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ABSTRACT

This paper describes our deep learning system for precipi-
tation forecasting. The main contribution of this work is to
use recent architecture likes convolutional long short-term
memory, residual networks to represent the spatial and tem-
poral nature of the precipitation data. In experiments, we
show that this model is easier to optimize and efficient in
performance. We also propose some regularization techniques
to deal with the over-fitting issue in this problem: One comes
from the level of rainfall magnitude categorization, the other
comes from the probabilistic labeling. We apply this model
to CIKM AnalytiCup 2017 and archive a comparable result
(rank 3/1395 on the first Season).
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1 INTRODUCTION

Short-term precipitation now-casting such as rainfall predic-
tion is a task to predict a short-term rainfall amount based on
current observations. It has long been an important problem
in the field of weather forecasting. The goal of this task is to
give precise and timely prediction of rainfall intensity in a
local region over a relatively short period.

In recent researches, some computer vision techniques,
such as optical flow based methods, have proven useful for
making accurate extrapolation of radar maps [1, 2] Especially,
recent advances in deep learning lead to better representation
in feature space and more efficient prediction model. In [§],
the convolutional kernels in the dynamic convolutional layer
are determined by a neural network encoding the informa-
tion of weather images in previous time step. Xingjian Shi
et al. combine the Convolutional Network (CNN) and the
Long Short-term Memory to build an Encoding-Forecasting
structure that have the ability to model the spatiotemporal
sequence in the rainfall prediction problem. Inspire by these
works, we use the residual connections [4, 5] (which is big
advance of deep leaerning in 2016) to extend the Convlutional
LSTM and build efficient model for precipitation predition.
We apply this model on CIKM AnalytiCup 2017 challenge
and archive a good score of MSE - 12.94 (rank 3/1395) on
the first Season.

2 PROBLEM FORMULATION

According to the CIKM AnalytiCup 2017, the provided
dataset is a set of radar maps at different time spans where
each radar map covers radar reflectivity of a target site and
its surrounding areas. In detail, radar maps contain the re-
flectivity of signal on following dimensions:

(a) Each radar map contains one target site that located at
the centre of the map covering an area of 101 x 101km?
around the site.

(b) Radar maps are measured at different time spans, i.e.,
15 time spans with an interval of 6 minutes, and differ-
ent heights, i.e., 4 heights, from 0.5km to 3.5km with
an interval of 1km
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Figure 1: The distribution of rainfall

Our task here is to predict the total rainfall amount on
the ground between future 1-hour and 2-hour for each target
site.

2.1 Loss function

From machine learning perspective, this problem can be
regarded as a spatio-temporal sequence forecasting problem.
Suppose we observe a dynamical system over a spatial region
represented by an M x N grid which consists of M rows and
N columns. Inside each cell in the grid, there are 7' x H
measures, where T is the number of time-spans and H is
the number of height level. Thus, the observation at any
time can be represented by a tensor X € RT*XHXMXN ' where
R denotes the domain of the observed features. In CIKM
AnalytiCup 2017 challenge, the each sample of data has
the size T'= 15, H = 4, M = 101, N = 101. The rainfall
forecasting problem can be consider as a task of building a
function F : RT>*XHXMXN |, R that minimizes the mean of
square error over S samples [X1, .., Xs| in the traing set:

S
J:ZHti_]:(Xi)”? (1)

2.2 Regularization

If we use a deep Neural Network to approximate F, its param-
eters can be estimated after solving a minimization problem
with the loss function stated in equation 1. However, this
approach is quite naive, because it does not take into account
the fact that the rainfall does not have an uniformly distri-
bution. Moreover, the rainfall spread over a large range of
values, so without any suitable regularization, the regression
process will easily lead to an over-fitting.

From the distribution of rainfall on training set (which is
illustrated in Fig. 1), we categorize the rainfall value into C'
levels of magnitude and define an additional cost to penalty
the error when miss-classify a sample.

S
J= Zuu — F(X)||2 + AL(G(X:), ci) (2)
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Similar to F, G : RTXHXMXN |, N stands for the classi-
fication function and L is the cross-entropy measuring the
difference between the output of classifier G and the real level
of rainfalls {c¢;}.

Another way of regularizing is instead of hard-classify the
rainfall to magnitude level, we use a probabilistic labeling
by model the rainfall as a mixture of gamma function. We
firstly estimate the parameters of this function (illustrate by
the red and blue curves in Fig. 1) and after that, for each
time of training, the class value ¢; of a sample is indicated
by sampling the index of a gamma functions in the mixture
model. The classification function G is still remained the
same, but the ground-truth label is dynamically changed
respect to the probability of the rainfall value.

3 OUR MODELS

In this section, we propose a deep neural network for pre-
cipitation forecasting. The network is motivated from the
state-of-the-art ResNet [4, 5] and the Convolutional Long
Short-term Memory [16] which has capable of modeling the
spatial and temporal nature of radar maps properly.

3.1 Framework Pipeline

Fig. 2 describes the overview of our architecture with essential
components and the flow of this framework. The precipitation
forecasting function F and the rainfall classification function
G are approximated by over deep neural network over pipeline
of three main steps:

(1) Capture the 2D spatial information from radar maps X
by passing it into a 2D residual network. The purpose of
this block is to learn low level features (like interesting
points, edges...) of the reflective signal

(2) Model the spatial-temporal nature of the data. Output
features from step 1 are re-arranged to form a sequence
in which each element is 3D cube merged from the
2D features over H level of heights. After that, a Con-
volutional LSTM in 3D with residual connections is
used to not only capture the latent information of this
sequence but also improve the optimization process.
We will explain this block in more details in Section
3.3.

(3) Aggregate feature maps of the sequence of latent vari-
ables return from Step 2. In this block, we re-arrange
the two dimensions of time-span and height-level into
a new one to form a tensor in RTHEXMXN gnace. This
cube is passed through a residual convolutional neural
network (ResNet3D), a Global Pooling layer [10] and
a final Fully Connected Unit (as described in Fig. 2b)
to approximate the two both F and G functions.

3.2 Residual Convolutional Neural
Network

Traditional convolutional feed-forward networks connect the
output of the I*" layer as input to the I 4+ 1**layer [9], which
leads to the following layer transition: x;41 = H(z;). This ar-
chitecture has an issue that when the networks become ”very
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Figure 2: Our framework overview.

deep”, accuracy gets saturated and then degrades rapidly.
Kaiming He et al. proposed a new scheme so-called Deep
Residual Network (ResNet) [4] to overcome this problem.
ResNets add a skip-connection that bypasses the non-linear
transformations with an identity function:

Ti+1 = H(xl) +x (3)

The advantage of ResNet is that the skip-connection make
these residual network easier to optimize and reduce the
training error. Motivated by [5] we define the skip-connection
H as a composite function of three continuing operations:
batch normalization (BN) [7], followed by a rectified linear
unit (ReLU) [3] and a 2D or 3d convolution (Conv). As
illustrated in Fig. 2d, we use two skip-connections, to form a
Residual Convolution Unit. A Residual Convolutional Neural
Network (ResNet) is the set of many Residual Convolution
Units, one after each other.

3.3 Convolutional LSTM with residual
connections

For general purpose sequence modeling, Long Short-term
Memory (LSTM) [6] as a special recurrent neural networks
(RNN) structure has proven stable and powerful for modeling
long-range dependencies in various previous researches [12,
13]

The major drawback of the traditional LSTM in handling
spatio-temporal data (like sequence of radar maps) is its
usage of full connections in input-to-state and state-to-state

transitions in which spatial information is disregarded. To
overcome this problem, in [16] Xingjian et al. use convolution
operator to compute input, output and forget gates as well
as other cells instead of the original fully connected matrix
multiplication. The model offers a faster and more accurate
representation this kind of data.

Residual Connections: In many researches [14, 15], deep
stacked LSTMs often give better accuracy over shallower
models. However, simply stacking more layers of LSTM works
only to a certain number of layers, beyond which the network
becomes too slow and difficult to train, likely due to exploding
and vanishing gradient problems [11, 12]. In our network,
we add residual connections between two Conv LSTMs in a
stack to form a Residual Conv3D LSTM Unit. The structure
of this unit is described at Fig. 2¢

3.4 Fully Connected Unit

The purpose of this Unit is to approximate the two functions
F and G by passing the feature maps z to different fully
connected layers (FC). As described in Fig. 2b, the right
side are layers designed to learn the classification function
like F'C3 or to supply the information of predicted rainfall
magnitude for regression task like F'Cpiqs. Remained layers
like F'C1, F'Cs combine the above information and the spatial-
temporal features map to give a final result of rainfall by
computing their inner product. In experiments, we will show
that the scheme of these fully connected layers not only make



CIKM 2017, Nov 2017, Singapore

Table 1: Result over different type of regularization

# iters Phase 1 Phase 2
to converge RMSE  RMSE
Weight decay only failed
Weight decay + BN 1400 13.21
Weight decay + BN
+ rainfall magnitude 5400 12.64  12.94
Weight decay + BN
+ probabilistic labeling 4000 1268 13.09

the training process faster to converge but also naturally lead
to an over-fitting avoidance.

4 EXPERIMENTAL RESULTS

4.1 Data and Setup

In CIKM AnalytiCup 2017 challenge, the training dataset
contain 10000 samples of radar maps. We use all of them
to train our model, for any signal has a value of —1 we
use interpolation technique to recover a considerable from
the signals of its neighborhood. For validation purpose, we
generate a validation set by performing 2D augmentation on
each radar map of the training set. The optimization process
is stopped whenever the validation error increase over several
epochs. For evaluation, we use the official scorers from CIKM
AnalytiCup 2017, which compute the Root Mean Square
Error over the testing set.

The parameters of our model were (chosen on the validation
set) as follows: The size of 2D and 3D convolution kernel is
set to 3, the number of Residual Conv2D Unit in ResNet2D
is set to 15, which mean there are more than 30 layers of
convolution in this block. The number of Residual Conv3D
Unit is set to 5, dropout factor in fully connected layers are
set to 0.5. The BatchNorm with fully training two parameters
of scaling and shifting is applied to all skip-connections except
those are in the ResNet3D layers, we only standardize the
feature maps in the block. Because of the lack of hardware
resources (12 Gb memory of a single Nvidia Titan X), we
only use 8 time-span of radar maps as input and keep 4
time-span of feature maps from the output of the Residual
Convolutional LSTM.

4.2 Regularization tunning

We run our model (with parameters are explained in section
4.1) on the testing set in Phase 1 and Phase 2 of the challenge
to evaluate its performance. To deal with the complication
of the data, we need to build a complex architecture and
eventually it leads to a model with so many parameters.
In this experiment, we have four option of regularization:
Weight decay only, Weight decay + Batch Norm (BN), Weight
decay + BN + rainfall magnitude and Weight decay + BN +
probabilistic labeling. The first option fails easily to converge,
the second one is better but still far from the top 20 scores in
the leader-board. The best result come from combining the
BN with the rainfall magnitude level prediction, it’s also the
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final score of our team on this challenge. The probabilistic
labeling regularization lost his strength in the second phase
because distribution of the rainfall in testing set may be very
different from the training one. But if we have more prior
information about the testing set, this technique could be a
promise approach in future
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