Predicting Taxi Demand-Supply Mismatches to Dynamically
Position Mobility-on-Demand Services

Final Report

Shashi Shekhar Jha

Menusha Milaj

Shih-Fen Cheng  Archan Misra

Singapore Management University
{shashij,menusham,sfcheng,archanm}@smu.edu.sg

ABSTRACT

Examining people’s travel patterns is essential for urban planning
and efficient transportation system. In this article, we aim to develop
a solution framework to mitigate the taxi demand and supply imbal-
ances across the city by utilizing the mobility patterns of commuters
in densely populated cities like Singapore and taxi availability data.
We then propose a mechanism to predict the spatio-temporal distri-
bution of commuter demand in real-time. This information can be
used to dynamically re-position the mobility-on-demand (MOD) ve-
hicles (such as taxis and self-driving cars) to smooth demand-supply
imbalances.
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1 PROBLEM STATEMENT

In most cities, taxis play an important role in providing point-to-
point transportation service. If the taxi service can be made to be
reliable, responsive, and cost-effective, past studies show that taxi-
like services (in the literature, such services are usually termed as
MoD, mobility-on-demand, or MaaS, mobility-as-a-service) can be
a viable choice in replacing a significant amount of private cars
[4,7, 8]. However, as pointed out by earlier studies [1], making taxi
services efficient is extremely challenging, mainly due to the fact
that taxi drivers are self-interested and they operate with only local
information. A critical first step in improving taxi services is thus
to provide credible ways in predicting demands for taxi services.
In this report, we discuss our solution to create a scalable and
effective demand prediction system for the taxi services. Our pro-
posed demand prediction system is designed to be operating in
real-time and incorporating multiple data sources. This is in con-
trast to the prior studies that has focused on using only historical
taxi pickup data [5, 6, 9]. The major issue with these past approaches
is the fact that they focus only on realized demands and neglect
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unrealized demands. By incorporating information derived from
mobile-phone traces, we can improve the accuracy of our demand
prediction engine.

This engine can serve as the foundation for a city-scale driver
guidance system (DGS) that could significantly improve the per-
formance of the taxi fleet. We argue that such system is of critical
importance in helping taxi operators surviving intense competi-
tions from new entrants such as Uber and Grab (a major ride-hailing
firm that offers Uber-like services in the Southeast Asia).

Our main contributions are:

e We describe how a driver guidance system can be designed
and implemented to significantly improve the performance
of taxi fleets.

e We design and implement a real-time demand prediction
engine at the street level. Compared to the state-of-the-art
approach from the literature, we show that our approach
performs significantly better.

o We demonstrate how mobility data derived from mobile
phones can be used to further improve the prediction qual-
ity of our demand prediction engine.

2 DATA SOURCES

For our demand prediction model, we use the following data sources
which include all three data sources from DataSpark and one pub-
licly available dataset on taxi availability:

Source 1: Footfall. This data source provides the estimated
number of users in a particular region at a given time
window.

Source 2: Origin-destination flow. This is our main source
of data, that helps us to understand the flows of user move-
ments between regions. By carefully analyzing the ingress
and egress flow of users in a region, we estimate the distri-
bution of the resident users in space and time.

Source 3: Dwell time. This data source enables us to under-
stand users’ stay patterns (i.e., residency time) in a region.

Source 4: Taxi availability. While the above mentioned data
sources provide hourly statistics of user mobility patterns,
taxi availability data! gives finer-grained details of free
taxis (e.g., GPS locations along with timestamps). This pro-
vides information on real-time taxi supply.

Uhttps://data.gov.sg/dataset/taxi-availability
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Figure 1: System Architecture

3 THE DESIGN OF THE DRIVER GUIDANCE
SYSTEM

Taxi industry is diverse and complicated and is structured and
managed very differently from city to city. To put this report in
context, we build and test our system using Singapore as the testbed.
Nonetheless, we believe our framework is general enough to be
used in other cities; however, some components might need to be
modified or re-calibrated depending on the operating environment.

For our study, we have collaborated with the Land Transport
Authority (LTA) of Singapore, which oversees all aspects of land
transportation including taxi matters, and acquired the taxi demand
data for multiple months. This data provide us the realized demand
information for each subzone and street of Singapore.

The design of our framework is highlighted in Figure 1. There
are three most important components: 1) the handling of incom-
ing stream data, 2) real-time demand predictions, and 3) driver’s
recommendation engine.

To support real-time decision support, we design our platform to
accept streaming data, assuming that every 30 seconds, up to 26,000
state updates will be coming in through a private API To support
real-time sensing of both taxi locations and to support demand
predictions, we have to continuously update the locations of all
unique taxis based on received data. There are two major practical
difficulties:

e Incoming data can contain errors for a number of different
reasons. To ensure that our engine is free of apparent errors,
we have to monitor all potential exceptions and handle
them appropriately.

o To make best use of taxi coordinates, we need to map these
coordinates to the actual road links.

In the interest of space, we will not go into the details of the engi-
neering designs we came up in tackling these challenges. Instead,
we will focus on the design of taxi demand prediction engine.

4 THE DEMAND PREDICTION ENGINE

The design of our demand prediction engine is two tier viz. 1)
Street level and 2) Subzone level. Singapore is divided in a total
of 323 subzones. Figures 4 shows the outlines of all the subzones
boundaries over the map of Singapore. We design the demand
prediction model at the street level to provide the likelihood of
finding a passenger on a street within a subzone while the subzone
level demand prediction helps in balancing the demand and supply
across the whole Singapore.

4.1 Street Level Demand Prediction

The street level demand prediction model focuses mainly on de-
mand generation potential for each individual street. The key in-
sight we utilize is to treat each free-cruising taxi as a demand probe.
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The chance of us seeing demand on a particular link is assumed to
be inversely correlated with the amount of time passed since last
visit by a free taxi. In other words, we assume that the demand ar-
rivals do not follow a Poisson process, as the memoryless property
is not valid.

Formally speaking, for each cruising taxi approaching a street,
the time elapsed since the latest arrival of a taxi having AVAILABLE
status on that same street is maintained. According to the model,
this elapsed time acts as the independent variable while the status
of the approaching taxi when it exits that street (which could be
HIRED or NOT-HIRED) acts as the dependent variable. The model
then uses these two variables to run a multilevel logistic regression
[2] with grouping based on street, time of the day and day of the
week. For the time of the day, a period of 30 minutes is considered
as one time-slot resulting in a total of 48 time-slots in a day.

The multilevel regression model returns the likelihood of getting
a passenger on a street given the elapsed time from the latest taxi in
the AVAILABLE state which approached the street. The following
equation describes this prediction model:

Pr(HIRED|Ss) = logit ™ (cts, 1.4 + Bs,1,a0s); (1)

where s is the street, ¢ is the time slot of the day and d is the day
of the week. a and f are the coefficients of the regression model
while J; is the elapsed time from the latest arrival of a taxi in
the AVAILABLE state on the street s. Pr(HIRED|Js) signifies the
probability of getting a passenger for a cruising taxi.

For evaluation of the predictive capability of this street level de-
mand prediction model, we compared it against a non-homogeneous
Poisson model [3]. The non-homogeneous Poisson model has a time
dependent rate function (A(¢)). Since the demand of taxis varies
with the time of the day, a time dependent rate function with a
cycle of 24 hours (48 time slots in our case) is adopted as a piece-
wise linear function. The following equation describes the Poisson
model with time dependent rate function A(t):

Pr(ts) = A(t)e MD-ts 2

where t; is the time from the last trip (street hail) on the street s
and ¢ is the current time-slot.

The graphs in Figure 2 show the ROC curve of three different
streets for using the predicted demand values of a single day. The
ROC curve plots the True positive rate (Sensitivity) versus the
False positive rate (Specificity) for a predictor at different threshold
settings. The black colored curve in the graph shows the ROC for
the regression model while the red curve is for the Poisson model.
The diagonal line (x = y) bisecting the graph in two equal halves is
the line of random guess. Hence, the points above the diagonal line
indicate a better prediction characteristic. As can be observed from
the graphs, the regression based predictor outperforms the Poisson
based predictor.

The graph in Figure 3 depicts the Area Under the Curve (AUCs)
of ROCs of different streets in Singapore for both the prediction
models. We discovered from the historical data that a set of streets
account for almost 70% of street pickups across several months. The
data from these streets are used for generating output.
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Figure 2: Comparison of ROC curves of the logistic regres-
sion model against the non-homogeneous Poisson model
for the prediction of the likelihood of demand for three dif-
ferent streets. The X-axis shows the false-positive rate while
the Y-axis is for the true-positive rate.
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Figure 3: Comparison of AUCs for the regression based
demand prediction model in the framework versus Non-
Homogeneous Poisson model. The AUCs are shown on the
Y-axis while the X-axis lists the street ids of the streets con-
sidered for evaluation.

Figure 4: The map of Singapore with subzone boundaries.

4.2 Subzone Level Demand Prediction

The first part of our demand prediction engine, as described in the
previous section, is based on the insight that demands from a large
number of road links do not follow Poisson arrival process.
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To predict the expected demand count at the subzone level, we
utilize the mobility-related data provided by the DataSpark API
along with the real-time Taxi Availability data from a publicly
available API in Singapore. Due to the restricted API access, we
selected a sample of 31 subzones to study the prediction quality.
These 31 subzones are highlighted (in red) in Figure 4. The demand
(trips) in the selected sample of subzones varied from 223,374 to
6434 trips in the Month of May 2017.

We have used OLS linear regression to model the demand pre-
diction at the subzone level. Since the mobility-related data from
DataSpark is available on hourly basis, we have used the time pe-
riod of one hour to aggregate the trips in each subzone from the
month of May 2017. Further, the taxi availability data is averaged for
each hour of the day. The OLS models are depicted in the following
equations.

Ml:y; = fo+piTa, ®3)
M2:yi = fo+p10g, (4)
M3:yi = po+pila+ f20g, (5)
Md:yi = Po+piTa+ P20g + P3ln + faDr + PsFr  (6)

where y; is the predicted demand for a subzone i at a particular time
of the day, fo — fs are model coefficients, T, is the taxi availability,
Oy is the egress from the subzone i, I, is the ingress in the subzone
i, D;is the average dwell time and F; is the ratio of unique and
complete footfall within the subzone i.

The quality of the subzone level demand prediction model is eval-
uated using three quality metrics viz. symmetric Mean Absolute
Percentage Error (sSMAPE), Akaike Information Criterion (AIC) and
Root Mean Square Error (RMSE). The model with least sMAPE, AIC
and RMSE is selected. Table 1 shows the average of different perfor-
mance metrics aggregated over all the 31 subzones with different
independent input variables. We used May 2017 data for deriving
model coefficients. As the dependent variable, we used the trips in
the succeeding hours against the input from the current hour to
make the prediction practically viable for real use.

As can be observed, the base model (M1) using only the Taxi
Availability data has almost 43% aggregated average sMAPE error
while the combined model of Taxi Availability and Egress (M3) from
subzone reduces the SMAPE error by almost 5% with the reduction
in RMSE at almost 13%. The Full Model (M4) uses a set of 6 inputs
within a subzone at a time. As can be noted from Table 1, in case of
Full Model, the average sMAPE reduces by 10% while the reduction
in RMSE is around 23.5%. In addition, the AIC value of the model
M4 is also the least. Further, we also performed ANOVA analysis
among the different regression models. We found that the F static
was significant at 5% level for all the 31 subzones for the model M4
which provides stronger evidence for the effective contribution of
mobility related information in the model. Hence, we selected the
Model M4 for generating the subzone level demand prediction.

In order to evaluate the effectiveness of the subzone level demand
prediction, we selected the first week of June 2017 (5-9 Jun’17) to
test the prediction accuracy. Table 2 lists the SMAPE error for five
different subzones from June 5-9 2017 (Monday to Friday). As can
be observed, the SMAPE errors are either below or close to the
model average SMAPE. Further, the graphs in Figure 5 show the
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Table 1: Relative Performance of different models taking ag-
gregated averages of all 31 subzones.

OLS Regression Model | sMAPE AIC RMSE
M1 0.430 4369.312 | 56.132
M2 0.410 4321.793 | 54.199
M3 0.381 4253.716 | 49.039
M4 0.328 4139.447 | 42.920

Table 2: sMAPE for the test days from June 5-9 2017 for five
high demand subzones.

Day | BDSZ04 | TMSZ04 | SRSZ01 | WDSZ03 | DTSZ01
Mon 0.205 0.185 0.157 0.169 0.327
Tue 0.207 0.273 0.174 0.185 0.314
Wed 0.263 0.332 0.352 0.181 0.439
Thu 0.263 0.369 0.265 0.239 0.325
Fri 0.244 0.264 0.233 0.165 0.342
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Figure 5: Predicted and observed demands for two working
days in two different subzones. The X-axis shows the hour
of the day while the Y-axis shows the trip count.

observed and predicted trips against the different hours of the day
with confidence interval on a Monday and Friday in two different
subzones. As can be observed from the graphs, the predicted trips
closely approximates the observed trips on both days of the week.
The graph in Figure 6a depicts the predicted versus observed trips
for the whole week in the subzone WDSZ03.

The results show that the availability of mobility related infor-
mation can greatly help to estimate the taxi demand at the subzone
level at different times of the day.

5 APPLICATION DESIGN

Our application is mainly designed to support the operation of
the taxi driver guidance system. We use the subzone level demand
prediction to provide island level recommendations to the taxi
drivers. This helps in alleviating the demand-supply imbalance
across the city and places the taxis at the right locations. At the
next level of recommendation, we guide the taxis to a particular
street within a sub-zone with a high likelihood of finding passenger.
To allow users visualize the prediction outcomes, we have designed
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Figure 6: (a) Observed versus predicted demand from 5-9
Jun’17 for the subzone WDSZ03. (b) The performance of DGS
and non-DGS drivers as a function of the adoption ratio of
the DGS technology.

a series of dashboard components for easily visualization available
datasets and real-time/historical demand predictions.

6 IMPACT OF THE PROPOSED SOLUTION

The most important impact we expect to create with our proposed
solution is the improved taxi driver guidance system (DGS). In our
initial simulation study, we show that by adopting the DGS, drivers
can achieve significant increase in their productivities. This benefit
holds even with relative high adoption ratio. The performance of
DGS drivers over non-DGS drivers, under different market adoption
ratio, can be seen in Figure 6b.
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