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Abstract 

Key management is a critical issue for both wired and wireless secure communications. In 
this paper, we investigate a variety of key management protocols used mainly in wireless 
networks environments with different features. In particular, we review those for two-party 
communication, wired group communication, and wireless group communication. We analyze 
these protocols for security vulnerabilities against attacks. We also analyze the pros and cons of 
each protocol and give performance comparisons among related approaches. 
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1. Introduction 
Many emerging network applications, such as video conferencing, pay-per-view media 

distribution, real-time information services, collaborative work, are based on group 
communications. They require efficient delivery of data from one or more sender(s) to a group of 
receivers. Many of these applications distribute sensitive information and hence require 
provisions for secure data transmission and membership management.  

 
The current multicast service in the Internet successfully provides an efficient, best-effort 

data delivery to large groups [Dee88]. However, it does not provide data confidentiality. 
Furthermore, it provides little control over who can participate in a group. Any user can join or 
leave a multicast group and any user can send data to a multicast group. An attacker can intercept 
and modify packets easily because copies of plaintext traverse many more links than those of a 
unicast communication. Thus, a secure group communication service is necessary to ensure that 
only authorized members can get access to group data and only authorized members can send 
information to the group. Cryptographic mechanisms are used to satisfy such requirements. 
Specifically, messages are encrypted by senders using a group key that is only known to group 
members. The overall security of the group communication totally depends on the secrecy and 
strength of the group key. Therefore, group key management is a critical issue in secure group 
communication. 

 
Generally, group key establishment protocols can be classified into key agreement and key 

distribution. Key agreement is also called contributory key establishment. It means that all 
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participants take equal part in the key generation and guarantee for their part that resulting key is 
fresh. Key distribution means that the key is generated by one party and distributed to all other 
participants. Key distribution is more suitable to large groups.  

 
The group key management system must be able to cope with the demands of various 

applications. Besides confidentiality, integrity, and authenticity requirements, the following 
features are desirable in a group key management system for dynamic groups. 
 
- Scalability. The size of a multicast group may vary from a few to tens of thousands. The rate of 
join/leave requests and the expected lifetime of a member may vary largely in different 
applications. The group key management system should not make arbitrary assumptions about 
group size. Membership changes should only affect a small subset of members so that the system 
can support large dynamic groups. 
 
- Forward and backward secrecy. Forward secrecy means that a departed member can't access 
future data after it has left the group. To keep forward secrecy, the system must change the group 
key after a current member leaves, or is evicted from the system. Backward secrecy means that a 
joining member can't access past group data. To keep backward secrecy, the system must change 
the group key after a new member joins. The process of establishing new group key securely 
upon membership changes is referred to as group rekeying.  
 
- Reliability. Since IP Multicast only provides best-effort data delivery, rekeying messages may 
be lost or delayed. If a receiver didn't get the rekeying information, it can't decrypt messages 
encrypted with the new group key. More seriously, if the sender missed new group key, data may 
be exposed to departed members because the sender still uses old key to encrypt group data. So 
the system must provide reliable transport of rekeying messages, or provide a recovery 
mechanism for a member to get missed rekeying messages in a timely manner. 
 
- Resistance to attacks. Since we assume the network infrastructure is insecure, unauthorized 
members may eavesdrop on the group communication. A subset of departed members may 
collude to try to discover new group keys. A subset of current members may collude to try to 
discover the keying material of other valid members to impersonate the victims. Thus, a key 
management system should be resistant to attacks from both inside and outside the group. 
 
- Protocol Independence. To be applicable as widely as possible, the system should not make any 
assumption about underlying multicast protocols and routing algorithms. 
 

Recently, mobile computing has become very popular due to dramatic decrease in weight 
and cost of mobile devices, and the increase of bandwidth and new wireless services. Introducing 
mobile users into group communications greatly improves the flexibility, availability of group 
applications. However, power, storage, and bandwidth limitations restrict the ability of mobile 
users to participate in the group as fixed hosts. The broadcast nature of wireless medium makes 
attacks easier, and host mobility increases the complexity of membership dynamics. The group 
key management system must consider the following issues in mobile wireless environments: 
 
- Simplicity. The system only requires little additional software/hardware in mobile hosts. 
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- Efficiency. To make the optimal use of limited processing and communication resources, the 
system must be both communicationally and computationally efficient. 
 
- Robustness. The system should be able to work gracefully in case of communication 
disruptions and minimize the effect as far as possible. 
 
- The role of base stations. Except in ad hoc networks, all mobile hosts rely on base stations to 
relay their communication. "What kind of role should the base station play?" and "To what 
degree we can trust them?" are two important questions. 
 

In case of ad hoc networks which have no pre-existing infrastructure, secure group 
communication is more complex. The lack of infrastructure means the lack of central entities, 
fixed routers, name servers, certificate authorities, and so on. Thus standard key management 
techniques in wired networks can not be applied straightforwardly. The network topology of ad 
hoc networks may change rapidly, so any protocol bound closely with network topology is not 
suitable. These are all concerns we should take into account when going a further step into ad 
hoc environments. 

 
A variety of protocols for secure group communication have been proposed in literature in 

recent years. We summarize some of the representative protocols in this survey. We briefly 
introduce these protocols and examine their pros and cons. The rest of this paper is organized as 
follows. In Section 2, we describe the necessary background on mobile networks and 
cryptography. In Section 3, we introduce some typical key management protocols for two-party 
communications. In Section 4, we discuss several key management protocols for group 
communications. In Section 5, we describe key exchange protocols in wireless networks and we 
draw some conclusions in Section 6.  

 
2. Background 

2.1 The Specific Nature of Mobile Environments 
Security, authentication and access control are vital features that must be present in any 
communications network. These features are more important in case of wireless mobile 
communications than in wired communications because of the widely shared nature of the 
wireless medium.  In fact, the mobile wireless environment has some specific characteristics 
which influence the feasibility and efficiency of the security protocols: 
− The unique characteristics of the wireless medium. A wireless link is likely to be limited in 

bandwidth. Also the error rates on a wireless link is much higher than that of a wired link. 
− Different types of communication paths involved, one of which is radio link, particularly 

vulnerable to attack. 
− Location privacy. Any leakage of specific signaling information on the network can lead to 

an eavesdropper to approximately “locate” the position of a subscriber and thus hindering 
the subscriber’s privacy. 
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− Computational limitation. Compared with typical communications devices, the mobile 
station is limited in computational power. In fact, mobile and base stations have different 
levels of computational power. 

2.2  Mobile Security Requirements 
The following presents the requirements in radio link security [BM98]: 
− Mutual authentication of the mobile and base stations. 
− Confidentiality and integrity of the information exchanged between the mobile and base 

station. 
− Confidentiality of the identity of the mobile station. 
− Acceptable cost of the computation involved to the mobile station. 
 

Compared with radio link security, the end-to-end security between mobile users and their 
communications partners typically includes confidentiality and integrity of user data, non-
repudiation. The detailed requirements will vary depending on the applications. 

 

2.3 Cryptography 
Traditional cryptography is based on the sender and receiver of a message knowing and using the 
same secret key: the sender uses the secret key to encrypt the message, and the receiver uses the 
same secret key to decrypt the message. This method is known as secret-key or symmetric 
cryptography. The main problem with this method is having the sender and the receiver agree on 
the secret key that an eavesdropper will not be able to determine. 
 

The second class of cryptography methods is public-key cryptography or asymmetric 
cryptography. In a public-key cryptosystem, every entity has a pair of keys: a public key and a 
private key. Data encrypted with the public key can be decrypted only with the corresponding 
private key. The public key is published, so that anyone can encrypt messages with it. But the 
private key is kept secret, thus only the key owner can decrypt the messages correctly. That's the 
essence of public-key cryptography introduced by Diffie and Hellman in 1976. 
 

Key management consists of a set of techniques and procedures supporting the 
establishment and maintenance of keying relationships between authorized parties. A keying 
relationship is the state wherein communicating entities share common data (keying material) to 
facilitate cryptographic techniques. This data may include public or secret keys, initialization 
values, and additional non-secret parameters [MOV96]. 
 

The vast majority of key agreement protocols are based on Diffie-Hellman key exchange 
protocol. Diffie-Hellman key exchange protocol is a typical contributory key exchange protocol 
in which the session key is established from the contribution components provided by all the 
entities in the communication group. 
 

The following table demonstrates how the Diffie-Hellman key exchange protocol works. 
The goal is for Alice and Bob (two entities in communication) to agree upon a shared secret that 
an eavesdropper will not be able to determine. This shared secret is used by Alice and Bob to 
independently generate keys for symmetric encryption that will be used to encrypt the data 
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stream between them. The "key" aspect of this approach is that neither the shared secret nor the 
encryption key ever travel over the network. 
 
Alice and Bob agree on two numbers "p" and "g" "g" is called the base or generator 
Alice picks a secret number "a" Alice’s secret number = a 
Bob picks a secret number "b" Bob’s secret number = b 
Alice computes her public number : 
               x = ga mod p 

Alice’s public number = x 

Bob computes his public number: 
               y = gb mod p 

Bob’s public number = y 

Alice and Bob exchange their public numbers Alice knows p, g, a, x, y  
Bob knows p, g, b, x, y 

Alice computes ka = ya mod p ka = (gb mod p)a mod p  
     =(gb)a mod p 
     = gba mod p 

Bob computes kb = xb mod p kb = (ga mod p)b mod p  
     = (ga)b mod p 
     = gab mod p 

Alice and Bob then agree on the session key 
kab = ka = kb

gba mod p = gab mod p 
i.e.,  ka = kb

Table 1: Diffie-Hellman key exchange protocol. 
 

There are requirements on the numbers picked (e.g., minimum size, ranges, etc.), which is 
known as “Diffie-Hellman parameters”. The value of p should be larger than 2 and g should be 
an integer that is smaller than p. Besides, a and b should less than p-1. 

2.4 Terminology and Notations 
The following notations will be used throughout the paper unless noted otherwise: 
M :          mobile entity 
B :            base station 

:PK x
+       x’s public key 

:PK x
−       x’s private key 

:)( xCert   x’s certificate 

xN :      random challenge generated by x 
:}x{ K       x encrypted with key K 

abk :         session key between a and b 
:s       shared secret 

xr :            random value chosen by x 

XT :            time stamp issued by X 
:N            number of protocol parties (group members) 
iM :          i-th group member;  }N,...,1{i∈
:h       height of a tree 

:v,l 〉〈        v-th node at level l in a tree 

iT :     ’s view of the key tree iM
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iT̂ :     ’s modified tree after membership operation iM
:q,p       prime integers 

:α      exponentiation base 

 
3. Key Establishment in Two-Party Communications 
In this section several protocols for establishing a secret key between two nodes are discussed. 
These protocols provide link-level security for mobile communication. That is security is 
provided in a machine-to-machine manner, compared with end-to-end security. These protocols 
also form the basis of establishing a secret key among a group of nodes. 

3.1 Beller-Chang-Yacobi Protocols 
Beller et al. [BCY91][BCY92][BCY93][BM98] proposed a series of protocols which combine 
asymmetric and symmetric cryptographic algorithms in order to meet the specific requirements 
imposed by the asymmetry of the computational power between a mobile host and a base station. 
The public key cryptosystem underlying BCY protocols uses Modulo Square Root (MSR) 
technique in which  encryption and decryption are implemented by calculating a modulo square 
and a modulo square root, respectively. Computation power involved is acceptable for a mobile 
station.  

BCY protocol family includes three variants: Basic MSR protocol, Improved MSR (IMSR) 
protocol, and MSR+DH protocol. Each has different feature related to security. 
 
The Basic MSR protocol works as follows: 

1. B M: B,  +
BPK

2. M B: +
BPKBMk }{  

3. M B:  
BMkMCertM )}(,{

Firstly, the base station B sends its public key  to the mobile station M.  M then uses  
to encrypt the session key  and sends it to B. Only the base station can decrypt the session 
key using its private key. At the same time, the mobile also sends its identity and certificate 
encrypted by for authentication to the base station. Messages in steps 1 and 2 are based on 
public key cryptography while message in step 3 uses secret key cryptography. 

+
BPK +

BPK
BMk

BMk

In fact, this protocol doesn’t allow authentication of the base station at the mobile host. 
This means, anyone can masquerade as the base station and initiate a session with a mobile host 
by sending his own public key and id in step 1. 

To address this problem, the IMSR protocol adds , the certificate of the base 
station, in the first message.  Besides this feature, the IMSR protocol is the same as the Basic 
MSR protocol. 

)(BCert

The IMSR protocol works as follows: 
1.   B M: B,  )(, BCertPK B

+

2. M B: +
BPKBMk }{  

3. M B:  
BMkMCertM )}(,{
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Upon receiving message 1, the mobile decrypts  using the public key of the Certificate 
Authority (CA), and then it verifies the identity of the base station. The owner of a certificate 
should keep its certificate secret from other mobile users and eavesdroppers to prevent others 
from masquerading.   

)(BCert

Note that the IMSR protocol is not immune to replay attack. If a malicious attacker copies 
messages nd , replays them later after the session between M and B 

ends, the base station can not determine if these messages indeed came from M . Even if the 
attacker doesn’t know and can’t do anything further, at least the session initiated by the 
attacker will be incorrectly charged to M. Situation might be worse if the old session key is 
obtained by the attacker, since using it to decrypt message the attacker can 
acquire , which is all it needs to masquerade as M.  

+
BPKBMk }{  a

BMkMCertM )}(,{

BMk

BMk

BMkMCertM )}(,{
)(MCert

 
MSR + DH protocol works as follows:  

1. B M: B,  )(, BCertPK B
+

2. M B:  +
BPK

k}{ , kM MCertPKM )}(,,{ +

This protocol adopts the idea of Diffie-Hellman protocol. The session key is not transmitted 
directly.  and  are exchanged to establish a shared secret s between B and M using 
Diffie-Hellman technique (Please refer to Section 2.3 for the details). The session key is 
calculated as encryption of k with s.  

+
BPK +

MPK

With improved security, the protocol requires more computation since both parties need to 
calculate a full modular exponentiation to establish the session key. 

3.2  Beller-Yacobi Protocol 
The Beller-Yacobi protocol [BM98][BY93] adds a challenge to address the replay problem in 
the previous protocols. The reason why this algorithm is preferred is that the digital signature is 
used on the challenge at the mobile and signature can largely be executed before choosing the 
message to be signed, i.e., the mobile can do most of the work when idle. The protocol runs in 
the following steps: 

1. B M: B,  )(, BCertPK B
+

2. M B: +
BPKBMk }{  

3. B M:  
BMkBN }{

4. M B: {M,  
BMM

kPKBM NMCertPK }}{),(, −
+

The first two messages are same as in the IMSR protocol. Upon receiving the encrypted message 
from M in step 2, B decrypts the message and gets the session key . Then B sends to M a 
challenge (a large random number) encrypted using . The mobile then signs  using its 
private key and return it to B together with its id, public key , and certificate, all encrypted 
with . Finally, B decrypts this message using and decrypts  using  and checks 
if the  is the one expected. 

BMk

BN BMk BN
+
MPK

BMk BMk BN +
MPK

BN
This protocol is resistant to replay attacks. If an attacker replays a message , it 

can not get the correct  since it doesn’t know . Even if it knows an old session key and 

+
BPKBMk }{

BN BMk
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can get the correct , it still can not generate correct since it doesn’t know the private 

key of M.  In both of the cases, the attacker can not respond with the correct message in step 4. 
BN −

MPKBN }{

However, if an attacker is a registered user of B, and at the same time it can talk with M 
as a base station, it can succeed in spoofing as M as follows: 
A is an attacker.  

1. B A:  B,  )(, BCertPK B
+

2. A B: +
BPKBAk }{  

3. B A:  
BAkBN }{

4. A M:  A,  )(, ACertPK A
+

5. M A: +
APKAMk }{  

6. A M:  
AMkBN }{

7. M A: {M,  
AMM

kPKBM NMCertPK }}{),(, −
+

8. A B: {M,  
BAM

kPKBM NMCertPK }}{),(, −
+

A starts a session with B and gets the random naunce  for the session. Then A turns to initiate 
a talk with M pretending as a base station. In this way, A gets the critical message  {M, 

 from M and forwards it to B after encrypting it using the session key 

. B can not detect the threatening standing between M and it. 

BN

}}{),(, −
+

MPKBM NMCertPK

BAk
 An improved BY protocol fights this attack by signing not only  but together with the 
session key and the ids of the mobile itself and the base. It works as follows: 

BN

1. B M: B, ,  )(, BCertPK B
+

BN
2. M B:   +

BPKBMk }{ , −
+

MBM PKBMBkM kNMBhashMCertPKM )},,,({,)}(,,{

3. B M:  
BMkBN }{

Thus, the attacker A standing between M and B like above can’t succeed by just forwarding the 
message containing M’s signature which is acquired in another session with M, even if A 
chooses the same session key  with B as the one with M .  BAk AMk

1. B A:    B, ,  )(, BCertPK B
+

BN
2. A M:  A,  BA NACertPK ),(,+

3. M A:   +
APKAMk }{ , −

+

MAM PKAMBkM kNMAhashMCertPKM )},,,({,)}(,,{

Now the message that B is expecting from A is   
   +

BPKBAk }{ , −
+

MBA PKBABkM kNMBhashMCertPKM )},,,({,)}(,,{

The first two parts can be generated by A from message 3. However A can’t generate the last 
component correctly. So A can’t masquerade as M talking with B. 

3.3 Aziz and Diffie’s Protocol 
The Aziz and Diffie protocol [AD94] [BM98] uses both public-key and secret-key cryptography 
techniques. The public-key cryptography provides the means for session key setup and 
authentication. Secret-key cryptography is used to provide privacy for bulk data transmission. 
The protocol works as follows: 

 8



alg-list:   a list of flags representing secret-key algorithms provided by the mobile; 
sel-alg:    the flag representing the particular algorithm selected by the base station; 

MB XX , : are contribution components for the session key provided by B and M, 
respectively. 

1.  listaNMCertBM M lg_,),(:→
2. { }( ){ } −++→

BMM PKMPKBPKB listaNaselXhashaselXBCertMB lg_,lg,_,lg,_,}{),(:  

3. M  B:  −+++
MMBB PKPKBPKMPKM XXhashX )}}{,}({{}{

,

First, M sends to B its certificate, a challenge and a list of algorithms. The certificate binds the id 
of M with M’s public key. Using corresponding CA’s public key, B can decrypt  and 
get the public key of M.  is to avoid replaying attacks. B responds with its certificate and 
session key contribution component encrypted by , and the preferred algorithm. To avoid 
the man-in-the-middle attack, a digest of vulnerable items is calculated and appended to the 
message. Similarly, M responds to B with its contribution component for the session key. With 
the knowledge of both contribution components, both sides can calculate the session key. 

)(MCert

MN
+
MPK

In the phase of session key establishment, the mobile has to perform two computationally 
expensive operations based on public key cryptography: one decryption to get  in step 2, and 
one encryption to do the digital signature in step 3. 

BX

In [M95], Meadows showed a possible attack on this protocol as follows.  
     A is an attacker who is also a registered user of B. 

1.  listaNMCertBM M lg_,),(:→
2.  listaNACertBA M lg_,),(:→
3. { }( ){ } −++→

BAA PKMPKBAPKBA listaNaselXhashaselXBCertAB lg_,lg,_,lg,_,}{),(:  

4. { }( ){ } −++→
BMM PKMPKBAPKBA listaNaselXhashaselXBCertMA lg_,lg,_,lg,_,}{),(:  

5. { }( ){ } −++→
BMM PKMPKBMPKBM listaNaselXhashaselXBCertMB lg_,lg,_,lg,_,}{),(:   

(intercepted and discarded by A) 
6. M  B:  −+++

MMBB PKPKBPKMPKM XXhashX )}}{,}({{}{
,

A sits between M and B. Just after M starts a session with B, A initiates another talk with B by 
replaying M’s challenge . Then A forwards to M the B’s contribution component for the 
session key between A and B (steps 3,4) while discarding the B’s contribution component for the 
session key between M and B. Thus, the mobile calculates the session key with  and  
while the base station calculates that with  and . This means the mobile and the base 
station agree on the session key with different values and they can’t do the following encryption 
and decryption correctly. 

MN

BAX MX

BMX MX

3.4 Park’s Protocol 
Park’s protocol [BP98][P97] is a modified version of an earlier protocol by Yacobi and Shmuely 
[YS89] and it works as follows:  

1. B  M:  (In the Yacobi-Shmuely protocol, “ ” is sent.) BB rPKg +−

BB rPK +−

2. M  B:  MM rPK +−
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The public keys of two sides are  and  respectively. The session key 

is , which is calculated by M as  and by B as 

 

−−+ = BPK
B gPK

−−+ = MPK
M gPK

MBrr
BM gK = MBB r

B
rPK

BM PKgK )( ++−=
BMM r

M
rPK

BM PKgK )( ++−

=
Compared with the Yacobi-Shmuely protocol in which both the mobile host and the base 

station have to do two exponentiation operations, this protocol require the mobile M to perform 
only one exponentiation operation, which makes it more suitable for key establishment in 
wireless environments. 

In [MM98], an attack is shown upon the Park’s protocol. Suppose an attacker A knows an 
old session key  and stores the exchanged information , , which 
was to established . A can masquerade as B successfully as follows.  

MBrr
BM gK = BB rPKg +−

MM rPK +−

BMK
BMK '  is the new session key. 
1. A  M:  BB rPKg +−

2. M  A:  '
MM rPK +−

3. A:  ( ) – ( ) = ;  '
MM rPK +−

MM rPK +−
MM rr −'

BM
rr

B
rPK

BM KPKgK MMBB −++−=
'

)(' MBMMBBB rrrrPKrPK ggg −−+ −−

=
'

)(
'
MBrrg=  

In the same way the Yacobi-Shmuely protocol can be attacked in both directions due to 
its symmetry of the message exchange. 

In fact, anyone A can run the protocol like B together with M by constructing the first 
message as . The steps followed as normal, i.e., A and M 
should agree on a session key finally. M takes the communication partner as B, 
however, it is NOT B actually. In another word, there is no authentication of B at M. 

ABABA rPKrPKr
B ggggPK +−−−+ −−

== 11 )()(
MArr

AM gK =

3.5  ASPeCT Protocol 
ASPeCT [BP98][HP98] is the abbreviation of Advanced Security for Personal Communication 
Technologies. This protocol is used within the third generation mobile communications system, 
also known in Europe as UMTS (Universal Mobile Telecommunications System) for secure 
billing between a mobile user and a value-added service provider (VASP). The protocol is in fact 
divided into two separate component protocols: Authentication and Initialization Protocol, 
Payment Protocol. The former does authentication in various degrees between the user and the 
VASP, establishes the session key and initializes the subsequent payment protocol. The latter is 
responsible for making payments for a value-added service. Due to the subject of this paper, we 
just discuss the Authentication and Initialization Protocol, which is based on asymmetric 
cryptography.  

The protocol uses three functions h1, h2 and h3 that are implemented using one-way hash 
functions. A trusted third party (TTP) is involved to work as a certificate authority. k is a 
temporarily used key computable by TTP. = is the public key contained in Cert(B). 
ch_data is the charging information. pay_data is the data needed to initialize the Payment 
Protocol. T  is a time stamp. 

+
BPK bg

The following are the steps of the protocol: 
1. M  B: ,  TTP Mrg kMid }{ ,
2. B  M:  kBMBB BCertTdatachBrKhr )}(,,_),,,(,{ 2
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3. M B:  
MBM

M
KPKB

br datapaydatapayTdatachBrggh }_,)}_,,_,,,,({{ 3 −

Between steps 1 and 2, the process is omitted that B consults the TTP for the public key of M 
(TTP also includes the value of k and a time stamp T in the respond message). In step 2, B sends 
the charging information to M. In step 3, M signs its payment and sends to B. The hashing 
operation avoids message compromise during transmission without detection. The time stamp 
added in the message aims at preventing replay attacks. Signature prevents repudiation. The 
session key is calculated by M as  and by B as 

.  
)))((,()))((,( 11

Mrb
B

Mr
BBMB grhPKrhK == +

))(,(1
bMr

BMB grhK =
 

3.6 Accelerating Key Establishment Protocols for Mobile Communication 
Public-key cryptosystems have more advantages than secret-key cryptosystems, but they are not 
fully utilized because of their computational overhead and the low computing power of a mobile 
station. Lee et al. [LHYC98] proposed techniques for accelerating some of the above key 
establishment protocols between a mobile station and a base station. The basic idea is to enable a 
mobile station to borrow computing power from a base station without revealing its secret 
information. The proposed techniques use SASC (server-aided secret computation) protocol, 
which can be used to significantly accelerate RSA signature generation. The objective of SASC 
protocols is to enable the client to efficiently compute ms mod n with the aid of the server, where 
m is a message, s is private key, and n is the product of two large primes. 

Lee et al. proposed techniques for several key establishment protocols, and we will 
describe the acceleration of improved BY scheme. A mobile station need to execute two public 
key operations and a private key operation in this key establishment protocol (section 3.2). The 
operation that requires extensive computation is the signature generation of the mobile station 
using its private key. The approach to overcome this problem is to make use of the 
precomputable property of ElGamal algorithm. Their insight is as follows: When the mobile 
station generates the signature , the signature can be precomputed and stored 

in advance as it is independent of the message h(B, M, N
1)},,,({ −

MPKB xNMBh

B, x) to be signed. 
The precomputation (gr mod p) uses Beguin and Quisquater's server-aided DSS (Digital 

Signature Standard) scheme [BQ95], which is a splitting-based technique. The session random r 
(the secret of mobile station) is decomposed into several pieces and sent to the base station. The 
latter computes exponentiation for every piece and returns them to the mobile station, and the 
mobile station combines these results to get the signature. The precomputation works as follows: 

1. The mobile station randomly chooses xis and bis which satisfy , where 0 ≤ 

x
∑ −

=
=

1

0

m

i iibxr

ibi ≤ h, and then, it sends bis to the base station. 
2. The base station computes , for 0 ≤ i ≤ m-1, and then, it returns them to the 

mobile station. 
pg ib mod

3. The mobile station computes pgg ii xbm

i
r mod)(1

0∏ −

=
≡ . 

The analysis shows that this approach can present outstanding accelerating performance. 
However, it still remains an open question whether it is possible to accelerate significantly RSA 
signatures using an insecure server with the possibility of active attacks: that is, when the server 
returns false values to get some part of secret. Moreover, the rapid advances in computing power 
of hardware have been resulting in drastic improvements in large-number arithmetic 

 11



computations. So the bottleneck probably will shift from computation to other issues such as 
communication delay. 
 
4.Key Management Protocols for Group Communication 

4.1. Tree-Based Key Management 
With the rapid development of deploying secure group communication services over the Internet, 
scalability is becoming a critical issue, especially when the group size is very large. In this 
section, we will focus our discussion on improving the scalability of key distribution and 
management, for purpose of accommodating frequent membership changes in large groups.  

In tree-based key management, keys are organized into a tree hierarchy, based on different 
construction strategies. The basic consideration for employing this kind of hierarchy is to reduce 
the rekeying cost by localizing the effects of member joins or leaves, and therefore, provide 
higher scalability for secure communications in large dynamically changing groups. Two 
categories of keys are included in this kind of methods: (1) the group session key for encrypting 
messages exchanged among group members, and (2) the auxiliary keys used for securely 
distributing and updating the group session key in an efficient way.  

4.1.1.Model 
A communication group with N  members , has a trusted server, called group 
controller C  ( or in short controller), who is responsible for managing group memberships, as 
well as the services related with key distribution and update, such as maintaining the key 
hierarchy, generating new keys, and initiating rekeying process. At any point, group member(s) 
can join or leave (either de-registration or removal by the controller) the group at will, and 
there’s always a mechanism for C  to detect these membership changes and initiate the key 
distribution accordingly.  For example, in order to join, a member sends a join request to the 
controllerC , which in turn verifies the client’s credentials and securely sends group session key 
and necessary auxiliary keys to the new member. As for de-registration or removal, the controller 
distributes new generated keys, to prevent old members from compromising future 
communications. 

NMMM ,,, 21 L

Simple Key Distribution Center (SKDC) [HMR97] is one of the simplest solutions for 
group key management, in which controller  shares an individual secret key  with each 
group member . Secret group session key is encrypted by  and distributed sequentially 
to . When a new member  joins, the cost is not too high, since the new group key  
can be encrypted by old group key  and multicast to ;  gets  from a 
unicast rekeying message encrypted by . However, when a member leaves, we cannot use 
old group key  to encrypt the new key , since the removed member also knows . 
Instead,  has to be encrypted by each remaining member’s individual key  and unicast 
separately. Apparently this approach does not scale up with the group size, since it requires  
encryptions and  rekeying messages.  

C iCk ,

iM iCk ,

iM 1+NM 'Gk

Gk NMMM ,,, 21 L 1+NM 'Gk

1, +NCk

Gk 'Gk Gk
'Gk iCk ,

N
N

We can see that communicating the new group session key in a scalable and secure way, 
especially when members leave, is definitely a non-trivial task. More recent research literatures 
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explored the scalability problem in group key distributions, based on different novel models or 
hierarchies. Iolus is the one of them, which addresses scalability problem by dividing a large 
group into multiple subgroups and employing a hierarchy of group security agents. We will 
discuss it in a subsequent section.  

Another approach that we will discuss in this section divides the whole communication 
group into several subgroups, based on different strategies. Every subgroup is recursively 
decomposed into smaller subgroups. Each subgroup has a secret key shared by all its members to 
provide secure communications among them. The key corresponding to the whole group is the 
group session key K  that we are interested in. The keys shared within other subgroups are called 
auxiliary keys, since their ultimate goal is only to help encrypt and distribute the group session 
key efficiently. The hierarchy of these subgroups naturally leads to a tree rooted at the group 
session key, with keys as internal tree nodes and group members as leaves. By employing key 
trees, it enables combining more than one member’s rekeying messages into only one encrypted 
message and multicasting it, and therefore, substantially reduces the overhead on the controller 
as well as on the network traffic, compared with SKDC. We call this kind of approaches as tree-
based key management and distribution. In the rest of this section, we describe several tree-based 
approaches ([WGL97], [CE99], [GS98]), with especial focus on their corresponding cost on 
encryption, messaging, and storage.   
 

4.1.2 Group Key Management Using Key Graphs (KG) 
Wong et al. [WGL97] discussed the scalability problem in key management for group 
communications, generalized the solutions based on secure subgroups by introducing key graphs, 
and formalized the notation of secure subgroups. Based on how to group the rekeying messages 
after a join/leave happens, three different rekeying strategies, i.e., user-oriented, key-oriented, 
and group-oriented, are proposed. The analysis and comparisons on their different effects on 
complexity are also presented.  

4.1.2.1 Key Graph Notations 
The notion of a secure group is formalized as a triple ( )RKU ,, , where  

• U is a finite and nonempty set of group members,  
• K is a finite and nonempty set of keys, and  
•  is a binary member-key relation.  KUR ×⊂

Group controller knows the member set U and the key set K, and is responsible for 
maintaining the member-key relation R. Two functions are associated with each secure 
group ( ) : RKU ,,

( ) ( ){ RkMkMkeyset ii ∈= , } , which is the set of all keys held by member , and iM
φφ =)(keyset ;  
( ) ( ){ RkMMkuserset ii ∈= , }, which represents the set of all members holding key k. 

Figure 1 presents a key graph, where  
( ) { }1234,234122 , kkkMkeyset =  
( ) { }1234,2343 kkMkeyset =  
( ) { }11 Mkuserset =  
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( ) { 2112 , MMkuserset = }. 
Here  is the key shared by members jik L { }ji MM ,,L  

Apparently, each member holds two kinds of keys: group session key and some auxiliary 
keys. All group members are partitioned into several subgroups recursively, and all members 
belonging to a same subgroup share the same auxiliary key. A subgroup key is different from 
other subgroup keys, which ensures that members outside a group have no way to decrypt the 
communications within it. 

 
k1234 = kG 

key nodes 

 
Figure 1: A key graph 

 
The consideration of using auxiliary subgroup keys lies in the observation that when a 

member  leaves the group, only those subgroups that  belongs to need to change the 
corresponding keys, i.e., . All other subgroups keep their subgroup keys intact and 
use them to encrypt new keys for future use. Thus by localizing and restricting the effect when a 
member joins or leaves, we are able to reduce the overhead. In a word, properly constructing 
subgroups, utilizing auxiliary keys to encrypt rekeying messages, and then multicasting them to 
subgroups respectively, can result in substantial decrease in encryption cost and overhead on 
network traffic.  

iM iM
( iMkeyset )

4.1.2.2 Rekeying Process 
When a join happens, the controller initiates a rekeying process, so that new member(s) can join 
the secure message transmission in the group, while being unable to decrypt previous 
communications in that group. When member(s) leave, rekeying process updates the group 
session key to prevent members who have left the group from compromising the future group 
communications. Wong et al. presented three rekeying strategies, i.e., user-oriented, key-
oriented, and group-oriented, which are based on how to construct the rekeying messages and 
group the encryptions. Next, we explain these rekeying strategies and illustrate them, referring to 
Figure 2. 

User-Oriented Strategy 

k12 k234

k1 k2 k3 k4 

member nodes M1 M2 M3 M4

 14



 During the rekeying process, every member ( )NiM i ,,1, L=  updates some of its old keys with 
new keys denoted by the set , which the member needs for future communication and 
rekeying process. In the user-oriented approach, the controller C puts ’s new key set  in 
a single rekeying message, and then encrypts it by an auxiliary key. The auxiliary key used for 
encryption here is chosen in such a way that it is shared by the largest one ( ) among all 

those groups satisfying 

new
iK

iM new
iK

maxU

( ) ( )( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=≠−== NjxkeysetMkeysetandKKMU
j

j
new
i

new
jj ,,1, LI φ , 

where φ=x  when member joins, and x  is the member that left the group when a leave happens. 
The purpose for finding the “largest” such group is to minimize the encryption cost, by 
combining the constructions of rekeying messages encapsulating the same content to the greatest 
extent. Finally, in order to reduce traffic overhead, rekeying messages are multicast, which can 
only be decrypted by members holding the proper auxiliary keys. 

 An example: When  joins the group, the following actions are executed: 9M
 C  { } {

819161 :,,
−−→ kkMM }L

}

}

{ } {
787899187 ,:, kkkMMC −→  

{ }
9789919 ,: kkkMC −→  

When  joins, group  changes to 9M { 81 ,, MM L { }91 ,, MM L , and subgroup { }87 , MM  
changes to { . So M  and M  need to be granted not only the new group session 
key , but a new subgroup key k  as well.  belong to  subgroups whose 
compositions are not affected by M ’s join, and therefore, only need to receive the new session 
key .  All the rekeying messages are generated and multicast by the controller C. 

}987 ,, MMM 7

)

}
}

 

8

( 91−= kkG 789 61 ,, MM L

9

Gk
 An example: When  leaves the group, the following actions are executed: 9M

{ } {
12381321 :,, kkMMMC −→  

{ } {
45681654 :,, kkMMMC −→  

{ }
778817 ,: kkkMC −→  

 
{ }

878818 ,: kkkMC −→

When  leaves the group,  cannot use the old group session key 9M 61 ,, MM L ( )91−= kkG  to 
encrypt the new session key k , because M  knows the old key k . Instead, k  and 

 are used to encrypt the new session key, so that M  has no way to decrypt rekeying 
messages.  and  need to update the keys used in the subgroup previously including M , 
as well as the session key shared in the whole group. 

( 81' −= k )G 9 G 123

456k 9

7M 8M 9
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k1-8 = kG 

k123 k456 k78

k1 k2 

 
 

Figure 2: An example 

Key-Oriented Strategy 
For a group, once a join or leave happens, the set of keys to be updated during the rekeying 

process are determined accordingly. In the key-oriented approach, each rekeying message only 
contains a single new key. In order to minimize the encryption cost, the controller C chooses an 
auxiliary key to encrypt a rekeying message such that as many members as possible that need the 
new key contained in the message hold this auxiliary key.   

 An example: When  joins the group, the following actions are executed: 9M
{ } {

819181 :,,
−−→ kkMMC L }  

{ } { }
9919 : kkMC −→  

k4 

M2 M6M5 M4

k3 k5 k6 k7 k8 

M1 M3 M7 M8 

M9 leaves M9 joins

k1-9 = kG 

k789k123 k456

k1 k2 k4 

M2 M6M5 M4

k3 k5 k6 k7 k8 k9 

M1 M3 M7 M8 M9 
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{ } {
7878987 :, kkMMC → }

)

 

{ } { }
97899 : kkMC →  

New group session key  is needed by every group member. The largest subgroup 
that shares an auxiliary key ( ) is 

( 91−= kkG

81−k { }81 ,, MM L , so  is encrypted by . New subgroup 
key  is to be held only by { , and the largest group shares an auxiliary key ( ) 
is { , so old subgroup key  is used to encrypt new subgroup key . Newly joined 
member  gets the new session key  and the new subgroup key  from messages 
encrypted by its individual key . 

Gk 81−k

789k }
}

}
}

987 ,, MMM 78k

87 , MM 78k 789k

9M Gk 789k

9k
 An example: When  leaves the group, the following actions are executed: 9M

{ } {
12381321 :,, kkMMMC −→  

{ } {
45681654 :,, kkMMMC −→  

{ }
7787 : kkMC →  

{ }
78817 : kkMC −→  

{ }
8788 : kkMC →  

{ }
78818 : kkMC −→  

When  leaves, we cannot use the old session key  to decrypt any rekeying 
messages, in order to prevent  from getting knowledge about the new keys. So the new group 
key  has to be encrypted by subgroup keys ,  or , where first of all the new 
subgroup key  should be delivered to   and  , encrypted by  and , respectively.  

9M 91−k

9M

81−k 123k 456k 78k

78k 7M 8M 7k 8k

Group-Oriented Strategy 
In group-oriented approach, the controller C tries to let a rekeying message to contain as 

many new keys as possible. New keys are encrypted by appropriate subgroup keys, which are 
chosen in such a way that the encryption cost is kept as low as possible. When a join happens, 
the new group is made up of the old group and a new member, so the controller will construct a 
rekeying message for each of these two subgroups. When a leave happens, the new group is just 
a group excluding the leaving members, so the controller will group together all new keys 
encrypted by appropriate auxiliary keys and multicast in the new group. The main consideration 
for adopting group-oriented strategy is to take advantage of multicasting to reduce the network 
overhead. 

 An example: When  joins the group, the following actions are executed: 9M
{ } { } { }

7881 7899181 ,:,, kk kkMMC
−−→ L  

{ } { }
9789919 ,: kkkMC −→  

When a new member  joins, the whole group is made up of the subgroup { } 
that shares a key , and the subgroup 

9M 81 ,, MM L

81−k { }9M  that holds the key . The controller C constructs 
and distributes two rekeying messages designated for these two groups, respectively. 

9k

 An example: When  leaves the group, the following actions are executed: 9M
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{ } { } { } { } { } { }
8778456123 787881818181 ,,,:,, kkkkk kkkkkMMC −−−→ L  

The controller C constructs and sends out rekeying messages to all remaining members 
, using appropriate auxiliary keys to encrypt different new keys, with the goal to 

minimize the encryption cost by choosing keys shared by as many members as possible. When a 
member receives the rekeying message, it uses the keys in its keyset to extract those new keys 
that it is supposed to know, while preventing it from knowing other new keys that should not be 
exposed to it.  

{ 81 ,, MM L }

4.1.2.3. A Remark 
Wong et al. consider star, tree and complete graph topology, and presents cost analysis of them, 
although we only discuss tree topology here. For more details, refer to [WGL97]. Compared with 
SKDC approach, the number of rekeying messages and the encryption costs are substantially 
decreased. The numerical results for storage complexity are given in Table 2. The rekeying 
complexity, when a member joins or leaves using three different rekeying strategies, is listed in 
Table 3, where h is the height of the key tree with degree d, and N is the group size. Intuitively, 
each user needs to store h keys. 

 

Table 2: Storage complexity of KG protocol (tree topology)  

Total number of keys maintained in the whole group 
1

1
1 −

−
− d

N
d

d  

Number of keys held per user  1log += Nh d  

 
User-oriented strategy Key-oriented strategy Group-oriented 

strategy 
 

Join Leave Join Leave Join Leave 
Number of 
rekeying messages 

1log += Nh d

 
( )( )11 −− hd  ( )12 −h

 
( )( )11 −− hd  2 1 

Encryption cost ( ) 1
2

1
−

+hh  ( ) ( )
2

11 −− hhd ( )12 −h
 

( )1−hd  ( )12 −h
 

( )1−hd
 

Table 3: Rekeying complexity of KG protocol (tree topology) 
 

As we can see from Table 2 and Table 3, the controller needs to maintain  keys, and 
each user stores  keys, and the encryption cost when a member joins is proportional to 

, and the encryption cost for a leave is 

( )NO
( NO log )

( ) ( )NOO log~1 ( ) ( )NONO 2log~log . Note the 
undesirable encryption cost ( )NO 2log  is introduced by using user-oriented strategy when a 
member leaves, but we can easily avoid this relatively higher cost by choosing an alternative 
strategy, i.e., key-oriented or group-oriented. Hence, compared with previous SKDC approaches, 
where we have complexity of both encryption and rekeying messaging proportional to N, KG 
method substantially improves the scalability of the key distribution and management for group 
communications.  

However, there remains some space for improvement. For example, Wong et al. [WGL97] 
didn't address how to construct the key tree and how to choose h to optimize the overall 
performance. Another problem is the controller has to maintain ( )NO  keys, which puts a heavy 
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burden on both controller’s storage as well as computation. Next we describe another key-tree-
based method which reduces the number of keys maintained by the controller to , while 
resulting in similar rekeying complexity. 

( NO log )

)

 

4.1.3 Group Key Management using Boolean Function Minimization 
Techniques (BFMT) 
Chang et al. [CE99] developed a method for group key management that is based on a 
interesting and novel idea of defining a user ID (UID), in form of n-bit binary string, for each 
user. The set of keys held by a user is entirely determined by its UID. Since any two users must 
differ with each other’s UID in at least one bit, when one of them leaves the group, other users 
can always get the new group key from the rekeying messages encrypted by key(s) not held by 
the leaving one.  

Since we only need  bits to represent a UID, not only the number of keys held by 
each user is , but also the number of keys maintained by the controller C is 
reduced to . Thus, this new method achieves a substantial improvement over the key 
graph (KG) approach discussed in the previous section, where the controller has to maintain  

 keys.  

Nn log=
( ) ( )NOnO log=

( NO log

( )NO
Since multiple members may leave within a short period of time, especially for the 

applications with high frequency of changes, it is better not to rekey after every member leaves, 
under the assumption that the harm on the communication secrecy caused by a little bit delay in 
updating the group session key is acceptable. Rather we can batch these membership changes 
periodically, encrypt the rekeying messages by keys not held by all those leaving members, in 
order to reduce the overhead on encryption and distribution of new keys. Chang et al. [CE99] 
explored this cumulative member removal by utilizing minimization techniques in Boolean 
algebra to decide the auxiliary keys used for encrypting rekeying messages. 

4.1.3.1 UID and Key Pair Notations 
The whole group maintains n auxiliary key pairs,  and ik ik , where i ranges from 0 to 1−n . 
Each key pair corresponds to one bit in UID. Besides the group session key , n keys are 

assigned to every member such that, member  holds  if ith bit of its UID is "1", or 
Gk

jM ik ik  if ith 
bit of its UID is "0".  A UID and corresponding key assignment for a group of members is 
illustrated in Figure 3. 

 

 19



2k

Figure 3: A key t
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keys , 

jM

5M

2k 1k , and , plus  that is shared by all
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0k Gk

 

4.1.3.2 Rekeying Process 
In general, both  and auxiliary keys update w
member can no longer understand the future comm
group changes are batched together and the rek
timeout. We call such a rekeying process as a rou
denoted as , and the auxiliary keys as 

Gk

( )rkG ( )rki  a

 Individual Member Removal 
In order to update , the controller comp

is encrypted by the keys that are “complemen
Referring to Figure 3, for example, if  leav

( )rkG

5M

( ) { }0125 ,, kkkMkeyset = . can be ( 1+rkG )
( ){ } ( ){ } ({ )}

012
1,1,1 kGkGkG rkrkrk +++ ) and multic

know any of these keys, it can not decrypt the mul

M2 M1 M3 M0 

1k

0k 0k

1k

0k 0k

000 001 010 011
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ticast rekeying message to get the new session 

5
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1k
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1k
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key. On the other hand, any other member’s UID differs in at least one bit with the UID of  , 

therefore, possesses 
5M

( )jMkeyset such that ( ) ( ) φ≠jMkeysetMkeyset I5 , where . This 
ensures any other member can decrypt at least one data chunk in the rekeying message. 

5≠j

To make sure that the departing member is not able to use its auxiliary keys to decrypt 
future session key updates, auxiliary keys are also updated using one-way hash function f: 

. ( ) ( ) ( )( )1,1 +=+ rkrkfrk Gii

Removal of Multiple Members 
Instead of removing the members one by one and sequentially generating and sending 

rekeying messages individually for every removal, under certain circumstances, it is more 
desirable to batch removals periodically, in order to minimize the number of rekeying messages 
as well as encryption cost. 

Suppose  and  leave the group. Without batching, a total of 2*3=6 messages will be 
sent out, since messages encrypted by 3 auxiliary keys respectively are to be generated in each of 
the 2 rounds. In the cumulative scheme, the minimum set S of auxiliary keys, which are not held 
either by  or , is computed by using minimization technique in Boolean algebra. In our 

example, 

0M 4M

0M 4M

( ) { 0120 ,, kkkMkeyset = }  and ( ) { }0124 ,, kkkMkeyset = , so 

{ } ( ) ( )4001 , MkeysetMkeysetkkS I== . Using keys in S to encrypt new session key ensures 
none of the departing members can figure out ( )1+rkG , while all other remaining members can 
always determine it.  

We can resort to Boolean functions minimization techniques to compute the set S , when 
 and  leave. In Table 4 and Figure 4, the corresponding Boolean member function and its 

Karnaugh map minimization of membership function are illustrated, where input   is the 
UID of a member, output “0” designates for “leaving” the group and “1” for “remaining” in the 
group, and “X” means UID for  is currently not assigned since  has already been 
removed from the group. Apparently, the result is 

0M 4M

012 XXX

5M 5M

01 XX + , which corresponds to the set 
. { }01, kkS =

4.1.3.3 A Remark 
This method has some interesting features. 

First, it’s easy to understand, since it utilizes the most common computer science idea, i.e., 
using binary string to represent a member and designing the rekeying process accordingly. It 
simplifies the rekeying message generation and distribution algorithm. It just needs to compute 
the complementary key set S of the departing members and multicast the new session key 
encrypted by auxiliary keys in set S. Therefore the number of rekeying multicast message is only 
1. As for the encryption cost, it is at most ( ) ( )NOnO log= , where n is the number of auxiliary 
key pairs, since it is enough to have n bits to represent all N users. 

Second, it proposes the idea of batching rekeying messages and efficiently solved the 
minimization of encryption number by borrowing minimization technique from Boolean algebra.  

However, it does not present a satisfactory solution to control the high cost, which is 
proportional to the group size N , for reconstructing the key tree and reassigning the auxiliary 
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keys, due to the increasement of UID length, resulting from the group expansions. The ( )NO  
complexity may severely limit the scalability of this method. 

 
Input 

(X2X1X0) 
Output 

000 0 
001 1 
010 1 
011 1 
100 0 
101 X 
110 1 
111 1 

 
Table 4: Boolean member function 

 
Figure 4: Karnaugh map minimization of membership function 

 

4.1.4 Group Key Management Using One-Way Function Trees (OWFT) 
McGrew et al. [WS98] proposed an algorithm based on one-way function trees to establish 
group session key when memberships change. In this method, each node x in the binary key tree 
has both an unblinded key  and a blinded key . The basic observation is that each blinded 
key is computed from a well-known one-way function 

xk xk '
( )xx kgk =' , using the unblinded key on 

this node as the parameter. Hence even some other node x′  has knowledge about the blinded key 
, it has no way to figure out the unblinded key  because of the “one-way” feature of the 

function. Details on how to take advantage of this observation to construct a key tree and 
improve the scalability of key management for large dynamic groups are to be presented later. 

xk ' xk

The interesting idea of this approach is that the group session key is not delivered directly 
to each member; rather, members can calculate it “bottom-up” whenever a member joins/leaves, 
which results in key changes on the path from that member to the root.  

In this method, the number of keys maintained in the system is ( )NO , the number of keys 
stored at each member is , and the multicast rekeying message number is . ( NO log ) ( )NO log
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4.1.4.1 One-Way Function Tree 
In this method, the controller maintains a binary tree, in which all group members located at leaf 
nodes, but leaves are not necessarily members. Every node x (including leaves) is associated with 
two keys: an unblinded node key  and a blinded node key , which are computed using a 
well-known one-way function 

xk xk '
g  and a “mixing” function :  and f ( )xx kgk =' ,

( )( ) ( )( )( ) ( ) ( )( )xrightleftxrightxleftx kkfkgkgfk x ′′== , , , where left(x) and right(x) denote the left and right 
children of x. From this rule, with the unblinded key of a node and the blinded node of its sibling, 
we can always derive the unblinded key of its father. 

 
Figure 5: One-Way Function Tree 

In the OWFT method, each member knows and only knows all blinded keys of sibling 
nodes to those nodes along its path to the root. Based on the blinded keys a member knows and 
the unblinded key of itself, it can compute all the unblinded keys along the path from itself to the 
root in a bottom-up way. Figure 5 illustrates a one-way function tree, where member  knows 
all the blinded keys on nodes in black and unblinded key of itself (gray node M

3M
3), therefore the 

unblinded keys on all other gray nodes on its path to root can be derived and known to . The 
unblinded key associated with the root which is regarded as the group session key is finally 
computed independently by every member. 

3M

With the “one-way” feature of the function g , even though a node’s blinded key is 
exposed to nodes who are not its descendents (members), there’s no way for them to figure out 
its unblinded key, and therefore, it is used as the secure session key of the subgroup consisting of 
all its descendents.  

4.1.4.2 Rekeying Process 
The problem remained is, whenever group member(s) join or leave, it is necessary to update and 
securely communicate the blinded keys to appropriate member set. Next, rekeying process is 
outlined. 

M2 M5 M4M1 M3 M0 
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Figure 6: Member Joins/Leaves 

Adding a Member 
Figure 6 illustrates a situation when a member  joins. What the controller does is to 

choose a leaf node
newM

x , and replace it with a new internal node x′  with two children, one of which 
is x  itself and the other is . The subgroups affected by this join are descendent sets of the 
nodes in gray color, and therefore, the unblinded keys on these gray nodes need to be updated so 
that backward secrecy is ensured.  

newM

To compute the new group session key, nodes storing the old versions of the updated 
blinded keys should be informed their new versions. For example, node y should be given the 
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updated blinded keys  of node zk ′ z . The set of nodes that needs zk ′  is 
, which exactly consists of z’s sibling u and all descendents of u. 

This new blind key  is included in a rekeying message, encrypted by the unblinded key  of 
u, and then multicast to set . 

{ 3210 ,,,,,, MMMMyvuS z = }
zk ′ uk

zS

Removing a Member 
Figure 6 also presents a situation when a member  leaves. Node  is removed and 

replaced by 
newM x′

x . All the keys along the path from x  to root r  are updated. Accordingly, using the 
same method as when a join happens, the updated blind keys securely delivered to the nodes who 
stored old versions of them.  

4.1.4.3 A Remark 
The most novel idea of OWFT is to improve the key management scalability by getting around 
the direct delivery of group session key by maintaining a one-way function tree and computing 
the group key independently by each member. The number of rekeying messages and encryption 
complexity are determined by the number of subgroups that need the updated blinded keys. 
Since the number of updated blinded keys, each of which corresponds to a subgroup that needs 
updated keys, is at most h (height of tree), the number of the rekeying multicast message, as well 
as the encryption cost is . McGrew et al. also showed that the number of keys 
stored in the system is  and the number of keys stored at each member is . 

( ) ( )NOhO log=
( )NO ( )NO log

However, in OWFT, the controller has to maintain the membership information of 12 −N  
subgroups, since each node in the tree corresponds to a subgroup consisting of itself and all its 
descendents. The non-trivial maintenance work imposes a heavy load on the controller and may 
limit the scalability of this algorithm in large group applications. 

4.1.5 A Performance Comparison 
We now present the performance comparison between KG, BFMF and OWFT.  

 
 KG(Tree Topology) BFMT OWFT 
Total number of keys 
maintained in the 
system 

( )NO  ( )NO log  ( )NO  

Number of keys 
stored on each user 

( )NO log  ( )NO log  ( )NO log  

Number of multicast 
rekeying messages 

Group-Oriented: ( )1O  ( )1O  ( )NO log  

Encryption cost ( ) ( )NOCostNO 2loglog ≤≤  ( )NO log  ( )NO log  
Table 5: A performance comparison 

We can see that BFMT has the smallest encryption complexity and rekeying messaging 
complexity among the three, while reducing the number of keys maintained on the controller 
from  to . Also, in KG and OWFT, algorithms are relatively more complex; 
while in BFMT, no subgroup membership information is maintained, and the algorithm just need 

( )NO ( NO log )
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to compute the complementary key set S of the departing members and multicast the new session 
key encrypted by keys in set S, which is much easier and straightforward.  

4.1.6 A Remark 
Basically, key-tree-based approaches improve scalability by reducing encryption cost and the 
number of rekeying messages, at the cost of larger storage space, due to introducing auxiliary 
keys, which are shared by members belonging to a same subgroup.  

The ultimate goal of adding auxiliary keys and organizing them as a tree architecture, is to 
ensure that, when new members join or old members leave the group, some rekeying messages 
can be encrypted aggregately using subgroup keys and multicast to all members in the 
subgroups, rather than encrypted and unicast to each member separately. 

Several novel approaches have been explored and proved to succeed in achieving higher 
scalability, as mentioned above. However, the controller still remains the single point of failure. 
 
 

4.2 Tree-based Group Diffie-Hellman protocols 

4.2.1 TGDH Protocol 
 
Key-tree-based secure group communication protocols come in two different categories: server-
based (or centralized) key distribution protocols and contributory key agreement protocols. The 
former is suitable for large groups while the latter is suitable for small groups. The protocols 
mentioned in Section 4.1 belong to the server-based category, because they have a group 
controller. 

TGDH [KPT00] is a contributory group key agreement protocol that unifies two important 
trends in group key management: 1) key trees to efficiently compute and update group keys and 
2) Diffie-Hellman key exchange to achieve provably secure and fully distributed protocols. The 
result yields a simple, secure and efficient key management solution. 

Figure 7 gives an example of TGDH key tree model. 
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<0,0>

 
The root is at level 0 and the lowest leaves are at level h. The tree is binary, every node has 

either two children or it is a leaf node. Every leaf node <h, v> (0 ≤ v ≤ 2l – 1, each level l hosts 
at most 2l nodes) is associated with a member Mi of the group. Each node <h, v> in the tree has a 
key K<l, v> and a blinded key  (α is the exponentiation base). Every member M><=><

 vl,K
 vl,   BK α i at 

node <h, v> knows every key along the path from <h, v> to <0, 0>. This path is called the 
member’s key-path, denoted as KEYi

* for a member Mi. In figure 7, member M2’s key-path is 
KEY2

* = {<3,1>, <2,0>, <1,0>, <0,0>}. M2 knows all the keys along it’s key-path, {K<3,1>, K<2,0>, 
K<1,0>, K<0,0>}, and M2 knows all the blinded keys of the tree, BK2

* = { BK<0,0>, BK<1,0>, …, 
BK<3,7>}. Actually every member Mi knows all the blinded keys of the tree. 

Every key K<l, v> is of the form , where K>++<>+< 12v 1,l2v 1,l KKα <l+1, 2v> and K<l+1, 2v> are the keys 
of left and right child of node <l, v>, respectively. So in order to calculate K<l, v>, we need to 
know the key of one child and the blind key of the other child. This is essential for TGDH key 
calculation. 

K<0,0> is the group secret (group key) shared by all members. The group key K<0,0> in 

Figure 7 is . 
><><

><><
><><

><><><><
><>< ===><

7,36,32,21,21,30,33,22,21,20,2
1 1,0 1, KK

0,0

KKKKKKKKKK

K
αα αααα ααα

As an example, M2 can compute K<2,0>, K<1,0>, K<0,0> using it’s own key and the blinded 
keys BK<3,0>, BK<2,1> and BK<1,1>. To simplify the protocol description, the term co-path is 
introduced, denoted as COi

*, which is the set of siblings to each node in the key-path on tree Ti of 
member Mi. In other words, every member Mi at leaf node <l, v> can derive the group secret 
K<0,0> from all blinded keys on the COi

* and its own key (session random) K<l,v>. 
In TGDH protocol, a group member might take on a special role, “housekeeping”. For 

example, it can be involved to compute a key and broadcast the blinded keys to the group. This 
member is called the sponsor. The sponsor is not a privileged entity, and it is different for the 
group controller or group leader in previous protocols. The criteria for selecting a sponsor 
member vary in different membership events (join, leave, etc.). 

TGDH includes protocols in support of the following operations: join, leave, merge, 
partition and key refresh. Due to space limitation, we will only discuss join and leave protocols. 

M3 M4 

M1 M2 M5 M6 

<1,0> 

<2,0> <2,1>

<3,0> <3,1> 

<1,1>

<2,2> <2,3>

<3,6> <3,7>

level l = 0 
 
 
 
level l = 1 
 

h = 3  
 
level l = 2 
 
 
 
level l = 3 
 

N = 6

Figure 7: Tree notations for the TGDH protocol 
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Join Protocol 
A new member Mn+1 initiates the protocol by broadcasting a join request message that 

contains its own blinded key BK<0,0>. When the current group members receive this message, 
they generate a new intermediate node and a new member node, and promote the new 
intermediate node to the parent of its node and the new member node. After updating the tree, 
only the sponsor can compute the group key, since it is the sibling of the joining node. After 
computing the group key, the sponsor broadcasts the new tree which contains all blinded keys. 
All other members update their tree using this message, and compute the new group key.  

Tree T3̂

 
Figure 8 shows an example of member M4 joining the group. The sponsor M3 performs 

the following actions: 
 
1. Renames node <1, 1> to <2, 2>, 
2. generates a new intermediate node <1, 1> and a new member node <2, 3>, 
3. promotes <1, 1> as the parent node of <2, 2> and <2, 3>, 
4. computes the new group key K<0,0>, 
5. broadcasts the new tree which contains all blinded keys to the group. 
 
Upon receiving the broadcast message, every member can compute the group key. 

Leave Protocol 
Assume that we have n members and a member Md leaves the group. In this case, the 

sponsor is the sibling node of Md. If the sibling is not a leaf node, the sponsor is the right-most 
leaf node of the subtree which has the sibling node as root of the subtree. In the leave protocol 
(Figure 9), every member updates its key tree by deleting the node of Md and its parent node. The 
sponsor picks a new secret share, computes all keys on its key path up to the root, and broadcasts 
the new blinded keys of its key path to the group. This information allows all members to 
recompute the group key. 

New Intermediate Node

New Member

M3 M1 M2 

Sponsor

M3 

M4 M1 M2 

<0,0> 

<1,0> 

<2,0> <2,1> 

<1,1>

Figure 8: Tree update in a join operation 

<0,0>

<1,0>

<2,0> <2,1>

<1,1> 

<2,2> <2,3> 

Tree T3 
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Tree T5̂

 
Assuming the example of Figure 9, if member M3 leaves the group, every member deletes 

node <1, 1> and <2, 2>. After updating the tree, the sponsor M5 picks a new key K<2,3>, 
recomputes K<1,1>, K<0,0>, BK<2,3> and BK<1,1>, and broadcasts the updated tree with BK5P

*. Upon 
receiving the broadcast message, all members compute the group key, since the broadcast 
message contains every blinded key. Note that M  cannot compute the group key, because its 
share is no longer in the group key and M  picks a new key share. 

3

5
 

4.2.2 STR Protocol 
 
STR [KPT2001] protocol is based on the consideration that the rapid advances in computing 
have resulted in drastic improvements in large-number arithmetic computations. Thus the bottle 
neck is shifting from computation to communication. STR protocol tries to allow more liberal 
use of cryptographic operations while attempting to reduce the communication overhead, which 
dominates in a WAN environment. 

STR is basically an "extreme" version of TGDH, where the key-tree structure is completely 
imbalanced or stretched out. 

M5 M1 M2 M5 M1 M2 

<0,0> 

<1,0> 

<2,0> <2,1> 

<1,1> 

Figure 9: Tree update in a leave operation 
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IN<4> k4, bk4 ri : Mi’s secret key 
LN<4> bri : Mi’s blinded session random, 

i.e.  pi modrαIN<3> k3, bk3

 
Like TGDH, the STR protocol uses a tree structure that associates the leaves with 

individual random session contributions of the group members. Every internal (non-leaf) node 
has an associated secret key and a public blinded key. The secret key is the result of a Diffie-
Hellman key agreement between the node's two children (k1 is an exception and is equivalent to 
r1). ki (i>1) can be computed recursively as follows: 

ppbrp iiii kk
i

r
i modmod)(mod)(bk  k 11 r

1i
−− === − α , if i>1. 

The group key is the key associated with the root node. So the group key in Figure 10 is: 
123

4r
4   k

rrr ααα= mod p 
Similar to TGDH protocol, STR also needs a sponsor member, and the selecting of sponsor 

varies in different membership events. 
STR defines protocols for member join, member leave, group merge and group partition. 

We will only discuss member join and member leave protocols. 

Join Protocol 
Assume the group has n members {M1, … , Mn}. When a new member joins the group, a 

new root node is created for the group tree, with the following two children, the old root on the 
left and the new member on the right. The new member Mn+1 broadcasts a join request message 
which contains its own blinded session secret brn+1. At the same time, the current group’s 
sponsor (Mn) computes a blinded version of the old group key (bkn) and sends the old tree BT<n> 
to Mn+1 with all blinded keys and blinded session randoms. 

Then, each Mi increments n = n + 1 and gets the new key tree structure. Now every 
member can compute the group key: 

• All the old members know the old group key, they can use the old group key and the 
new member’s blinded session random. 

• The new member uses the blinded old group key and its own session random. 

Leave Protocol 
Again we assume the group has n users {M1, … , Mn},  a member Md (d≤n) leaves the 

group. In the leave protocol, if d>1, the sponsor Ms is Md-1, otherwise the sponsor is M2. Upon 
knowing the leave event from the group communication system, each remaining member updates 
its key tree by deleting the nodes LN<d> corresponding to Md and its parent node IN<d>. The 

kj : secret key of IN<j>, shared 
among M1 … Mj

IN<l> : Internal tree node at level l 
LN<i> : Leaf node associated with 

member Mi
T<i> : Tree of member Mi

BT<i> : Tree of member Mi including 
all of its blinded keys 

M2 

M3 

M4 

LN<1>

LN<2>

LN<3>

IN<1>

IN<2>

M1 

k2, bk2 r3, br3

r1/k1, br1/bk1

r4, br4

r2, br2

Figure 10: Tree notations for STR protocol 
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nodes above the leaving node are also renumbered. The former sibling IN<d-1> of Md is promoted 
to replace (former) Md’s parent. The sponsor then selects a new secret session random, computes 
all keys and blinded keys up to the root, and broadcasts the BT<s> to the group. This BT<s> allows 
all members to recompute the new group key. 

Table 6 shows a comparison of TGDH protocol and STR protocol. As seen from the table, 
STR costs less in communication on every membership event. 

 
  Rounds Messages Unicast Broadcast Exponentiation

Join 2 3 0 3 2 log n TGDH Leave 1 1 0 1 Log n 
Join 1 2 1 1 2 STR Leave 1 1 0 1 3n/2 + 2 

Table 6: Comparison of TGDH and STR 
 

 

4.3 Distributed Hierarchical Tree Approach 

4.3.1 The Iolus Framework  
Iolus [Iolus] is a distributed hierarchical tree-based approach, which uses a secure distribution 
tree. The secure distribution tree is composed of a number of smaller secure multicast sub-
groups arranged in a hierarchy to create a single virtual secure multicast group (see Figure 11). 

 

 
Figure 11. Iolus architecture. 

 
Each subgroup is managed by a subgroup controller called group security intermediary 

(GSI). GSIs form a hierarchy of subgroups and the top-level subgroup is managed by group 
security controller (GSC). GSC is ultimately responsible for the security of the entire group. 
Each GSI joins the subgroup at the next higher level (or the subgroup of GSC) and acts as 
proxies of the GSC or its parent GSIs.  

In Iolus, there is no global group key. Each subgroup maintains its own subgroup key. 
When a member joins or leaves, it joins or leaves its local subgroup. Therefore, only the 
subgroup key needs to be changed. The following subsection describes five basic operations of 
Iolus framework. 
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4.3.2 Iolus Operations 

4.3.2.1 Startup 
The startup of the secure communication group requires only that the GSC for the group be 
started. After that, GSIs and other members apply to join its subgroup. 

4.3.2.2 Join 
To join a group, a member sends a JOIN request to its designated GSI (or GSC) using a secure 
unicast channel1. Upon receiving the request, the GSI (or GSC) decides whether to approve or 
deny the request. If the request is approved, the GSI will (1) generate an individual key KMBR, 
which is shared only with the new member; (2) stores KMBR along with any other relevant 
information concerning the new member in GSI’s private database; (3) sends KMBR to the new 
member securely. 

Then the GSI needs to change current subgroup key KSGRP to a new one K’SGRP. The GSI 
multicasts a GRP_KEY_UPDATE message containing K’SGRP encrypted with KSGRP to its 
subgroup and sends K’SGRP to the new member via the existing secure unicast channel. 

4.3.2.3 Leave 
LEAVE operation occurs under two conditions: (1) a member voluntarily leaves the subgroup, or 
(2) GSI expels a member. 

In either case, the GSI needs to change current subgroup key KSGRP to a new one K’SGRP to 
prevent the leaving member from participating in future communications. To distribute K’SGRP to 
the subgroup members, the GSI multicasts one message containing n copies of K’SGRP (n is the 
number of remaining members), each encrypted with a member’s individual key KMBR.  

4.3.2.4 Key Refresh 
With use, KSGRP will “wear out” and need to be changed. A new subgroup key K’SGRP can be 
distributed by multicasting it to the subgroup encrypted with KSGRP. 

4.3.2.5 Data Transmission 
Due to the lack of a global group key, sending multicast data is not as simple as multicasting the 
data to the group encrypted with a group key. Instead, multicast data is relayed by GSIs. More 
specifically, the sender multicasts the data directly to its local subgroup encrypted with the 
subgroup key. The parent GSI (if this is not the top-level subgroup) receives multicast data, 
decrypts it, and re-multicasts it to its parent subgroup encrypted with the subgroup key of its 
parent subgroup. Similarly, child GSIs get multicast data and remulticast it to their child 
subgroups. 

 
The advantage of this approach is that there is no global group key. Thus both the 

frequency and computation/communication overhead of re-keying depends on the size of a 
subgroup instead of the size of the whole group. However, this approach requires full trust in the 

                                                 
1 Any of existing unicast security protocol that provides mutual authentication can be used. 
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GSC and GSIs. It may incur a lot of computational overhead because the GSIs have to re-encrypt 
all data passing them.  

 
All the schemes mentioned above in Section 4 require that a legitimate receiver is capable 

of recording the past history of re-key operations and change its keys accordingly. In the case of 
high packet loss rate, these schemes will not work well. The following two schemes are designed 
for “stateless” receivers, i.e., they are not constantly on-line and can deduce the new group key 
from their initial configuration.  

 

4.4 Broadcast Encryption Scheme 
The Broadcast Encryption [ASW00][FN94] technique allows a center efficiently broadcast 
information to all users in such a way that only privileged users can decrypt the message. An 
example scenario is a satellite/cable TV broadcast network.  Each user has a special device when 
he subscribes to pay TV service and can only get the channels he paid for. To solve this problem, 
key-tree based approaches suggest building a separate key tree for each channel, thus incurring a 
setup cost of at least logk keys per channel for target receivers of size k. The broadcast 
encryption schemes use a single key structure for all programs and are efficient in two measures, 
i.e., the number of keys stored at receiver and the number of keys transmitted by the sender. 

In order to achieve the efficiency goal and break the theoretical bounds, Abdalla et al. 
[ASW99][FN94] proposed a scheme, which allows a controlled number of users outside the 
target set (free riders) to occasionally access the multicast data. Abdalla et al. introduce f-
redundant establishment key allocations, which guarantee that the total number of recipients is 
no more than f times the number of intended recipients. A simple multi-level establishment key 
allocation is a balanced binary tree, built by recursively partitioning the sets of a high level into 
equally-sized disjoint sets in the next level. The number of keys each receiver holds is only 
(1+logn).  In the environment where membership changes dynamically, the establishment key 
allocation can be built incrementally. A new partition is created at the beginning of each phase, 
with virtual “place holder” users. Each new user that joins replaces a virtual user and is assigned 
the virtual user’s keys. The phase ends when all the virtual users have been replaced by real 
users. Then a new phase starts. A leaving user is marked as non-existing. Once the number of 
non-existing users in a partition drops below some threshold, the partition is deleted and all the 
remaining users are rekeyed to a new partition. 

Once the establishment key allocation is decided, the next problem is to find a good key 
cover in which the union of sets contains all the legitimate receivers for each target set. The 
transmissions needed for re-key operations depend on the number of sets in the cover. Since the 
Set Cover problem is a NP-hard optimization problem, Abdalla et al. proposed a greedy 
approximation algorithm to find a good key cover. 

 
This approach is quite practical for very large groups where some free riders may be 

tolerated. 
 

4.5 Subset-Difference Based Approach 
It is often convenient to think of Broadcast Encryption as a Revocation Scheme, which deals with 
the case where some subsets of the users are excluded from accessing the multicast data. The 
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Subset-Difference based approach [LNN01][NNL01] is a new revocation scheme that is 
especially suitable for stateless receivers. In such a scenario, a receiver can’t record the past 
history of rekeying operation and update its keys accordingly. Instead, each receiver can deduce 
the current session key based on the current rekey message and receiver’s initial configuration. 
Stateless receivers are very useful in environments with unreliable communication. 

The Subset-Difference based approach allows the group controller to transmit a message to 
all users such that any non-revoked (remaining) user can decrypt the message correctly, while 
even a coalition of all revoked members cannot decrypt it.  The algorithm consists of three 
components: 1) Initiation, which assigns every receiver some private information; 2) Broadcast 
Algorithm at the group controller, which partitions the non-revoked users into disjoint subsets 
Si1, …, Sim, and encrypts the new session key separately by the keys associated with these 
subsets; 3) Decryption at receiver, which finds out the specific subset this receiver belongs to, 
deduces the subset key from its private information, and then gets the new session key. 

4.5.1 Definitions 
Let N be the set of all users (|N|=n), among which r users should be revoked. Let R denote the 
set of revoked users. All users are viewed as leaves in a complete binary tree.  

A subset-difference Si,j is defined as set of all leaves in the subtree rooted at Vi but not in 
Vj, where Vi is an ancestor of Vj. In another words, Si,j consists of the leaves of  Vi minus the 
leaves of  Vj. So, a leaf u is in subset of the form Si,j iff Vi is one of its ancestors but Vj is not. 
Figure 12 shows an example of Si,j. All black leaves are rooted at Vj, and Si,j consists of only the 
gray leaves. 

 
 

… … …

Vi 

Vj 

Si,j  
Figure 12. Subset-Difference definition  

 
The Cover is a collection of disjoint sets Si1,j1 , Si2,j2 ... ,Sim,jm which partitions the non-

revoked users N/R. Figure 13 shows an example group with 32 leaves, 12 of which are revoked. 
The cover consists of 6 subset-differences: Sa,b , Sc,d ,Se,f, Sg,h , Si,j, Sk,l. The cover size is 
defined as the number of subsets in the cover.  Lotspiech et al. give out an efficient algorithm to 
find a small cover, whose size is only 1.25r on the average. 

 34



a 

b 

c 

d
e

g 

k

i 

revoked 
non-revoked 

Cover  Si,j=
i

j

f h j l

Figure 13: An example of subset cover 
 

4.5.2 Key assignment  
Each internal node i in the binary tree has a random and independent value LABELi. From this 
value, we can calculate the keys for all subsets of the form Si,j using pseudo-random functions. 

Let G be a pseudo-random sequence generator that triples the input, i.e., whose output 
length is three times the length of input. Let S denote the label at one node, GL(S) denote the 
label of left child, GR(S) denote the label of right child, and GM(S) denote the key of this node. 
Figure 14 shows the idea of G. 

G_L(S) G_M(S) G_R(S) G(S) = 
S

G_L(S) G_R(S)  

 
Figure 14: Generator G 

 
For a given subtree Ti rooted at Vi, the labels and keys are assigned in a top-down manner 

as shown in Figure 15.  Let LABELi,j be the label of node Vj. derived in Ti from LABELi , and 
the key of Si,j , denoted by Li,j is GM(LABELi,j). So given LABELi , computing Li,j requires at 
most logn applications of G. 
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S=LABELi Vi 

G_L(S) 

G_L(G_L(S)) 

Vj 
G_R(G_L(G_L(S))) 

LABELi,j = G_R(G_L(G_L(S))) 
          Li,j = G_M(LABELi,j) 

… … …

 
Figure 15 Generation of LABELi,j and key Li,j

 
Now, let’s consider the information each leaf node u needs to store in order to derive the key 
assignment described above. For each subtree Ti such that u is a leaf of Ti , the receiver u should 
be able to compute Li,j iff j is not an ancestor of u. For every Vi, which is ancestor of leave u, let 
the label of Vi be S. u receives all labels at nodes that are hanging off the path from Vi to u. 
These labels are all derived from S. Figure 16 shows the key assignment process for u. In this 
example, leaf u receives the labels of Vi1, Vi2, Vi3, Vi4, and Vi5 that are induced by label of Vi. 

Each receiver needs to store (0.5log2n +0.5logn +1) keys. At decryption step, receiver u 
first finds the subset Si,j it belongs to, computes the corresponding key of Si,j, and then decrypts 
the new session key. 

 
 

Vi

Vi1

Vi2

Vi3

Vi4

Vi5U

S 

 
Figure 16. An example of key assignment 

 
This scheme has several advantages. 1) All the receivers are “stateless” and can get new 

session key from its initial configuration. 2) Rekey message size is small because the remaining 
receivers are partitioned into 1.25r subsets on average (r is the number of revoked members). 3) 
Each receiver needs to do one decryption for every rekeying event (plus at most logn 
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applications of a pseduo-random generator). However, the number of keys stored by each 
receiver is 0.5log2N. 

 
 

5. Key Exchange in Wireless Multicast Network 

Few protocols exist to deal with the secure multicast in wireless networks. Among them, most 
migrate the algorithms from the wired networks, together with a discussion of the wireless 
environment without concrete algorithm. 

5.1 Key distribution protocol of Bruschi et al. 
Bruschi and Rosti [BR00] classified base stations into three different trust degrees. In the first 
degree, the base station is not trusted at all, such system is called non-trusted system. In the 
second degree, the base station is not fully trusted. It will not be allowed to understand the data 
traffic but will behave correctly. This system is called semi-trusted system. For the last degree, 
the base station is fully trust. Such system is called fully-trusted system. For these three 
scenarios, different key managements with secure multicast service are provided. 

As a general method, participants in the secure multicast are classified as data group and 
control group. Data group (DG) includes all the members interested in receiving data traffic in 
the group. Control group (CG) includes all base stations involved. Group members also 
exchange keying material besides data traffic. Three types of keys are used. These are the key 
used to encrypt/decrypt data traffic (named TEKs), the key used to encrypt/decrypt TEKs 
(named  KEKs) and the key used for encryption in a cell covered by  a base station (named 
CEKs), which is completely managed by the base station and local to each cell. 

In the following description of this protocol, we use A => B to denote A broadcast (or 
multicast) message to B, whereas A  B denotes A unicast message to B. Besides, A=>B C or 
A B=>C means A sends message to B, then B forwards this message to C. 

 A non-trusted system  
The group manager (GM) and the mobile hosts share the task to manage group dynamics 

and host mobility. No better solution could be provided. 

 A semi-trusted system 
A protocol with two tier structure is provided. In the first tier, the group manger manages 

all the support base stations and distributes TEK to the group members when they subscribe to 
the group. These stations act as agents of the mobile hosts in the data group. Data traffic is 
symmetrically encrypted using a session key s_k . This session key s_k is in turn symmetrically 
encrypted using the TEK t. In the second tier, the base station relays the data traffic to the hosts 
in its cells. Each base station acts as the group manager of a centralized tree VersaKey 
[WCSWP99] in its cell. It receives the data traffic from GM and encrypts them using local CEK, 
then broadcast it in the local cell to the mobile hosts , as the follows: 

isM

GM => CG: {data_traffic}s_k, {s_k}t 
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∀ si ∈ CG,  si => : {data_traffice}
isM s_k, {{s_k}t}

isc
 

After receiving the messages, the mobile hosts first decrypt them using local CEK , then 
decrypt again using TEK t they received when subscribing the group, and get the s_k. Thus they 
can get data traffic. 

isc

Because of the CEKs used for encryption in each cell, host mobility and group dynamics is 
restricted to the cell level as key update may occur only in the interested cell. Since only those 
who know both CEK and TEK can know the data traffic, updating CEKs for group dynamics can 
guarantee the backward and forward traffic secrecy.   

The protocol works as follows: 

-- Initially, a control group CG and a data group DG are created for every multicast group. A 
mobile host is added to DG when it subscribes to the service and removed from DG when it 
terminates the service. Similarly, base station will be added to CG if there is mobile host 
subscribed to the service in its cell and removed from CG if no mobile hosts subscribed to the 
DG. 

-- When a new mobile host m joins the group, it sends subscription request to the GM, forwarded 
by its base station s. This request is digitally singed by m’s private key to allow GM to 
authenticate. 

m => s  GM:  −
mPK

SUBSCRIBE}{

If the request is approved, an add operation is executed in the first tier: if the base station is not 
in the CG, it is added into CG. Meanwhile, GM adds m to DG, gives m the current TEK t used to 
encrypt the data traffic: 

GM  s => m:  −+
GMm PKPKt }}{{

Then base station s will proceeds with join operation int the second tier:  if m is the only member 
in the cell, s generates CEK cs, and a symmetric session key sm used for control traffic with m 
only and sends them to m: 

s => m : {cs}sm,  −+
sm PKPK

sm }}{{

Otherwise, if s has been in the CG before m joined, then the cell executes a local centralized tree 
VersaKey scheme. s updates its local CEK cs to  and all the KEKs along the path from leaf sm 
in VersaKey tree to the root. These keys, together with the symmetric session key sm, are sent to 
m: 

'
sc

s => m : {sm, , …, , , }'
1−snk '

2k '
1k '

sc sm,  −+
sm PKPK

sm }}{{

Where , …, ,  are the new keys along the path from the leaf sm to the new root . 
Giving the newcomer a new CEK and a new set of KEKs guarantee it will not receive the data 
traffic before it join the group. 

'
1−snk '

2k '
1k '

sc
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-- When the mobile host m leaves from the group, it sends a CANCEL message to GM, 
forwarded by local base station s . 

M => s  GM:  −
mPK

CANCEL}{

GM executes delete operation in the first tier to remove m from DG. Also GM checks if base 
station s should be deleted from CG. No key change is required in this level. 

Meanwhile, s executes leave operation in the second tier. It changes it local CEK cs to 
prevent m from accessing the data traffic after it leaves the cell. S executes the following 
according to the centralized tree VersaKey scheme: 

s => Ms : { }'
1−snk sm,  , …, , '

1
}{ '

2
−

−
sns knk '

2
}{ '

1 k
k

2
}{ '

1 kk , , '
1

}{ '
ksc

1
}{ '

ksc  

where ik is the sibling of node ki in the tree, and , , … ,  are the new KEKs along 

the path from the leaf sm to the new root . 

'
1−snk '

2−snk '
2k '

1k
'
sc

-- When a mobile host moves from one cell to its neighbor, a hand-off procedure is performed by 
the base station. It involves the departed base station s and the entered base station s’ and 
possibly GM. Because the mobile host is still in the same group, the old base station s execute 
leave operation and the new base station s’ execute join operation. When m move into a new cell, 
it sends a message to s’: 

m => s’ :  −}
mPK

seqid,mcast_grp_ {m,

where mcast_grp_id is the identifier of the multicast group to which m belong and seq is the 
sequence number of the last packet received by m.  

-- The key material should be updated after an interval to guard against cryptanalytic attacks. The 
update rate depends on the rate that mobile hosts join and leave the group and speed they move 
from cell to cell. Each base station may perform a pseudo-join operation to force a key update. 
Also TEKs might be periodically refreshed. The new TEKs can be encrypted in the current 
TEKs. 

In a fully-trusted system 

Because the base station is fully trusted, they can have access to both the key encryption key and 
the traffic encryption keys. Some decryption operations can be performed by them. In this 
system, each base station decrypts the data traffic received from GM and encrypts it, then 
broadcasts in its cell.  

GM => CG : {data_traffic}t 

∀ si ∈ CG,  si => : {data_traffic}  
isM

isc

There are some weaknesses in this protocol. First, this protocol has high overhead. In case of 
semi-trusted system, in order to recover the session key, the mobile host need to do two 
additional decryption operations. Second, it doesn’t consider the reliability problem of rekeying. 
Third, because the traffic between GM and base stations are only encrypted by session key and it 
doesn’t change after member’s leaving, a leaving member may understand this traffic. 
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5.2 Key agreement protocols 
In this subsection some key agreement protocols, which means that each group member 
contributes its share to the group key, are discussed. The first protocol uses one-way function on 
shares of group members to generate group key. Other protocols are based on the Diffie-Hellman 
key exchange by extending two parties to multiparty.  

5.2.1 A Generic multi-party protocol  
Asokan and Ginzboorg [AG00] modified the generic two-party protocol called encrypted key 
exchange [BM92] and extended it into a multi-party protocol. The protocol is based on a weak 
shared key. All group members M1, … , Mn share a weak secret P. Mn is the leader and has a key 
pair (E, D). The protocol works as follows: 

(1) Mn  all: Mn, {E}p 

(2) Mi  Mn: Mi, {{Ri,Si}E}P, i = 1, .. n-1 

(3) Mn  Mi: {Sj, j =1, .. , n}Ri , i = 1,.. ,n-1 

(4) Mi  Mn : Mi, {Si, H(S1,S2,.. Sn)}K, for some i 

In the first step, Mn sends its encryption key E to all members. In step two, every member Mi 
generates a random string Ri, which is used as the symmetric key between itself and Mn,  and 
random share Si, encrypts them using E and returns them to Mn. In step three, Mn send all the 
random share Si encrypted by Ri to every member. Then every member can calculate the session 
key using one-way function K = f(S1, S2, .., Sn). The last step is used for key confirmation. 

It is pointed out that this protocol has the following shortcoming. First, to prevent replay 
attack, E cannot be a long term public encryption key. It should be refreshed for each run of the 
protocol. However, generating a new key pair each time is expensive. Second, some properties 
(e.g., a product of large prime numbers, as in RSA) of the key E may be utilized by the attacker 
to attempt an dictionary attack on P(E).  Only the unpredictable parts of E should be encrypted 
with P. 

5.2.2 Burmester and Desmedt’s Protocol 
Burmester and Desmedt constructed a broadcast system to generate a group key [BD94]. This 
protocol includes only three steps: 

(1) Each Mi selects its random exponent Ni and broadcasts zi =    iNα

(2) Each Mi computes and broadcasts Xi = (zi+1 / zi-1) = . Here, the indices of 
M

iN iii NNN )/( 11 −+ αα
i are taken in a cycle, so Mn+1 is M1 and Mn is M0. 

(3)  Each Mi compute the key K = mod p, where p is a prime 
number. 

2
2

1
1

1 −
−
+

−
− ⋅⋅⋅⋅⋅ i

n
i

n
i

nN
i XXXz i

The group key will be  K = , which is deducted as follows: 13221 NNNNNN n+⋅⋅⋅++α
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Set Ai-1 = =  (mod p), AiN
iz )( 1−

ii NN 1−α i = = · =  (mod 
p), A

i
N

i Xz i ⋅− )( 1
ii NN 1−α iii NNN )/( 11 −+ αα 1+ii NNα

i+1 =  =  (mod p), and so on. Then, K11)( +− ⋅⋅ ii
N

i XXz i 21 ++ ii NNα i = Ai-1 ·Ai ·Ai+1··· Ai-2 =  
· · ··· = . ii NN 1−α 1+ii NNα 21 ++ ii NNα 13221 NNNNNN n+⋅⋅⋅++α

The problem with this protocol is, according to [KPT00], that most of the members need to 
change their random exponent on every membership change event. 

5.2.3 GDH.2 and extensions 
Group Diffie-Hellman (GDH) is a class protocols presented by Steiner et al. [STW96][STW00]. 
GDH.2 and GDH.3 are two of them. These protocols are natural extensions of 2-party Diffie-
Hellman key exchange to the n-party case.  In 2-party case, each member selects its secret share 
and sends exponent of this secret share to its peerNiα . Both members can calculate the key 

 by using its own share. In n-party case, if a member M21NNα i knows exponent of secret share of 
other members , then using its own share, it can calculate group key as . nii NNNNN ⋅⋅⋅⋅⋅⋅ +− 111 2α nNNN ⋅⋅⋅⋅⋅⋅21α

Suppose Ni is the secret exponent of member Mi and α is a generator in the algebraic 
group. GDH.2 works as follows: 

(1)  Mi  Mi+1 : { j

i

N
NN ...1

α  | j ∈  [1,i] },     i iNN ...1α ∈ [1, n-1] 

(2)  Mn  ALL Mi: { j

n

N
NN ...1

α  | j ∈  [1, n-1] } 

Stage (1) consists of n-1 rounds. In every round i, Mi unicasts Mi+1 a collection of i values. Of 
these, i-1 items are intermediate, which are, ,  … , and one is 
cardinal, . When upflow reaches M

iNNN ...32α iNNN ...31α 11 ...2 −iNNNα
iNN ...1α n, Mn can calculate the group key as  . Also, 

M

nNNN ...21α
n calculates the intermediate values , …, . In stage (2), MnNNN ...32α nNNN ...31α nn NNNN 232 ... −α n 

broadcasts these n-1 intermediate values to all group members. When member Mi receives these 
broadcast intermediate, it can calculate the group key as by using its own share NnNNN ...1 2α i to 
the corresponding intermediate.  Figure17 shows GDH.2 with 4 members. 

 

 

 

 

 

 
421 NNNα   
431 NNNα   

42 3NNNα

21NNα   
   31NNα
     32NNα
     321 NNNα  

2 3

4

Figure 17:  GDH.2 with n=4 
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In GDH.2, for every Mi, a total of (i+1) exponentiations are required and the computational 
burden increases with the group size.  

To reduce the computational burden on Mi, GDH.3 protocol is provided. In the upflow 
stage of GDH.3, only one item, cardinal, instead of i items in GDH.2, is calculated and sent to 
the next member. Thus computation overload of i-1 intermediate items is reduced. GDH.3 
consists of four stages.  

(1) Mi  Mi+1:  i∏ ∈ ],1[| ipN pα ∈  [1, n-2] 

(2) Mn-1  ALL :   ∏ −∈ ]1,1[| npN pα

(3) Mi  Mn : 
i

p

N

npN∏ −∈ ]1,1[|

α   

(4) Mn   ALL : { i

p

N

npN∏ ∈ ],1[|

α | i ∈  [1, n] } 

First stage collects the exponentiation of every member up to Mn-1. After first stage is complete, 
Mn-1 obtains . In stage 2, M∏ −∈ ]1,1[| npN pα n-1 broadcasts ∏ −∈ ]1,1[| npN pα  to every member. In stage 3, 
every member factors out (divided by) its own exponent from ∏ −∈ ]1,1[| npN pα and sends the result 
to Mn. In stage 4, Mn raises every message received in stage 3 with its exponent and returns the 
result back to respective member. Thus every member can now calculate the Key as . ∏ ∈ ],1[| npN pα

The problem of GDH.3 is that n-1 unicast messages are sent to Mn in stage 3, which may 
congest Mn. 

Asokan and Ginzboorg [AG00] provided a similar extension to GDH.2. In their method, all 
members share a password P. Each member Mi generates a secret share Si. The protocol works 
as follows: 

(1) Mi  Mi+1: , i =1, .. n-2 
isssg ...21

(2) Mn-1  ALL:  
121 ... −nsssg

(3) Mi  Mn:  P
sssss iing }{ /ˆ... 121 −

(4) Mn  Mi :  P
sssss iing }{ /ˆ...21

All above 4 stages are same as those in GDH.3, except stage 3. In stage 3, every member 
encrypts the revised intermediate key using share password P and sends it to Mn. In stage 4, 
instead of using multicast as in GDH.3, Mn unicasts the result to every member. It is suggested in 
the paper, the following step 5 may be used for verification. Some members broadcast the key 
message to make sure some other members decide the same key. 

(5) Mi  ALL: Mi, {Mi, H(M1,M2, .. , Mn)}K for some i 

This method will provide good forward secrecy. However, it requires a shared password P. To 
get such a password is a problem itself.   
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5.2.4 The Hypercube Protocol and extensions 
Hypercube protocol was proposed by Becker and Wille [BW98]. It requires minimum number of 
rounds. The basic idea is as follows (Figure 18): suppose four nodes A, B, C, D are arranged in a 
square. Suppose a, b , c, d are their random share for 2-party DH. In the first round, A and B 
exchange keys in the usual way, resulting in KAB= . C and D do the same, resulting in 
K

abα
CD= . In the next round, A exchanges keys with C, using a 2-party DH.  So do B and D. 

After two rounds, all four members will have the same key K = . 

cdα
cdabααα

A 

B 

C 

D 

abα  
cdabααα

A C 

B D 

cdα  

Round 2 Round 1 

Figure 18: -cube key exchange22

 
Now suppose there are 23 participants. They are arranged as the vertices in 3-dimensional 

hypercube. In the first 2 rounds, each participant can get a 4-party DH using the above method. 
In the 3rd round, each participant of a square (face) exchanges with peer of opposite square(face) 
using the achieved 4-party secret keys as the exponents. This process continues for 24 

participants and so on. That is, in jth round, each participant performs a two–party DH with its 
peer on the jth dimension using the key of the j-1th round as its secret exponent. After d round, 
2d participants will have the same secret. 

For the case where the number of participants n is not a power of 2, Becker and Wille 
present a protocol called Octopus protocol .  If 2d < n < 2d+1, the first 2d participants play the role 
of central controllers. The rest of the participants form wards that are attached to one of the 
central nodes. First, the controllers do Diffe-Hellman key exchange with the wards. Then, the 
controllers perform 2d-cube exchange using the products of the ward keys gathered in the first 
stage. Finally the key derived in the second stage is distributed to the wards. 

The Octopus protocol works well for adding new member to the group. However, it’s very 
inefficient when a member leaves the group. Another problem of Octopus protocol is that a two-
party key exchange may fail. Becker and Wille didn’t make clear how to deal with the problem. 
Asokan and Ginzboorg [AG00] provided a solution to deal with such faults.  
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In Asokan and Ginzboorg’s method, if a node finds its peer partner in a given round is 
faulty, it uses a distributed algorithm to find a suitable non-faulty partner. The partner selection 
algorithm tries the closer partner first in term of Euclidean distance between the node address. If 
there are 2d participants, every node has a d-bit address. For any round k, the number of potential 
partners for a given node is bounded by . In this round, a given node’s potential partners 
should have the same first d-k bits but different kth bit. Among these potential partners, a given 
node (suppose N) will try to do Diffie-Hellmen exchange with the node that has the least distance 
of address from the given node first (i.e., the least Hemming distance between the two node’s 
addresses).  If that fails, N tries the node with second least Euclidean distance. If there is more 
than one node having the second least Euclidean distance, the node with higher bit set has 
priority.  If those attempts fail again, N will try the node with the third least Euclidean distance, 
and so on. The process is illustrated using an example in Figure 19:  

12 −k
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Round 1 pairwise exchanges 
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Figure 19:  Fault tolerant 8-party key exchange
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Participants have 3-bit addresses and are labeled A to H. Their share contributions are 
represented as the corresponding lower case letters. The bold solid line represents DH exchange 
between two participants. Suppose G:110 is faulty.  In round k =1, H:111 will select a node with 
the same first 2 bits but different last bit address, i.e. G:110, as partner to exchange share. This 
attempt fails. Because there is only one (i.e., ) candidate, H does nothing more. In round k = 
2, E:100’s potential partners are those nodes having the same 1

112 −

st bit but different 2nd bit address. 
There are two candidates, G:110 and H:111. G:110 has the less Euclidean distance from E:100 
than H:111. E:100 will select G:110 as partner first. This attempt will fail. Then E will try H:111 
as partner. This attempt will succeed.  In round 3, C:010’s potential partners are those nodes 
having different 1st bit address from C. C:010 selects G:110, which has the least Euclidean 
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distance from C,  as partner and fails. Then C tries H:111, which has second least distance from 
C, as partner and will succeed.  

A comparison of these protocols is given below: 

 

Protocol messages message size total 
exponentiations 

exchanges* rounds 

Generic multi-
party 

n+1 2n-1 - - n+1 3 

Burmester et 
al’s protocol 

2n 
(broadcast) 

2n n2+2n 2n 2 

GDH.2 n (n-1) (n/2+2) -1 (n+3)n/2-1 n n 

GDH.3 2n-1 3(n-1) 5n-6 2n-1 n+1 

Hypercube n  n2log n  n2log n(1+ ) n2log 0.5n  n2log n2log  

Octopus 3n+ (d-3) d2 3n+ (d-3) d2 4n+ (d-3) d2 2n+ (d-4) 12 −d d+2 

Table 7: A comparison of the performance 

 

Here, for d, 2d < n < 2d+1 

* exchange means a DH exchange by two parties simultaneously or an exchange from one party 
to another at one time. 
 
6. Conclusion 

Key establishment is a key issue in secure communication. In this paper, we reviewed a 
variety of key management protocols for group communication in wired and wireless networks. 
We analyzed these protocols for security vulnerabilities and also discussed the pros and cons of 
these protocols and gave performance comparisons among related approaches. However, there 
are different requirements for different applications and environments and no panacea exists to 
solve all the problems. For specific application, the most suitable protocol may be chosen to 
implement.  
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