more

�exibility in �ltering. Moreover, In�uxDB demonstrated many
bene�ts in window aggregations, at di�erent time granularities,
and continuous queries.

Derived data, resulted a�er speci�c processing on raw mobil-
ity data, are stored in MongoDB (e.g. correlation weather-footfall,
nearest weather sensors per subzone,cluster id from K-means clus-
tering) as well as in In�uxDB measurements (e.g. the anomalies
and the structural changes identi�ed in the footfall timeseries of
each subzone).

5 DATA ANALYTICS
In this section we walk through the functionality implemented.

5.1 Places Semantics
To begin with, places semantics’ were analyzed from multiple data
sources. On one hand, demographics and dwelling were extracted
from o�cial sources. �ey were complemented, for the purpose
of this study, with data extracted from OpenStreetMap. �e la�er
served as a source to access building-level information and thus
allowed computing land use on speci�c topics of interest (e.g. uni-
versities, healthcare, industrial areas, company o�ces, shopping
malls). A wordcloud with tags extracted from all bus stop descrip-
tions, per subzone, was computed and added in order to support
the understanding of places’ semantics.

Figure 3: Places semantics

Further on, weather data was collected and analyzed to identify,
per subzone, the correlation between temperature, rainfall and wind
speed - on one hand- and footfall. �e analysis was performed
separately for workdays, for Saturdays and for Sundays.

�e data visualization is organized in this screen based on a
master-detail policy. �e choropleth map on the le� side of the web
page displays the spatial distribution of topics of interest. Once
a subzone becomes interesting for its contents (e.g. leads the top
in the number of companies, such as Ra�es Place or Kian Teck),
the user can select it on the map and obtain detailed information
about it on the right side of the webpage. �is information covers:
a sample week of hourly mobility data (footfall, in-�ows and out-
�ows), the composition of land use (in counts and in surface), the
wordcloud and the weather - mobility relationship for that subzone.

In this manner, the user observes the di�erence in the weekly
mobility pa�ern (between the two aforementioned subzones) and
can judge it aided by the di�erence in land use (e.g. Kian Teck has
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a signi�cant residential and industrial scope, whereas Ra�es Place
has more entertainment spaces).

5.2 Complex Networks
Multiple metrics exist in Complex Networks theory to characterize
the structure of a graph. We selected some of them and computed
them for static data and for dynamic data. �e 8 analysis are:

• Geography-based Betweenness centrality
• Geography-based Closeness centrality
• Geography-based PageRank importance
• Geography-based Community detection
• Bus network Degree centrality
• Bus network Closeness centrality
• Bus network PageRank importance
• OD matrix Community detection (hourly)

Figure 4: Complex networks metrics - geography-based and
mobility-based communities in the subzones graph

�e geography-based metrics calculation takes into account the
graph resulted from modeling subzones’ spatial adjacency relation-
ships. �e bus network based metrics calculation takes into account
the graph of busstops linked by bus routes. �e OD matrix based
metrics calculation uses the graph induced by the mobility between
subzones at di�erent times in di�erent days of the calendar year.

Figure 5: Complex networks metrics - bus stops Page Rank
importance and dynamic communities

Besides comparing dynamic and static results of the subzones
graph structure, the analysis can also be carried out along the tem-
poral axis to observe changes in subzones’ communities structure
in terms of mobility between time intervals of a day or between
di�erent days.

5.3 Spatial Analytics
Given the hourly footfall at subzone level during the day, we tested
if there exists spatial autocorrelation. Spatial autocorrelation means
non-random pa�ern of a�ribute values over the set of spatial units,
the subzones. It resulted that the null hypothesis of a random
process operating in space can be rejected, as both Moran’s I and
Geany’s C indicators indicated positive spatial autocorrelation. �is
means that similar values of tra�c tend to be close in space. �e
choropleth maps support visually the �ndings.

Moreover, we computed for each hour of the day the hotspots
(high footfall subzones surrounded by high footfall neighbor sub-
zones) and coldspots (low values of footfall surrounded by low
values of footfall).

Spatial outliers were identi�ed based on this criterion to be
subzoneswith footfall numbers completely opposite from neighbors
(e.g. low-high or high-low). An example of the high-low outlier is
Changi Airport subzone.

Figure 6: Spatial analytics - spatial autocorrelation

Secondly, we applied various thresholds and used Join counts
to verify if the spatial autocorrelation still holds on this binary
data. Depending on the date-time and on the chosen threshold, we
observed both scenarios - dispersion and random pa�ern.

5.4 Temporal Analytics
In the time domain, it is of interest to analyze subzones individually
and in their entire set.

Considering all subzones for a chosen period of time and window
size, we �rst aggregated the footfall. A window size of 1 hour
le� the series in their raw form. We then performed timeseries
decomposition and did K-means clustering on a cycle of the seasonal
component scaled to [0,1]. In this manner we accomplished the
objective of �nding structural groups in the repetitive component
of the timeseries, not in�uenced by di�erences in values magnitude.
�e focus was strictly on the tra�c pro�le.

As somehow expected, the highly populated residential areas
(Bedok North/South, Tampines East/West and others) were clus-
tered together, whereas the central area (City Hall, Boat �ay,
Chinatown, Ra�es Place and others) were clustered together too.
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Figure 7: Temporal analytics

At the individual level of a subzone, the interest is on �nding
anomalies in the timeseries and change points in its trend. For this
we used R libraries recently open sourced by Twi�er for detecting
anomalies and breakouts. �e anomaly results in footfall are high-
lighted in the timeseries plot (red and orange markers) as shown in
Figure 7.

6 POTENTIAL IMPACT OF SOLUTION
�e target is to facilitate a be�er understanding of the mobility
phenomena for future urbanistic development.

�e analysis so far brought many interesting insights into the
daily life of the city, its rhythm on workdays/week-ends and holi-
days, the similarity and dissimilarity between neighboring subzones
in space with respect to tra�c, the shi�s in temporal trend and
anomalies in mobility timeseries.

Following the methodology that we’ve employed, this solution
can be generalized and applied in other major cities, too.
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