
Ariadne: A Secure On-Demand Routing
Protocol for Ad Hoc Networks

Yih-Chun Hu
Carnegie Mellon University

yihchun@cs.cmu.edu

Adrian Perrig
Carnegie Mellon University

adrian+@cs.cmu.edu

David B. Johnson
Rice University

dbj@cs.rice.edu

ABSTRACT

An ad hoc network is a group of wireless mobile computers (or
nodes), in which individual nodes cooperate by forwarding pack-
ets for each other to allow nodes to communicate beyond direct
wireless transmission range. Prior research in ad hoc networking
has generally studied the routing problem in a non-adversarial set-
ting, assuming a trusted environment. In this paper, we present
attacks against routing in ad hoc networks, and we present the de-
sign and performance evaluation of a new secure on-demand ad hoc
network routing protocol, called Ariadne. Ariadne prevents attack-
ers or compromised nodes from tampering with uncompromised
routes consisting of uncompromised nodes, and also prevents a
large number of types of Denial-of-Service attacks. In addition,
Ariadne is efficient, using only highly efficient symmetric crypto-
graphic primitives.

Categories and Subject Descriptors: C.0 [Computer-Commu-
nications Networks]: Security and protection; C.2.2 [Network
Protocols]: Routing Protocols

General Terms: Security, Performance

Keywords: Ad hoc network routing, security, routing

1. INTRODUCTION

An ad hoc network is a group of wireless mobile computers (or
nodes), in which nodes cooperate by forwarding packets for each
other to allow them to communicate beyond direct wireless trans-
mission range. Ad hoc networks require no centralized adminis-
tration or fixed network infrastructure such as base stations or ac-
cess points, and can be quickly and inexpensively set up as needed.
They can be used in scenarios in which no infrastructure exists, or
in which the existing infrastructure does not meet application re-
quirements for reasons such as security or cost. Applications such
as military exercises, disaster relief, and mine site operation may

This work was supported in part by NSF under grant CCR-0209204, by NASA un-
der grant NAG3-2534, by the United States Postal Service under contract USPS
102592-01-Z-0236, by DARPA under contract N66001-99-2-8913, and by a gift from
Schlumberger. The views and conclusions contained here are those of the authors and
should not be interpreted as necessarily representing the official policies or endorse-
ments, either express or implied, of NSF, NASA, USPS, DARPA, Schlumberger, Rice
University, Carnegie Mellon University, or the U.S. Government or any of its agencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiCom’02, September 23–26, 2002, Atlanta, Georgia, USA.
Copyright 2002 ACM 1-58113-486-X/02/0009 ...$5.00.

benefit from ad hoc networking, but secure and reliable communi-
cation is a necessary prerequisite for such applications.

Ad hoc network routing protocols are challenging to design, and
secure ones are even more so. Wired network routing protocols
such as BGP [48] do not handle well the type of rapid node mobil-
ity and network topology changes that occur in ad hoc networks;
such protocols also have high communication overhead because
they send periodic routing messages even when the network is not
changing. So far, researchers in ad hoc networking have generally
studied the routing problem in a non-adversarial network setting,
assuming a trusted environment; relatively little research has been
done in a more realistic setting in which an adversary may attempt
to disrupt the communication.

We focus here on on-demand (or reactive) routing protocols for
ad hoc networks, in which a node attempts to discover a route to
some destination only when it has a packet to send to that desti-
nation. On-demand routing protocols have been demonstrated to
perform better with significantly lower overheads than periodic (or
proactive) routing protocols in many situations [7, 25, 35, 41], since
they are able to react quickly to the many changes that may occur
in node connectivity, yet are able to reduce (or eliminate) routing
overhead in periods or areas of the network in which changes are
less frequent.

In this paper, we make two contributions to the area of secure
routing protocols for ad hoc networks. First, we give a model for
the types of attacks possible in such a system, and we describe sev-
eral new attacks on ad hoc network routing protocols. Second, we
present the design and performance evaluation of a new on-demand
secure ad hoc network routing protocol, called Ariadne, that with-
stands node compromise and relies only on highly efficient sym-
metric cryptography. Relative to previous work in securing ad hoc
network routing protocols, Ariadne is more secure, more efficient,
or more general (e.g., Ariadne does not require a trusted hardware
and does not require powerful processors).

Ariadne can authenticate routing messages using one of three
schemes: shared secrets between each pair of nodes, shared secrets
between communicating nodes combined with broadcast authenti-
cation, or digital signatures. We primarily discuss here the use of
Ariadne with TESLA [43, 44], an efficient broadcast authentica-
tion scheme that requires loose time synchronization. Using pair-
wise shared keys avoids the need for synchronization, but at the
cost of higher key setup overhead; broadcast authentication such as
TESLA also allows some additional protocol optimizations.

In Section 2 of this paper, we summarize the basic operation
of the Dynamic Source Routing protocol (DSR) [26, 27, 28], on
which we base the design of our new secure routing protocol,
and in Section 3, we review the TESLA broadcast authentication
protocol that we use in Ariadne. In Section 4, we describe our
assumptions about the network, the nodes, and security and key

setup. We present an attacker model and describe types of attacks
in Section 5. In Section 6, we present the design of our new se-
cure ad hoc network routing protocol, Ariadne. Section 7 gives an
initial simulation-based performance evaluation of a basic form of
Ariadne. In Section 8, we discuss related work, and in Section 9,
we present our conclusions.

2. BASIC OPERATION OF DSR
We base the design of our secure on-demand ad hoc network rout-
ing protocol, Ariadne, on the basic operation of the Dynamic Source
Routing protocol (DSR) [26, 27, 28]. DSR is an entirely on-demand
ad hoc network routing protocol composed of two parts: Route Dis-
covery and Route Maintenance. In this section, we describe the
basic form of Route Discovery and Route Maintenance in DSR.

In DSR, when a node has a packet to send to some destination
and does not currently have a route to that destination in its Route
Cache, the node initiates Route Discovery to find a route; this node
is known as the initiator of the Route Discovery, and the destina-
tion of the packet is known as the Discovery’s target. The initiator
transmits a ROUTE REQUEST packet as a local broadcast, specify-
ing the target and a unique identifier from the initiator. Each node
receiving the ROUTE REQUEST, if it has recently seen this request
identifier from the initiator, discards the REQUEST. Otherwise, it
appends its own node address to a list in the REQUEST and rebroad-
casts the REQUEST. When the ROUTE REQUEST reaches its target
node, the target sends a ROUTE REPLY back to the initiator of the
REQUEST, including a copy of the accumulated list of addresses
from the REQUEST. When the REPLY reaches the initiator of the
REQUEST, it caches the new route in its Route Cache.

Route Maintenance is the mechanism by which a node sending
a packet along a specified route to some destination detects if that
route has broken, for example because two nodes in it have moved
too far apart. DSR is based on source routing: when sending a
packet, the originator lists in the header of the packet the complete
sequence of nodes through which the packet is to be forwarded.
Each node along the route forwards the packet to the next hop indi-
cated in the packet’s header, and attempts to confirm that the packet
was received by that next node; a node may confirm this by means
of a link-layer acknowledgment, passive acknowledgment [29], or
network-layer acknowledgment. If, after a limited number of local
retransmissions of the packet, a node in the route is unable to make
this confirmation, it returns a ROUTE ERROR to the original source
of the packet, identifying the link from itself to the next node as
broken. The sender then removes this broken link from its Route
Cache; for subsequent packets to this destination, the sender may
use any other route to that destination in its Cache, or it may attempt
a new Route Discovery for that target if necessary.

The DSR protocol also defines a number of optimizations to
these mechanisms (e.g., [18, 19, 26, 27, 28, 32]). Some of these op-
timizations are relatively easy to secure; for example, flow state [19]
requires only broadcast authentication of control messages, whereas
link-state caching [18] requires some mechanism to authenticate
links, whereas Ariadne only attempts to authenticate nodes. In this
paper, we secure only a basic version of DSR, (with a limited path
cache), without these optimizations, and the use of these optimiza-
tions is beyond the scope of this paper.

3. OVERVIEW OF TESLA
In this paper, we describe Ariadne using the TESLA [43, 44]
broadcast authentication protocol for authenticating routing mes-
sages, since TESLA is efficient and adds only a single message
authentication code (MAC) to a message for broadcast authentica-
tion. Adding a MAC (computed with a shared key) to a message

can provide secure authentication in point-to-point communication;
for broadcast communication, however, multiple receivers need to
know the MAC key for verification, which would also allow any re-
ceiver to forge packets and impersonate the sender. Secure broad-
cast authentication thus requires an asymmetric primitive, such that
the sender can generate valid authentication information, but the
receivers can only verify the authentication information. TESLA
differs from traditional asymmetric protocols such as RSA [49] in
that TESLA achieves this asymmetry from clock synchronization
and delayed key disclosure, rather than from computationally ex-
pensive one-way trapdoor functions.

To use TESLA for authentication, each sender chooses a ran-
dom initial key KN and generates a one-way key chain by re-
peatedly computing a one-way hash function H on this starting
value: KN−1 = H [KN], KN−2 = H [KN−1], In general,
Ki = H [Ki+1] = HN−i[KN]. To compute any previous key Kj

from a key Ki, j < i, a node uses the equation Kj = Hi−j [Ki].
To authenticate any received value on the one-way chain, a node
applies this equation to the received value to determine if the com-
puted value matches a previous known authentic key on the chain.
Coppersmith and Jakobsson present efficient mechanisms for stor-
ing and generating values of hash chains [12].

Each sender pre-determines a schedule at which it publishes (or
discloses) each key of its one-way key chain, in the reverse order
from generation; that is, a sender publishes its keys in the order
K0,K1, . . . ,KN . A simple key disclosure schedule, for example,
would be to publish key Ki at time T0 + i× t, where T0 is the time
at which K0 is published, and t is the key publication interval.

TESLA relies on a receiver’s ability to determine which keys a
sender may have already published, based on loose time synchro-
nization between nodes. Let ∆ be the maximum time synchroniza-
tion error between any two nodes; the value ∆ must be known by
all nodes. To send a packet, the sender uses a pessimistic upper
bound τ on the end-to-end network delay and picks a key Ki from
its one-way key chain which, at the time any receiver is expected to
receive the packet, the receiver will believe has not yet been pub-
lished. For example, the sender could choose a key Ki that it will
not publish until a time at least τ + 2∆ in the future; the value
2∆ is used here because the receiver’s clock may be ahead of the
sender’s clock by ∆, so at time ts at the sender, it is ts + ∆ at the
receiver. In sending the packet, the sender adds a message authen-
tication code (MAC), computed using key Ki, to the packet. When
the packet reaches the receiver, it will be ts + τ + ∆, and the re-
ceiver will discard the packet if the key might have been published.
Since the receiver knows the sender’s clock may be faster by ∆,
the receiver will reject the packet unless it is received at least ∆
before the scheduled key release time, so the receiver must be able
to verify that the key is released at time ts + τ + 2∆ or later.

When a receiver receives a packet authenticated with TESLA, it
first verifies the TESLA security condition that the key Ki used
to authenticate the packet cannot yet have been published. For
example, if the local packet arrival time is tr, and the receiver
knows that the earliest time at which the sender will disclose
the key Ki is t0 + i × t, the receiver needs to verify only that
tr ≤ (t0 + i× t−∆), implying that Ki has not yet been published.
Otherwise, the sender may have already published Ki and an at-
tacker may have forged the packet contents; the receiver thus dis-
cards the packet. However, if this check is successful, the receiver
buffers the packet and waits for the sender to publish key Ki; when
the receiver receives Ki, it first authenticates Ki, and then authen-
ticates stored packets authenticated with a key Kj , where j ≤ i.
TESLA remains secure even if the end-to-end delay is larger than
τ , although some receivers may be required to discard the packet.

4. ASSUMPTIONS

4.1. Network Assumptions

The physical layer of a wireless network is often vulnerable to
denial of service attacks such as jamming. Mechanisms such as
spread spectrum [46] have been extensively studied as means of
providing resistance to physical jamming, and we thus disregard
such physical layer attacks here.

We assume that network links are bidirectional; that is, if node A
is able to transmit to some node B, then B is able to transmit to A.
It is possible to use a network with unidirectional links if such links
are detected and avoided; such detection may also otherwise be
necessary, since many wireless Medium Access Control protocols
require bidirectional links, as they require the exchange of several
link-layer frames between a source and destination to help avoid
collisions [5, 24].

Medium Access Control protocols are also often vulnerable to at-
tack. For example, in IEEE 802.11, an attacker can paralyze nodes
in its neighborhood by sending Clear-To-Send (CTS) frames pe-
riodically, setting the “Duration” field of each frame greater than
or equal to the interval between such frames. Less sophisticated
Medium Access Control protocols, such as ALOHA and Slotted
ALOHA [1], are not vulnerable to such attacks but have lower ef-
ficiency. In this paper, we disregard attacks on Medium Access
Control protocols.

We assume that the network may drop, corrupt, reorder, or du-
plicate packets in transmission.

When Ariadne is used with a broadcast authentication proto-
col, we inherit all of its assumptions. For example, when TESLA
is used, each node in the network must be able to estimate the
end-to-end transmission time to any other node in the network;
TESLA permits this value to be chosen adaptively and pessimisti-
cally. When this time is chosen to be too large, authentication delay
increases, reducing protocol responsiveness; when it is chosen to
be too small, authentic packets may be rejected, but security is not
compromised.

4.2. Node Assumptions

The resources of different ad hoc network nodes may vary greatly,
from nodes with very little computational resources, to resource-
rich nodes equivalent in functionality to high-performance work-
stations. To make our results as general as possible, we have de-
signed Ariadne to support nodes with few resources, such as a Palm
Pilot or RIM pager.

Most previous work on secure ad hoc network routing relies on
asymmetric cryptography such as digital signatures [56, 58]. How-
ever, computing such signatures on resource-constrained nodes is
expensive, and we assume that nodes in the ad hoc network may be
so constrained. For example, Brown et al analyze the computation
time of digital signature algorithms on various platforms [8]; on
a Palm Pilot or RIM pager, a 512-bit RSA [49] signature genera-
tion takes 2.4–5.8 seconds and signature verification takes 0.1–0.6
seconds, depending on the public exponent.

When Ariadne uses TESLA for broadcast authentication, we as-
sume that all nodes have loosely synchronized clocks, such that
the difference between any two nodes’ clocks does not exceed ∆;
the value of ∆ must be known by all nodes in the network. Ac-
curate time synchronization can be maintained with off-the-shelf
hardware based on GPS [11, 53], although the time synchroniza-
tion signal itself may be subject to attack [15]. We assume that
nodes compensate clock drift with periodic re-synchronization.
Microcomputer-compensated crystal oscillators [4] can provide
sub-second accuracy for several months; if normal crystal oscil-

lators are used, ∆ can be chosen to be as large as necessary, though
a corresponding reduction in protocol responsiveness will result.

We do not assume trusted hardware such as tamperproof mod-
ules. Secure routing with trusted hardware is much simpler, since
node compromise is assumed to be impossible.1

4.3. Security Assumptions and Key Setup

The security of Ariadne relies on the secrecy and authenticity of
keys stored in nodes. Ariadne relies on the following keys to be set
up, depending on which authentication mechanism is used:

• If pairwise shared secret keys are used, we assume a mech-
anism to set up the necessary n(n + 1)/2 keys in a network
with n nodes.

• If TESLA is used, we assume a mechanism to set up shared
secret keys between communicating nodes, and to distribute
one authentic public TESLA key for each node.

• If digital signatures are used, we assume a mechanism dis-
tribute one authentic public key for each node.

To set up shared secret keys, we can use a variety of mecha-
nisms: a key distribution center shares a secret key with each node
and sets up shared secret keys with communicating nodes, such
as in Kerberos [33] or SPINS [45]; bootstrap shared secret keys
from a Public Key Infrastructure (PKI) using protocols such as
TLS [14]; or pre-load shared secret keys at initialization, possibly
through physical contact [52]. Menezes et al discuss several key
setup protocols [38].

To set up authentic public keys, we can either embed all public
keys at initialization in each node, or assume a PKI and embed
the trusted Certification Authority’s public key in each node and
then use that key to authenticate the public keys of other nodes.
Another approach proposed by Hubaux et al [23] bootstraps trust
relationships based on PGP-like certificates.

Ariadne also requires that each node have an authentic element
from the Route Discovery chain (Section 6.6) of every node initiat-
ing Route Discoveries. These keys can be set up in the same way
as a public key.

Key setup is an expensive operation. Setting up shared secret
keys requires authenticity and confidentiality, whereas setting up
public keys only requires authenticity. Furthermore, fewer public
keys are generally needed, because in a network with n nodes only
n public keys are needed, and can potentially be broadcast, whereas
n(n + 1)/2 secret keys need to be set up in the case of pairwise
shared secret keys.

We outline here a mechanism to set up these keys without re-
lying on Ariadne, thus avoiding the circular dependency between
key setup and a routing protocol. We assume for this a trusted Key
Distribution Center (KDC) that either shares a secret key with each
node, or uses its private or TESLA key to broadcast authenticated
public keys of nodes. In either case, a star-based routing protocol
that allows routing between nodes and the trusted entity suffices.
To bootstrap authenticated keys between pairs of nodes, the KDC
node initiates a Route Discovery with a special, reserved address
(not the address of any actual node) as the target of the Discov-
ery. The Route Discovery is processed as in Ariadne (Section 6),
except that each node receiving the ROUTE REQUEST for the first
time also returns a ROUTE REPLY. The KDC can then use each
returned route to send encrypted, authenticated keys to each node
in the network.

1In the terms of the attacker classification we present in Section 5.1, the strongest at-
tacker in such an environment is Active-0-x. As we discuss in Section 6.2, we can thus
secure a network with tamperproof hardware through a network-wide shared secret
key for all message authentication, with packet leashes [21] (both implemented within
the secure hardware).

5. AD HOC NETWORK ROUTING SECURITY

In this section, we define a taxonomy of types of attackers and dis-
cuss specific attacks against ad hoc network routing. This approach
allows us to categorize the security of an ad hoc network routing
protocol based on the strongest attacker it withstands.

5.1. Attacker Model

We consider two main attacker classes, passive and active. The
passive attacker does not send messages; it only eavesdrops on the
network. Passive attackers are mainly threats against the privacy or
anonymity of communication, rather than against the functioning
of the network or its routing protocol, and thus we do not discuss
them further here.

An active attacker injects packets into the network and generally
also eavesdrops. We characterize the attacker based on the num-
ber of nodes it owns in the network, and based on the number of
those that are good nodes it has compromised. We assume that
the attacker owns all the cryptographic key information of com-
promised nodes and distributes it among all its nodes. We denote
such an attacker Active-n-m, where n is the number of nodes it
has compromised and m is the number of nodes it owns. We pro-
pose the following attacker hierarchy (with increasing strength) to
measure routing protocol security: Active-0-1 (the attacker owns
one node), Active-0-x (the attacker owns x nodes), Active-1-x (the
attacker owns one compromised node and distributes the crypto-
graphic keys to its x− 1 other nodes), and Active-y-x. In addition,
we call an attacker that has compromised nodes an Active-VC at-
tacker if it owns all nodes on a vertex cut through the network that
partitions the good nodes into multiple sets, forcing good nodes in
different partitions to communicate only through an attacker node.
This attacker is particularly powerful, as it controls all traffic be-
tween nodes of the disjoint partitions.

Our protocol does not require a trusted Key Distribution Center
(KDC) in the network, but some ad hoc networks may use one for
key setup, as mentioned in Section 4.3. We do not consider the
case in which an attacker compromises the KDC, since the KDC
is a central trust entity, and a compromised KDC compromises the
entire network.

5.2. General Attacks on Ad Hoc Network Routing Protocols

Attacks on an ad hoc network routing protocols generally fall into
one of two categories: routing disruption attacks and resource con-
sumption attacks. In a routing disruption attack, the attacker at-
tempts to cause legitimate data packets to be routed in dysfunc-
tional ways. In a resource consumption attack, the attacker injects
packets into the network in an attempt to consume valuable network
resources such as bandwidth, or to consume node resources such
as memory (storage) or computation power. From an application-
layer perspective, both attacks are instances of a Denial-of-Service
(DoS) attack.

An example of a routing disruption attack is for an attacker to
send forged routing packets to create a routing loop, causing pack-
ets to traverse nodes in a cycle without reaching their destinations,
consuming energy and available bandwidth. An attacker may sim-
ilarly create a routing black hole, in which all packets are dropped:
by sending forged routing packets, the attacker could route all pack-
ets for some destination to itself and then discard them, or the at-
tacker could cause the route at all nodes in an area of the network
to point “into” that area when in fact the destination is outside the
area. As a special case of a black hole, an attacker could create a
gray hole, in which it selectively drops some packets but not others,
for example, forwarding routing packets but not data packets. An

attacker may also attempt to cause a node to use detours (subop-
timal routes) or may attempt to partition the network by injecting
forged routing packets to prevent one set of nodes from reaching
another. An attacker may attempt to make a route through itself ap-
pear longer by adding virtual nodes to the route; we call this attack
gratuitous detour, as a shorter route exists and would otherwise
have been used. In ad hoc network routing protocols that attempt
to keep track of perceived malicious nodes in a “blacklist” at each
node, such as is done in watchdog and pathrater [36], an attacker
may blackmail a good node, causing other good nodes to add that
node to their blacklists, thus avoiding that node in routes.

A more subtle type of routing disruption attack is the creation of
a wormhole in the network [21], using a pair of attacker nodes A
and B linked via a private network connection. Every packet that A
receives from the ad hoc network, A forwards through the worm-
hole to B, to then be rebroadcast by B; similarly, B may send
all ad hoc network packets to A. Such an attack potentially dis-
rupts routing by short circuiting the normal flow of routing pack-
ets, and the attackers may also create a virtual vertex cut that they
control.

The rushing attack is a malicious attack that is targeted against
on-demand routing protocols that use duplicate suppression at each
node [22]. An attacker disseminates ROUTE REQUESTs quickly
throughout the network, suppressing any later legitimate ROUTE

REQUESTs when nodes drop them due to the duplicate suppression.
An example of a resource consumption attack is for an attacker

to inject extra data packets into the network, which will consume
bandwidth resources when forwarded, especially over detours or
routing loops. Similarly, an attacker can inject extra control pack-
ets into the network, which may consume even more bandwidth or
computational resources as other nodes process and forward such
packets. With either of these attacks, an Active-VC attacker can try
to extract maximum resources from the nodes on both sides of the
vertex cut, for example by forwarding only routing packets and not
data packets, such that the nodes waste energy forwarding packets
to the vertex cut, only to have them dropped.

If a routing protocol can prevent an attacker from inserting rout-
ing loops, and if a maximum route length can be enforced, then an
attacker that can inject extra data packets has limited attack power.
In particular, if routes are limited to ν hops, then each data packet
transmitted by the attacker only causes a fixed number of additional
transmissions; more generally, if at most one control packet can be
sent in response to each data packet (e.g., a ROUTE ERROR), and
that control packet is limited to ν hops, then an individual data
packet can cause only 2ν individual transmissions. We consider an
attack a DoS attack only if the ratio between the total work per-
formed by nodes in the network and the work performed by the
attacker is on the order of the number of nodes in the network. An
example of a DoS attack is where the attacker sends a single packet
that results in a packet flood throughout the network.

6. ARIADNE

6.1. Notation

We use the following notation to describe security protocols and
cryptographic operations:

• A,B are principals, such as communicating nodes.

• KAB and KBA denote the secret MAC keys shared between
A and B (one key for each direction of communication).

• MACKAB
(M) denotes the computation of the message au-

thentication code (MAC) of message M with the MAC key
KAB , for example using the HMAC algorithm [3].

For notational convenience we assume hash and MAC functions
that take a variable number of arguments, simply concatenating
them in computing the function.

6.2. Design Goals

We aim for resilience against Active-1-x and Active-y-x attackers.
Ideally, the probability that the routing protocol delivers messages
degrades gracefully when nodes fail or are compromised. Our goal
is to design simple and efficient mechanisms achieving high attack
robustness. These mechanisms should be sufficiently general to
allow application to a wide range of routing protocols.

Defending against an Active-0-x attacker is relatively easy. A
network-wide shared secret key limits the attacker to replaying mes-
sages. Thus the main attacks remaining are the wormhole and rush-
ing attacks (Section 5.2). Packet leashes [21] can prevent both at-
tacks because they prevent an Active-0-x attacker from retransmit-
ting packets.

Most routing disruption attacks we present in Section 5.2 are
caused by malicious injection or altering of routing data. To prevent
these attacks, each node that interprets routing information must
verify the origin and integrity of that data, that is, authenticate the
data. Ideally, the initiator of the Route Discovery can verify the
origin of each individual data field in the ROUTE REPLY.

We need an authentication mechanism with low computation and
communication overhead. An inefficient authentication mechanism
could be exploited by an attacker to perform a Denial-of-Service
(DoS) attack by flooding nodes with malicious messages, over-
whelming them with the cost of verifying authentication. Thus,
for point-to-point authentication of a message, we use a message
authentication code (MAC) (e.g., HMAC [3]) and a shared key be-
tween the two parties. However, setting up the shared keys between
the initiator and all the nodes on the path to the target may be expen-
sive. We thus also propose using the TESLA broadcast authentica-
tion protocol (Section 3) for authentication of nodes on the routing
path. However, we also discuss MAC authentication with pairwise
shared keys, for networks capable of inexpensive key setup, and
we discuss digital signatures for authentication, for networks with
extremely powerful nodes.

As a general design principle, a node trusts only itself for acquir-
ing information about which nodes in the network are malicious.
This approach helps avoid blackmail attacks, where an attacker
constructs information to make a legitimate node appear malicious.

In our design, we assume that a sender trusts the destination with
which it communicates, for authenticating nodes on the path be-
tween them. This assumption is straightforward, as the destination
node can control all communication with the sender anyway. How-
ever, the destination node can potentially blackmail nodes on the
path to the sender. The sender thus needs to keep a separate black-
list for each destination.

In general, ad hoc network routing protocols do not need secrecy
or confidentiality. These properties are required to achieve privacy
or anonymity for the sender of messages. Even in the Internet, it is
challenging to achieve sender anonymity, and this area is still the
subject of active research.

Our protocol does not prevent an attacker from injecting data
packets. As we describe in Section 5.2, injecting a packet results
in a DoS attack only if it floods the network. Since data pack-
ets cannot flood the network, we do not explicitly protect against
packet injection. However, malicious ROUTE REQUEST messages
that flood the network do classify as a DoS attack, and we thus
prevent this attack with a separate mechanism that we describe in
Section 6.6.

6.3. Basic Ariadne Route Discovery

We present the design of the Ariadne protocol in three stages: we
first present a mechanism that enables the target to verify the au-
thenticity of the ROUTE REQUEST; we then present three alterna-
tive mechanisms for authenticating data in ROUTE REQUESTs and
ROUTE REPLYs; and finally, we present an efficient per-hop hash-
ing technique to verify that no node is missing from the node list
in the REQUEST. In the following discussion we assume that the
initiator S performs a Route Discovery for target D, and that they
share the secret keys KSD and KDS , respectively, for message au-
thentication in each direction.

Target authenticates ROUTE REQUESTs. To convince the tar-
get of the legitimacy of each field in a ROUTE REQUEST, the ini-
tiator simply includes a MAC computed with key KSD over unique
data, for example a timestamp. The target can easily verify the au-
thenticity and freshness of the route request using the shared key
KSD.

Three techniques for data authentication. In a Route Discov-
ery, the initiator wants to authenticate each individual node in the
node list of the ROUTE REPLY. A secondary requirement is that
the target can authenticate each node in the node list of the ROUTE

REQUEST, so that it will return a ROUTE REPLY only along paths
that contain only legitimate nodes. In this section, we present
three alternative techniques to achieve node list authentication: the
TESLA protocol, digital signatures, and standard MACs.

When Ariadne Route Discovery is used with TESLA, each hop
authenticates new information in the REQUEST. The target buffers
the REPLY until intermediate nodes can release the corresponding
TESLA keys. The TESLA security condition is verified at the tar-
get, and the target includes a MAC in the REPLY to certify that the
security condition was met. TESLA requires each packet sender to
choose a τ as the maximum end-to-end delay for a packet. Choices
of τ do not affect the security of the protocol, although values that
are too small may cause the Route Discovery to fail. Ariadne can
choose τ adaptively, by increasing τ when a Discovery fails. In
addition, the target of the Discovery could provide feedback in the
ROUTE REPLY when τ was chosen too long.

Ariadne Route Discovery using digital signatures differs in that
no Route Discovery chain element is required (Section 6.6). In
addition, the MAC list in the REQUEST becomes a signature list,
where the data used to compute the MAC is instead used to com-
pute a signature. Rather than computing the target MAC using
a Message Authentication Code, a signature is used. Finally, no
key list is required in the REPLY.

Ariadne Route Discovery using MACs is most efficient, but re-
quires pairwise shared keys between all nodes. When Ariadne is
used in this way, the MAC list in the REQUEST is computed using
a key shared between the target and the current node, rather than
using the TESLA key of the current node. The MACs are verified
at the target and are not returned in the REPLY. As a result, the
target MAC is not computed over the MAC list in the REQUEST.
In addition, no key list is required in the REPLY.

Per-hop hashing. Authentication of data in routing messages is
not sufficient, as an attacker could remove a node from the node
list in a REQUEST. We use one-way hash functions to verify that
no hop was omitted, and we call this approach per-hop hashing.
To change or remove a previous hop, an attacker must either hear
a REQUEST without that node listed, or must be able to invert the
one-way hash function.

Ariadne Route Discovery with TESLA We now describe in de-
tail the version of Ariadne Route Discovery using TESLA broad-

cast authentication. We assume that every end-to-end communi-
cating source-destination pair of nodes A and B share the MAC
keys KAB and KBA. We also assume that every node has a TESLA
one-way key chain, and that all nodes know an authentic key of
the TESLA one-way key chain of each other node (for authentica-
tion of subsequent keys, as described in Section 3). Route Discov-
ery has two stages: the initiator floods the network with a ROUTE

REQUEST, and the target returns a ROUTE REPLY. To secure the
ROUTE REQUEST packet, Ariadne provides the following proper-
ties: (1) the target node can authenticate the initiator (using a MAC
with a key shared between the initiator and the target); (2) the ini-
tiator can authenticate each entry of the path in the ROUTE REPLY

(each intermediate node appends a MAC with its TESLA key); and
(3) no intermediate node can remove a previous node in the node
list in the REQUEST or REPLY (a one-way function prevents a com-
promised node from removing a node from the node list).

A ROUTE REQUEST packet in Ariadne contains eight fields:
〈ROUTE REQUEST, initiator, target, id, time interval, hash chain,
node list, MAC list〉. The initiator and target are set to the address
of the initiator and target nodes, respectively. As in DSR, the ini-
tiator sets the id to an identifier that it has not recently used in
initiating a Route Discovery. The time interval is the TESLA time
interval at the pessimistic expected arrival time of the REQUEST

at the target, accounting for clock skew; specifically, given τ , a
pessimistic transit time, the time interval could be set to any time
interval for which the key is not released within the next τ + 2∆
time. The initiator of the REQUEST then initializes the hash chain
to MACKSD

(initiator, target, id, time interval) and the node list
and MAC list to empty lists.

When any node A receives a ROUTE REQUEST for which it is
not the target, the node checks its local table of 〈initiator, id〉 values
from recent REQUESTs it has received, to determine if it has already
seen a REQUEST from this same Route Discovery. If it has, the
node discards the packet, as in DSR. The node also checks whether
the time interval in the REQUEST is valid: that time interval must
not be too far in the future, and the key corresponding to it must not
have been disclosed yet. If the time interval is not valid, the node
discards the packet. Otherwise, the node modifies the REQUEST

by appending its own address, A, to the node list in the REQUEST,
replacing the hash chain field with H [A, hash chain], and append-
ing a MAC of the entire REQUEST to the MAC list. The node uses
the TESLA key KAi

to compute the MAC, where i is the index
for the time interval specified in the REQUEST. Finally, the node
rebroadcasts the modified REQUEST, as in DSR.

When the target node receives the ROUTE REQUEST, it checks
the validity of the REQUEST by determining that the keys from the
time interval specified have not been disclosed yet, and that the
hash chain field is equal to

H [ηn,H [ηn−1,H [. . . ,H [η1,
MACKSD

(initiator, target, id, time interval)] . . .]]]

where ηi is the node address at position i of the node list in
the REQUEST, and where n is the number of nodes in the
node list. If the target node determines that the REQUEST is
valid, it returns a ROUTE REPLY to the initiator, containing eight
fields: 〈ROUTE REPLY, target, initiator, time interval, node list,
MAC list, target MAC, key list〉. The target, initiator, time interval,
node list, and MAC list fields are set to the corresponding values
from the ROUTE REQUEST, the target MAC is set to a MAC com-
puted on the preceding fields in the REPLY with the key KDS, and
the key list is initialized to the empty list. The ROUTE REPLY is
then returned to the initiator of the REQUEST along the source route

S : h0 = MACKSD
(REQUEST ,S,D, id, ti)

S → ∗ : 〈REQUEST ,S,D, id, ti,h0, (), ()〉

A : h1 = H [A,h0]
MA = MACKAti

(REQUEST ,S,D, id, ti,h1 , (A), ())

A → ∗ : 〈REQUEST ,S,D, id, ti,h1 , (A), (MA)〉

B : h2 = H [B,h1]
MB = MACKBti

(REQUEST ,S,D, id, ti,h2 , (A,B), (MA))

B → ∗ : 〈REQUEST ,S,D, id, ti,h2 , (A,B), (MA,MB)〉

C : h3 = H [C,h2]
MC = MACKCti

(REQUEST ,S,D, id, ti,h3, (A,B,C), (MA,MB))

C → ∗ : 〈REQUEST ,S,D, id, ti,h3 , (A,B,C), (MA,MB ,MC)〉

D : MD = MACKDS
(REPLY ,D,S, ti, (A,B,C), (MA,MB ,MC))

D → C : 〈REPLY,D,S, ti, (A,B,C), (MA,MB ,MC),MD , ()〉

C → B : 〈REPLY,D,S, ti, (A,B,C), (MA,MB ,MC),MD , (KCti
)〉

B → A : 〈REPLY,D,S, ti, (A,B,C), (MA,MB ,MC),MD , (KCti
,KBti

)〉

A → S : 〈REPLY,D,S, ti, (A,B,C), (MA,MB ,MC),MD ,

(KCti
,KBti

,KAti
)〉

Figure 1: Route Discovery example in Ariadne. The initiator
node S is attempting to discover a route to the target node D.
The bold underlined font indicates changed message fields,
relative to the previous message of that type.

obtained by reversing the sequence of hops in the node list of the
REQUEST.

A node forwarding a ROUTE REPLY waits until it is able to dis-
close its key from the time interval specified; it then appends its
key from that time interval to the key list field in the REPLY and
forwards the packet according to the source route indicated in the
packet. Waiting delays the return of the ROUTE REPLY but does
not consume extra computational power.

When the initiator receives a ROUTE REPLY, it verifies that each
key in the key list is valid, that the target MAC is valid, and that
each MAC in the MAC list is valid. If all of these tests succeed, the
node accepts the ROUTE REPLY; otherwise, it discards it. Figure 1
shows an example of Route Discovery in Ariadne.

6.4. Basic Ariadne Route Maintenance

Route Maintenance in Ariadne is based on DSR as described in
Section 2. A node forwarding a packet to the next hop along the
source route returns a ROUTE ERROR to the original sender of the
packet if it is unable to deliver the packet to the next hop after
a limited number of retransmission attempts. In this section, we
discuss mechanisms for securing ROUTE ERRORs, but we do not
consider the case of attackers not sending ERRORs (Section 6.5).

To prevent unauthorized nodes from sending ERRORs, we re-
quire that an ERROR be authenticated by the sender. Each node on
the return path to the source forwards the ERROR. If the authen-
tication is delayed, for example when TESLA is used, each node
that will be able to authenticate the ERROR buffers it until it can be
authenticated.

When using broadcast authentication, such as TESLA, a ROUTE

ERROR packet in Ariadne contains six fields: 〈ROUTE ERROR,
sending address, receiving address, time interval, error MAC,
recent TESLA key〉. The sending address is set to the address of the
intermediate node encountering the error, and the receiving address
is set to the intended next hop destination of the packet it was at-
tempting to forward. For example, if node B is attempting to for-
ward a packet to the next hop node C, if B is unable to deliver
the packet to C, node B sends a ROUTE ERROR to the original
sender of the packet; the the sending address in this example is

set to B, and the receiving address is set to C. The time interval
in the ROUTE ERROR is set to the TESLA time interval at the
pessimistic expected arrival time of the ERROR at the destination,
and the error MAC field is set to the MAC of the preceding fields
of the ROUTE ERROR, computed using the sender of the ROUTE

ERROR’s TESLA key for the time interval specified in the ERROR.
The recent TESLA key field in the ROUTE ERROR is set to the
most recent TESLA key that can be disclosed for the sender of
the ERROR. We use TESLA for authenticating ROUTE ERRORs so
that forwarding nodes can also authenticate and process the ROUTE

ERROR.
When sending a ROUTE ERROR, the destination of the packet

is set to the source address of the original packet triggering the
ERROR, and the ROUTE ERROR is forwarded toward this node
in the same way as a normal data packet; the source route used
in sending the ROUTE ERROR packet is obtained by reversing the
source route from the header of the packet triggering the ERROR.
Each node that is either the destination of the ERROR or forwards
the ERROR searches its Route Cache for all routes it has stored
that use the 〈sending address, receiving address〉 link indicated by
the ERROR. If the node has no such routes in its Cache, it does
not process the ROUTE ERROR further (other than forwarding the
packet, if it is not the destination of the ERROR). Otherwise, the
node checks whether the time interval in the ERROR is valid: that
time interval must not be too far into the future, and the key corre-
sponding to it must not have been disclosed yet; if the time interval
is not valid, the node similarly does not process the ROUTE ERROR

further.
If all of the tests above for the ROUTE ERROR succeed, the node

checks the authentication on the ERROR, based on the sending
node’s TESLA key for the time interval indicated in the ERROR.
To do so, the node saves the information from the ERROR in mem-
ory until it receives a disclosed TESLA key from the sender that
allows this. During this time, the node continues to use the routes
in its Route Cache without modification from this ERROR. If the
sender stops using that route, there will be no need to complete the
authentication of the ERROR. Otherwise, each subsequent packet
sent along this route by this node will trigger an additional ROUTE

ERROR, and once the TESLA time interval used in the first ERROR

ends, the recent TESLA key field in the next ERROR returned will
allow authentication of this first ERROR; alternatively, the node
could also explicitly request the needed TESLA key from the sender
once the interval ends. Once the ROUTE ERROR has been authen-
ticated, the node removes from its Route Cache all routes using the
indicated link, and also discards any saved information for other
ERRORs for which, as a result of removing these routes, it then has
no corresponding routes in its Route Cache.

To handle the possible memory consumption attack of needing
to save information from many pending ROUTE ERRORs, the fol-
lowing technique is quite effective: each node keeps in memory a
table containing the information from each ROUTE ERROR await-
ing authentication. We manage this table such that the probability
that the information from an ERROR is in the table is independent
of the time that this node received that ROUTE ERROR.

When digital signatures or pairwise shared keys are used, this
memory consumption attack is not possible, and the authentica-
tion is more straightforward. A ROUTE ERROR need not include
a time interval or recent TESLA key. Furthermore, the error MAC
is changed to a digital signature when digital signatures are used.
When pairwise shared keys are used, the error MAC is computed
based on the key shared between the original sender of the packet
and the sender of the ROUTE ERROR, rather than on the TESLA
key of the sender of the ERROR.

6.5. Thwarting Effects of Routing Misbehavior

The protocol described so far is vulnerable to an Active-1-1 attacker
that happens to be along the discovered route. In particular, we
have not presented a means of determining whether intermediate
nodes are in fact forwarding packets that they have been requested
to forward. Watchdog and pathrater [36] attempt to solve this prob-
lem by identifying the attacking nodes and avoiding them in the
routes used. Instead, we choose routes based on their prior perfor-
mance in packet delivery. Introducing mechanisms that penalize
specific nodes for routing misbehavior (such as is done in watch-
dog and pathrater) is subject to a blackmail attack (Section 5.1),
where a sufficient number of attackers may be able to penalize a
well-behaved node.

Our scheme relies on feedback about which packets were suc-
cessfully delivered. The feedback can be received either through an
extra end-to-end network layer message, or by exploiting properties
of transport layers, such as TCP with SACK [37]; this feedback
approach is somewhat similar that used in IPv6 for Neighbor Un-
reachability Detection [39]. Stronger properties are obtained when
the routing protocol sends such feedback packets along a route
equal to the reversed route of the triggering packet; otherwise, a
malicious node along one route may drop the acknowledgment for
a packet transmitted along a functioning route.

A node with multiple routes to a single destination can assign
a fraction of packets that it originates to be sent along each route.
When a substantially smaller fraction of packets sent along any par-
ticular route are successfully delivered, the node can begin sending
a smaller fraction of its overall packets to that destination along that
route. However, if the fraction of packets chosen to be sent along
a route that appears to be misbehaving were to reach zero, a short-
lived jamming attack that is now over could still prevent the future
use of that route. To avoid this possible DoS attack, we choose the
fraction of packets sent along such a route to be some small but
nonzero amount, to allow the occasional monitoring of the route.
A packet sent for this purpose can be a normal data packet, or, if all
packets are secured using end-to-end encryption, a padded “probe”
packet can be used.

Because DSR often returns multiple ROUTE REPLY packets in
response to a Route Discovery, the presence of multiple routes to
some destination in a node’s Route Cache is quite common. Tsiri-
gos and Haas [54] also discuss the use of multiple routes for in-
creasing reliability, although they do not discuss this technique with
respect to secure routing protocols.

Malicious nodes can also be avoided during Route Discovery.
Each ROUTE REQUEST can include a list of nodes to avoid, and
the MAC that forms the initial hash chain element (h0) is then also
computed over that list of nodes. Malicious nodes cannot add or
remove nodes from this list without being detected by the target.
Choosing which nodes to avoid in this way is beyond the scope of
this paper.

6.6. Thwarting Malicious Route Request Floods

An active attacker can attempt to degrade the performance of DSR
or other on-demand routing protocols by repeatedly initiating Route
Discovery. In this attack, an attacker sends ROUTE REQUEST pack-
ets, which the routing protocol floods throughout the network. In
basic Ariadne (Sections 6.3 and 6.4), a ROUTE REQUEST is not
authenticated until it reaches its target, thus allowing an Active-1-1
attacker to cause such network-wide floods. (An Active-0-1 can be
thwarted by using a network-wide authentication key, as described
in Section 7.2.)

To protect Ariadne from a flood of ROUTE REQUEST packets,
we need a mechanism that enables nodes to instantly authenticate

ROUTE REQUESTs, so nodes can filter out forged or excessive
REQUEST packets. We introduce Route Discovery chains, a mech-
anism for authenticating Route Discoveries, allowing each node to
rate-limit Discoveries initiated by any node.

Route Discovery chains are one-way chains generated, as in
TESLA (Section 3), by choosing a random KN , and repeatedly
computing a one-way hash function H to give Ki = HN−i[KN].
These chains can be used in one of two ways. One approach is to
release one key for each Route Discovery. Each ROUTE REQUEST

from that Discovery would carry a key from this Route Discovery
chain, and duplicates could be suppressed using this value. Be-
cause of the flooding nature of Route Discovery, a node that is not
partitioned from the network will generally hear each chain ele-
ment that is used, preventing an attacker from reusing that value in
the future. An alternative approach, similar to TESLA, is to dic-
tate a schedule at which Route Discovery chain elements can be
used, and to use loosely synchronized clocks to prevent even par-
titioned nodes from propagating an old ROUTE REQUEST. The
latter approach is computationally slightly more expensive, but it
is secure against an attacker replaying an old chain element to a
formerly partitioned node, causing that node to ignore REQUESTs
from the spoofed source for some period of time.

6.7. An Optimization for Ariadne

When Ariadne is used with broadcast authentication such as
TESLA, additional route caching is possible. In the basic Route
Discovery mechanism described in Section 6.3, only the initiator of
the Discovery can use the route in the REPLY, since the target MAC
field of the REPLY can only be verified by the initiator. However,
if the appropriate data is also broadcast authenticated, any node
along a path returned in a REPLY can use that route to reach the
target. For example, if TESLA is used as the broadcast authentica-
tion protocol, a target authenticator is placed the packet in addition
to the target MAC, and is computed using a TESLA key that is not
expected to be disclosed until ∆ after the last REPLY reaches the
initiator (where ∆ is the maximum time difference between two
nodes). That TESLA key is then disclosed, after appropriate delay,
by sending it to the initiator along each path traversed by a REPLY.

7. ARIADNE EVALUATION

7.1. Simulation-Based Performance Evaluation

To evaluate the Ariadne without attackers, we used the ns-2 simu-
lator, with our mobility extensions [7]. The ns-2 simulator has been
used extensively in evaluating the performance of ad hoc network
routing protocols. These simulations model radio propagation us-
ing the realistic two-ray ground reflection model [47] and account
for physical phenomena such as signal strength, propagation delay,
capture effect, and interference. The Medium Access Control pro-
tocol used is the IEEE 802.11 Distributed Coordination Function
(DCF) [24]. The parameters used for our simulation are given in
Table 1.

We evaluated the version of Ariadne that uses TESLA for broad-
cast authentication and shared keys only between communicating
nodes (without the optimization described in Section 6.7). We
modeled this version of Ariadne by modifying our ns-2 DSR model
in several ways: we increased the packet sizes to reflect the addi-
tional fields necessary for authenticating the packets, and modified
the handling of Route Discovery and Maintenance for the addi-
tional authentication processing defined in Ariadne; we adjusted re-
transmission timeouts for ROUTE REQUESTs to compensate for the
delay necessary for the disclosure of TESLA keys; and we treated
routes learned from Route Discovery in an atomic fashion that did

Table 1: Parameters for Ariadne Simulations
Scenario Parameters

Number of Nodes 50
Maximum Velocity (vmax) 20 m/s
Dimensions of Space 1500 m × 300 m
Nominal Radio Range 250 m
Source-Destination Pairs 20
Source Data Pattern (each) 4 packets/second
Application Data Payload Size 512 bytes/packet
Total Application Data Load 327 kbps
Raw Physical Link Bandwidth 2 Mbps

DSR Parameters
Initial ROUTE REQUEST Timeout 2 seconds
Maximum ROUTE REQUEST Timeout 40 seconds
Cache Size 32 routes
Cache Replacement Policy FIFO

TESLA Parameters
TESLA Time Interval 1 second
Pessimistic End-to-End Propagation Time (τ) 0.2 seconds
Maximum Time Synchronization Error (∆) 0.1 seconds
Hash Length (ρ) 80 bits

not allow the use of prefixes of routes in the Route Cache. We com-
pare this version of Ariadne versus the current version of DSR [18],
which we call simply “DSR,” and with an unoptimized version of
DSR, which we call “DSR-NoOpt.” In DSR-NoOpt, we disabled
all protocol optimizations not present in Ariadne. By comparing
Ariadne with this unoptimized version of DSR, we can examine
the performance impact of adding security, independent of the per-
formance impact of the DSR optimizations removed to allow the
security changes.

Each node in our simulation moves according to the random
waypoint model [27]: a node starts at a random position, waits for
a duration called the pause time, and then chooses a new random
location and moves there with a velocity uniformly chosen between
0 and vmax. When it arrives, it waits for the pause time and repeats
the process. Like much previous work in evaluating ad hoc network
routing protocols (e.g., [7, 18, 25]), we use a rectangular space of
size 1500 m× 300 m to increase the average number of hops in
routes used relative to a square space of equal area, creating a more
challenging environment for the routing protocol in this respect.
All protocols were run on identical movement and communication
scenarios. We computed six metrics for each simulation run:

• Packet Delivery Ratio (PDR): The fraction of application-
level data packets sent that are actually received at the re-
spective destination node.

• Packet Overhead: The number of transmissions of routing
packets; for example, a ROUTE REPLY sent over three hops
would count as three packets in this metric.

• Byte Overhead: The number of transmissions of overhead
(non-data) bytes, counting each hop as above.

• Mean Latency: The average time elapsed from when a data
packet is first sent to when it is first received at its destination.

• 99.99th Percentile Latency: Computed as the 99.99th
percentile of the packet delivery latency.

• Path Optimality: Compares the length of routes used to the
optimal (minimum possible) hop length as determined by an
off-line omniscient algorithm.

Figure 2(a) shows the Packet Delivery Ratio (PDR) for each pro-
tocol. Removing the optimizations from DSR to produce DSR-
NoOpt reduces PDR by an average of 15.2%; adding Ariadne se-
curity further reduces PDR by just an additional 0.66% on aver-
age, and does not reduce PDR by more than an additional 4%

0 100 200 300 400 500 600 700 800 900
 0.7

0.75

 0.8

0.85

 0.9

0.95

 1

Pause Time

Ariadne
PSfrag replacements

DSR

DSR-NoOpt

P
ac

ke
tD

el
iv

er
y

R
at

io

(a) Packet Delivery Ratio

0 100 200 300 400 500 600 700 800 900
 0

 20

 40

 60

 80

100

120

140

160

180

200

Pause Time

Ariadne

PSfrag replacements

DSR

DSR-NoOpt

P
ac

ke
tO

ve
rh

ea
d

(P
ac

ke
ts
×

1
0

3
)

(b) Packet Overhead

0 100 200 300 400 500 600 700 800 900
 0

 5

10

15

20

25

30

Pause Time

Ariadne

PSfrag replacements

DSR

DSR-NoOpt

B
yt

e
O

ve
rh

ea
d

(B
yt

es
×

1
0

6
)

(c) Byte Overhead

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 D
el

iv
er

ed
 P

ac
ke

ts

Number of Hops More Than Optimal

Ariadne

PSfrag replacements

DSR

DSR-NoOpt

≥5

(d) Path Optimality

0 100 200 300 400 500 600 700 800 900
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Pause Time

La
te

nc
y

(s
ec

on
ds

)
Ariadne

PSfrag replacements

DSR

DSR-NoOpt

(e) Average Latency

0 100 200 300 400 500 600 700 800 900
0

5

10

15

20

25

30

35

40

45

Pause Time

La
te

nc
y

(s
ec

on
ds

)

Ariadne

PSfrag replacements

DSR

DSR-NoOpt

(f) 99.99th Percentile Latency

Figure 2: Performance results comparing Ariadne with the standard DSR protocol and with a version of DSR with all DSR optimiza-
tions not present in Ariadne disabled. Results are based on simulation over 60 runs, and the error bars represent the 95% confidence
interval of the mean.

at any pause time. Ariadne delivers fewer packets than DSR-
NoOpt at higher levels of mobility for two reasons. First, since
Route Discovery operates more slowly, packets are more likely to
time out waiting for a ROUTE REPLY, and the route contained in
a ROUTE REPLY will have a shorter lifetime. Second, because
ROUTE ERRORs cannot be processed until the TESLA key used
is disclosed, additional data packets continue to be sent along the
broken route for on average half of the TESLA time interval after
the ERROR is received.

Surprisingly, Ariadne outperforms DSR-NoOpt at lower levels
of mobility. This improved performance results from the average
half-second delay (one half the TESLA time interval) that Ariadne
introduces between the target receiving a ROUTE REQUEST and
sending a ROUTE REPLY. Specifically, when a REQUEST traverses
a short-lived link, DSR-NoOpt immediately returns the REPLY, but
the new route can be used for only its brief lifetime, contribut-
ing additional overhead for forwarding the REPLY and for send-
ing and forwarding the ERROR. In Ariadne, links are tested twice:
once when the REQUEST traverses the network, and once when the
REPLY is sent along the reverse path. If one of these links breaks
between these tests, the REPLY with this route is not received by the
initiator. It is this additional route confirmation that allows Ariadne
to find more stable routes than DSR-NoOpt.

Figures 2(b) and 2(c) show the packet and byte overhead, re-
spectively. Ariadne has consistently lower packet overhead than
DSR-NoOpt, because Ariadne tends to find more stable routes than
DSR-NoOpt, reducing the number of ROUTE ERRORs that are sent.
This advantage is somewhat countered by the increase in number of
ROUTE ERRORs used by Ariadne: since ERROR processing is de-

layed, more redundant ERRORs are sent. Unfortunately, byte over-
head in Ariadne is significantly worse than in either DSR or DSR-
NoOpt, due to the authentication overhead in ROUTE REQUEST,
REPLY, and ERROR packets.

Figure 2(d) shows Path Optimality. In DSR, the average number
of hops along a route used by a packet is 0.6853 hops more than
the minimum possible, based on the nominal wireless transmission
range of 250 m per hop. In DSR-NoOpt, routes used are on average
0.2705 hops longer than in DSR, and in Ariadne, routes used aver-
age 0.0044 hops longer than in DSR-NoOpt. DSR-NoOpt performs
slightly better than Ariadne because it initiates more Route Discov-
eries and thus tends to more quickly find shorter routes when they
become available than does Ariadne.

Figures 2(e) and 2(f) show the average and 99.99th percentile la-
tency for the protocols, respectively. Because of the reduced num-
ber of broken links that get used in Ariadne relative to DSR-NoOpt,
Ariadne generally has better latency than DSR-NoOpt.

7.2. Security Analysis

In this section, we discuss how Ariadne resists attacks by certain at-
tacker types, according to the taxonomy we present in Section 5.1.

Intuitively, Ariadne Route Discovery is successful when at least
one of the REPLYs returned by the target is a working route. Since
the target of a Route Discovery returns a route for each of its neigh-
bors, if the first REQUEST from a particular Discovery to reach any
neighbor of the target has passed through no malicious nodes, that
Discovery will succeed.

To more formally characterize the security offered by Ariadne,
we define a minimum broadcast latency path between a source and

a destination to be any path that forwards a Route Discovery most
quickly from the source to the destination. We call a route that
only consists of uncompromised nodes an uncompromised route.
Ariadne prevents compromised nodes from disturbing uncompro-
mised routes. In particular, Ariadne provides two properties assum-
ing reliable broadcast:

• If there exists an uncompromised neighbor of a destination
such that the minimum latency path between the initiator of
the Discovery and that neighbor is uncompromised, then an
uncompromised route from the initiator to the target will be
returned in a ROUTE REPLY.

• If at least one REPLY returned as a result of the first prop-
erty represents a shortest route from the initiator to the target,
Ariadne may route packets along one such uncompromised
route.

To argue for the correctness of the first property, we note that if
the minimum latency path between the initiator and a neighbor of
the destination is uncompromised, then the first REQUEST to reach
that neighbor comes over an uncompromised route. Since it is the
first REQUEST, it will not be filtered by duplicate REQUEST detec-
tion, so it will be rebroadcast, and heard by the target. Since the
target returns a REPLY for each REQUEST it receives, without per-
forming duplicate detection, a REPLY will be returned. The second
property trivially follows from the use of shortest paths and the first
property.

Although it may not be possible to achieve reliable broadcast
securely or efficiently, we assume that most broadcast packets are
received, and hence the properties listed above generally hold.

We now consider Ariadne using our taxonomy of attacks that we
present in Section 5.1. We list different attacker configurations in
increasing strength, and discuss how Ariadne resists these attacks.
Ariadne resists many more attacks, but due to space constraints,
only a representative sample are discussed here.

Since Ariadne does not attempt to provide anonymous routing,
passive attackers can eavesdrop on all routing traffic sent by nodes
within range of those attackers. They can also perform traffic anal-
ysis on any packets sent or forwarded by nodes within range of the
attackers.

When replay protection and a global MAC key are used, an
Active-0-x attacker (for x ≥ 1) can at most perform wormhole and
rushing attacks. Packet leashes can prevent these attacks [21].

An Active-1-1 attacker may attempt the following attacks:

• Create a gray hole or black hole by removing nodes in a
ROUTE REQUEST; however, the per-hop hash mechanism
in each REQUEST prevents such tampering. An attacker
may fabricate nodes to insert in the accumulated route list
of a REQUEST packet, such fabricated nodes would not have
known keys at the source, and the REPLY would thus not be
authenticated. If the attacker tries to replace the MAC and
keys in the reply, such tampering will be detected as a result
of the target MAC field in the REPLY.

• Create routing loops. Intuitively, the use of source routes pre-
vents loops, since a packet passing through only legitimate
nodes will not be forwarded into a loop. An attacker can cre-
ate a routing loop by modifying the source route each time
around the loop; this behavior, however, is no worse than if
the attacker were to source packets with period equal to the
propagation time around the loop.

• Flood network with many ROUTE REQUESTs. Since the
source address of each REQUEST is authenticated, and
since each new Route Discovery needs to carry a new one-
way Route Discovery chain value, the compromised node

can only produce ROUTE REQUESTs with its own source
address. An upper bound on the sending rate can be en-
forced either by rate limiting of REQUESTs at each node
or synchronizing Route Discovery chain elements with time
(Section 6.6).

• Perform a rushing attack (Section 5.2). Rushing attacks
can be probabilistically prevented by slightly modifying the
Route Discovery protocol [22].

Multiple attackers that have compromised one node (Active-1-x,
for x > 1) may attempt to construct a wormhole, but append the
address and key of the compromised node in each REQUEST for-
warded across this wormhole. Packet leashes alone cannot prevent
this attack, but packet leashes and GPS can be used in conjunction
to ensure that an Active-1-x wormhole attack can be no worse than
an Active-1-1 attacker positioned correctly. In particular, if each
node forwarding a ROUTE REQUEST includes its alleged GPS co-
ordinates in that REQUEST, then a node can detect if it should be
reachable from the previous hop, and if the hop before the previ-
ous hop should be able to reach the previous hop. If both of these
checks succeed, then the attacker could have placed the compro-
mised node at the position it specified in the packet, and that node
would have been able to hear the original REQUEST, append its
address, and forward it to the next hop.

Multiple attackers that know all the keys of multiple nodes (an
Active-y-x attacker configuration, where 1 < y ≤ x) may perform
the following attacks:

• Lengthen the route in the REQUEST by adding other compro-
mised nodes to the route. If the source finds a shorter route,
it will likely prefer that route, so the protocol behaves as if
the attacker were not there.

• Attempt to force the initiator to repeatedly initiate Route Dis-
coveries. Suppose an Active-y-x attacker had the keys of
multiple compromised nodes, and that one such attacker were
on the shortest path from the source to the destination. When
the attacker receives its first ROUTE REQUEST packet as part
of some Discovery, it adds its address and MAC, as nor-
mal, but also adds the address of another node it has com-
promised. When data packets are sent along that route, the
attacker replies with a ROUTE ERROR from its first hop to its
second hop. In subsequent Route Discoveries, the attacker
can use different addresses for the additional address. Since
other routes may have been returned as part of any of these
Route Discoveries, this attack is not guaranteed to be suc-
cessful.
To prevent such starvation, the initiator may include data in
the ROUTE REQUEST. To be part of the path, the attacker
must forward routing messages, so the initiator can send data
to the target. If the attacker alters the data in the ROUTE

REQUEST, the destination will detect the alteration (using
the shared key and a MAC on the data) and reject that route.

A set of attackers that control a vertex cut of the network (an
Active-VC attacker) may perform the following additional attacks:

• Make nodes on one side of the vertex cut believe that any
node on the other side is attempting to flood the network.
By holding and not propagating ROUTE REQUESTs from a
certain node for some time, then initiating many Route Dis-
coveries with the chain values from the old Discoveries, an
Active-VC attacker can make that node appear to be flood-
ing the network. When the use of individual elements of
a Route Discovery chain are time-synchronized, this attack
simply causes the REQUESTs associated with the stale chain
elements to be discarded.

• Only forward ROUTE REQUEST and ROUTE REPLY packets.
A sender is then unable to successfully deliver packets. This
attack is only marginally different from not participating in
the protocol at all, differing only in that the sender and some
intermediate nodes continue to spend power to send packets,
but none of those packets are successfully received.

8. RELATED WORK

Several researchers have proposed secure routing protocols. For ex-
ample, Perlman [42] proposed flooding NPBR, an on-demand pro-
tocol designed for wired networks that floods each packet through
the network. Flooding NPBR allocates a fraction of the bandwidth
along each link to each node, and uses digital signatures to au-
thenticate all packets. Unfortunately, this protocol has high over-
head in terms of the computational resources necessary for digital
signature verification and in terms of its bandwidth requirements.
Furthermore, estimating and guaranteeing available bandwidth in a
wireless environment is difficult [31].

Other wired network protocols have secured periodic routing
protocols with asymmetric cryptography, such as Kent et al [30],
Perlman’s link-state NPBR, Kumar’s secure link-state protocol [34],
and Smith et al [50, 51]. However, nodes in an ad hoc network may
not have sufficient resources to verify an asymmetric signature; in
particular, an attacker can trivially flood a victim with packets con-
taining invalid signatures, but verification can be prohibitively ex-
pensive for the victim. In addition, these protocols may suffer in
some scenarios because periodic protocols may not be able to cope
with high rates of mobility in an ad hoc network. Kumar also dis-
cusses threats to both distance-vector protocols and link-state pro-
tocols, and describes techniques for securing distance-vector proto-
cols. However, these techniques are vulnerable to the compromise
of a single node.

Zhou and Haas [58], Zapata [56], and Dahill et al [13] propose
the use of asymmetric cryptography to secure on-demand ad hoc
network routing protocols. However, as above, when the nodes in
an ad hoc network are generally unable to verify asymmetric sig-
natures quickly enough, or when network bandwidth is insufficient,
these protocols may not be suitable.

Cheung [9], Hauser et al [16], and Zhang [57] describe
symmetric-key approaches to the authentication of link-state up-
dates, but they do not discuss mechanisms for detecting the sta-
tus of these links. In wired networks, a common technique for
authenticating HELLO packets is to verify that the the incoming
network interface is the expected interface and that the IP TTL of
the packet is 255. In a wireless ad hoc network, this technique
cannot be used. Furthermore, these protocols assume the use of
periodic routing protocols, which are not always suitable in ad hoc
networks. Cheung [9] uses cryptographic mechanisms similar to
those used in Ariadne with TESLA, but optimistically integrates
routing data before it is authenticated, adversely affecting security.

A number of other researchers have also proposed the use
of symmetric schemes for authenticating routing control packets.
Heffernan [17] proposes a mechanism requiring shared keys be-
tween all communicating routers. This scheme may not scale
to large ad hoc networks, and may be vulnerable to single-node
compromise. Perrig et al [45] use symmetric primitives to se-
cure routing between nodes and a trusted base station. Basagni
et al [2] use a network-wide symmetric key to secure routing com-
munication, which is vulnerable to a single node compromise, al-
though they specify the use of secure hardware to limit the dam-
age that can be done by a compromised node. Papadimitratos and
Haas [40] present work that secures against non-colluding adver-

saries, and they do not authenticate intermediate nodes that for-
ward ROUTE REQUESTs, and thus do not handle authorization.
Yi et al [55] discuss authorization issues. Our previous work,
SEAD [20], uses hash chains to authenticate routing updates sent
by a distance-vector protocol; however, that approach builds on a
periodic protocol, and such protocols tend to have higher overhead
than on-demand protocols and may not be suitable in highly mobile
networks.

Routing protocol intrusion detection has also been studied as a
mechanism for detecting misbehaving routers [6, 10, 36].

9. CONCLUSIONS

This paper has presented the design and evaluation of Ariadne, a
new ad hoc network routing protocol that provides security against
one compromised node and arbitrary active attackers, and relies
only on efficient symmetric cryptography. Ariadne operates on-
demand, dynamically discovering routes between nodes only as
needed; the design is based on the basic operation of the DSR pro-
tocol. Rather than generously applying cryptography to an exist-
ing protocol to achieve security, however, we carefully re-designed
each protocol message and its processing. The security mecha-
nisms we designed are highly efficient and general, so that they
should be applicable to securing a wide variety of routing protocols.

Because we did not secure the optimizations of DSR in Ariadne,
the resulting protocol is less efficient than the highly optimized ver-
sion of DSR that runs in a trusted environment. However, we also
compared Ariadne to a version of DSR in which we disabled all
protocol optimizations not present in Ariadne, allowing us to eval-
uate and analyze the effect of the optimizations and the security
separately. The byte overhead of Ariadne was 26.19% higher than
for unoptimized DSR, due to the overhead of the authentication
information in Ariadne’s routing packets. As explained in our re-
sults, however, Ariadne actually performs better on some metrics
(e.g., 41.7% lower packet overhead) than for unoptimized DSR,
and about the same on all other metrics, even though Ariadne must
bear the added costs for security not present in unoptimized DSR.

We found that source-routing facilitates securing ad hoc network
routing protocols. Source routing empowers the sender to circum-
vent potentially malicious nodes, and enables the sender to au-
thenticate every node in a ROUTE REPLY. Such fine-grained path
control is absent in most distance-vector routing protocols, which
makes such protocols more challenging to fully secure.

REFERENCES

[1] Norman Abramson. The ALOHA System—Another Alternative for Computer
Communications. In Proceedings of the Fall 1970 AFIPS Computer Conference,
pages 281–285, November 1970.

[2] Stefano Basagni, Kris Herrin, Emilia Rosti, and Danilo Bruschi. Secure Peb-
blenets. In Proceedings of the Second Symposium on Mobile Ad Hoc Networking
and Computing (MobiHoc 2001), pages 156–163, October 2001.

[3] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying Hash Functions for
Message Authentication. In Advances in Cryptology - Crypto ’96, edited by Neal
Koblitz, pages 1–15. Springer-Verlag, 1996. Lecture Notes in Computer Science
Volume 1109.

[4] A. Benjaminson and S. C. Stallings. A Microcomputer-Compensated Crystal Os-
cillator Using a Dual-Mode Resonator. In Proceedings of the 43rd Annual Sym-
posium on Frequency Control, pages 20–26, May 1989.

[5] Vaduvur Bharghavan, Alan Demers, Scott Shenker, and Lixia Zhang. MACAW:
A Media Access Protocol for Wireless LANs. In Proceedings of the SIG-
COMM ’94 Conference on Communications Architectures, Protocols and Ap-
plications, pages 212–225, August 1994.

[6] Kirk A. Bradley, Steven Cheung, Nick Puketza, Biswanath Mukherjee, and
Ronald A. Olsson. Detecting Disruptive Routers: A Distributed Network Moni-
toring Approach. In Proceedings of the IEEE Symposium on Research in Security
and Privacy, pages 115–124, May 1998.

[7] Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu, and Jorjeta G.
Jetcheva. A Performance Comparison of Multi-Hop Wireless Ad Hoc Network
Routing Protocols. In Proceedings of the Fourth ACM/IEEE International Con-
ference on Mobile Computing and Networking (MobiCom’98), pages 85–97, Oc-
tober 1998.

[8] Michael Brown, Donny Cheung, Darrel Hankerson, Julio Lopez Hernandez,
Michael Kirkup, and Alfred Menezes. PGP in Constrained Wireless Devices.
In 9th USENIX Security Symposium, pages 247–261, August 2000.

[9] Steven Cheung. An Efficient Message Authentication Scheme for Link State
Routing. In 13th Annual Computer Security Applications Conference, pages 90–
98, 1997.

[10] Steven Cheung and Karl Levitt. Protecting Routing Infrastructures from Denial
of Service Using Cooperative Intrusion Detection. In The 1997 New Security
Paradigms Workshop, pages 94–106, September 1998.

[11] Tom Clark. Tom Clark’s Totally Accurate Clock FTP Site. Greenbelt, Maryland.
Available at ftp://aleph.gsfc.nasa.gov/GPS/totally.accurate.clock/.

[12] D. Coppersmith and M. Jakobsson. Almost Optimal Hash Sequence Traversal.
In Proceedings of the Fourth Conference on Financial Cryptography (FC ’02),
Lecture Notes in Computer Science, 2002.

[13] Bridget Dahill, Brian Neil Levine, Elizabeth Royer, and Clay Shields. A Secure
Routing Protocol for Ad Hoc Networks. Technical Report UM-CS-2001-037,
Electrical Engineering and Computer Science, University of Michigan, August
2001.

[14] T. Dierks and C. Allen. The TLS protocol version 1.0. RFC 2246, January 1999.
[15] Eran Gabber and Avishai Wool. How to Prove Where You Are: Tracking the

Location of Customer Equipment. In Proceedings of the 5th ACM Conference
on Computer and Communications Security, pages 142–149, November 1998.

[16] Ralf Hauser, Antoni Przygienda, and Gene Tsudik. Reducing the Cost of Secu-
rity in Link State Routing. In Symposium on Network and Distributed Systems
Security (NDSS ’97), pages 93–99, February 1997.

[17] Andy Heffernan. Protection of BGP Sessions via the TCP MD5 Signature Op-
tion. RFC 2385, August 1998.

[18] Yih-Chun Hu and David B. Johnson. Caching Strategies in On-Demand Rout-
ing Protocols for Wireless Ad Hoc Networks. In Proceedings of the Sixth An-
nual IEEE/ACM International Conference on Mobile Computing and Network-
ing (MobiCom 2000), pages 231–242, August 2000.

[19] Yih-Chun Hu and David B. Johnson. Implicit Source Routing in On-Demand Ad
Hoc Network Routing. In Proceedings of the Second Symposium on Mobile Ad
Hoc Networking and Computing (MobiHoc 2001), pages 1–10, October 2001.

[20] Yih-Chun Hu, David B. Johnson, and Adrian Perrig. Secure Efficient Distance
Vector Routing in Mobile Wireless Ad Hoc Networks. In Fourth IEEE Work-
shop on Mobile Computing Systems and Applications (WMCSA ’02), pages 3–
13, June 2002.

[21] Yih-Chun Hu, Adrian Perrig, and David B. Johnson. Packet Leashes: A Defense
against Wormhole Attacks in Wireless Ad Hoc Networks. Technical report, De-
partment of Computer Science, Rice University, December 2001.

[22] Yih-Chun Hu, Adrian Perrig, and David B. Johnson. Rushing Attacks and De-
fense in Wireless Ad Hoc Network Routing Protocols. Technical Report TR01-
384, Department of Computer Science, Rice University, June 2002.

[23] Jean-Pierre Hubaux, Levente Buttyán, and Srdjan Čapkun. The Quest for Secu-
rity in Mobile Ad Hoc Networks. In Proceedings of the Second Symposium on
Mobile Ad Hoc Networking and Computing (MobiHoc 2001), pages 146–155,
October 2001.

[24] IEEE Computer Society LAN MAN Standards Committee. Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications,
IEEE Std 802.11-1997. The Institute of Electrical and Electronics Engineers,
1997.

[25] Per Johansson, Tony Larsson, Nicklas Hedman, Bartosz Mielczarek, and Mikael
Degermark. Scenario-based Performance Analysis of Routing Protocols for Mo-
bile Ad-hoc Networks. In Proceedings of the Fifth Annual ACM/IEEE Interna-
tional Conference on Mobile Computing and Networking (MobiCom’99), pages
195–206, August 1999.

[26] David B. Johnson. Routing in Ad Hoc Networks of Mobile Hosts. In Proceed-
ings of the IEEE Workshop on Mobile Computing Systems and Applications
(WMCSA’94), pages 158–163, December 1994.

[27] David B. Johnson and David A. Maltz. Dynamic Source Routing in Ad Hoc
Wireless Networks. In Mobile Computing, edited by Tomasz Imielinski and
Hank Korth, chapter 5, pages 153–181. Kluwer Academic Publishers, 1996.

[28] David B. Johnson, David A. Maltz, Yih-Chun Hu, and Jorjeta G. Jetcheva. The
Dynamic Source Routing Protocol for Mobile Ad Hoc Networks. Internet-Draft,
draft-ietf-manet-dsr-07.txt, February 2002. Work in progress.

[29] John Jubin and Janet D. Tornow. The DARPA Packet Radio Network Protocols.
Proceedings of the IEEE, 75(1):21–32, January 1987.

[30] Stephen Kent, Charles Lynn, Joanne Mikkelson, and Karen Seo. Secure Border
Gateway Protocol (S-BGP) — Real World Performance and Deployment Issues.
In Symposium on Network and Distributed Systems Security (NDSS ’00), pages
103–116, February 2000.

[31] Minkyong Kim and Brian Noble. Mobile Network Estimation. In Proceedings
of the Seventh Annual International Conference on Mobile Computing and Net-
working (MobiCom 2001), pages 298–309, July 2001.

[32] Young-Bae Ko and Nitin Vaidya. Location-Aided Routing (LAR) in Mobile
Ad Hoc Networks. In Proceedings of the Fourth ACM/IEEE International Con-
ference on Mobile Computing and Networking (MobiCom’98), pages 66–75, Oc-
tober 1998.

[33] John Kohl and B. Clifford Neuman. The Kerberos Network Authentication Ser-
vice (V5). RFC 1510, September 1993.

[34] B. Kumar. Integration of Security in Network Routing Protocols. SIGSAC Re-
view, 11(2):18–25, 1993.

[35] David A. Maltz, Josh Broch, Jorjeta Jetcheva, and David B. Johnson. The Effects
of On-Demand Behavior in Routing Protocols for Multi-Hop Wireless Ad Hoc
Networks. IEEE Journal on Selected Areas in Communications, 17(8):1439–
1453, August 1999.

[36] Sergio Marti, T.J. Giuli, Kevin Lai, and Mary Baker. Mitigating Routing Mis-
behaviour in Mobile Ad Hoc Networks. In Proceedings of the Sixth Annual
IEEE/ACM International Conference on Mobile Computing and Networking
(MobiCom 2000), pages 255–265, August 2000.

[37] Matt Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn Romanow. TCP Selec-
tive Acknowledgment Options. RFC 2018, October 1996.

[38] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook
of Applied Cryptography. CRC Press Series on Discrete Mathematics and its
Applications. CRC Press, 1997.

[39] Thomas Narten, Erik Nordmark, and William Allen Simpson. Neighbor Discov-
ery for IP Version 6 (IPv6). RFC 2461, December 1998.

[40] Panagiotis Papadimitratos and Zygmunt J. Haas. Secure Routing for Mobile Ad
Hoc Networks. In SCS Communication Networks and Distributed Systems Mod-
eling and Simulation Conference (CNDS 2002), January 2002.

[41] Charles E. Perkins and Elizabeth M. Royer. Ad-Hoc On-Demand Distance Vec-
tor Routing. In Second IEEE Workshop on Mobile Computing Systems and Ap-
plications (WMCSA’99), pages 90–100, February 1999.

[42] Radia Perlman. Interconnections: Bridges and Routers. Addison-Wesley, 1992.
[43] Adrian Perrig, Ran Canetti, Dawn Song, and J. D. Tygar. Efficient and Secure

Source Authentication for Multicast. In Network and Distributed System Security
Symposium, NDSS ’01, pages 35–46, February 2001.

[44] Adrian Perrig, Ran Canetti, J.D. Tygar, and Dawn Song. Efficient Authentication
and Signing of Multicast Streams over Lossy Channels. In IEEE Symposium on
Security and Privacy, pages 56–73, May 2000.

[45] Adrian Perrig, Robert Szewczyk, Victor Wen, David Culler, and J. D. Tygar.
SPINS: Security Protocols for Sensor Networks. In Proceedings of the Sev-
enth Annual International Conference on Mobile Computing and Networking
(MobiCom 2001), pages 189–199, July 2001.

[46] Raymond L. Pickholtz, Donald L. Schilling, and Laurence B. Milstein. The-
ory of Spread Spectrum Communications — A Tutorial. IEEE Transactions on
Communications, 30(5):855–884, May 1982.

[47] Theodore S. Rappaport. Wireless Communications: Principles and Practice.
Prentice Hall, 1996.

[48] Yakov Rekhter and Tony Li. A Border Gateway Protocol 4 (BGP-4). RFC 1771,
March 1995.

[49] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A Method for Obtain-
ing Digital Signatures and Public-Key Cryptosystems. Communications of the
ACM, 21(2):120–126, 1978.

[50] Bradley R. Smith and J.J. Garcia-Luna-Aceves. Securing the Border Gateway
Routing Protocol. In Global Internet’96, pages 81–85, November 1996.

[51] Bradley R. Smith, Shree Murthy, and J.J. Garcia-Luna-Aceves. Securing Dis-
tance Vector Routing Protocols. In Symposium on Network and Distributed Sys-
tems Security (NDSS ’97), pages 85–92, February 1997.

[52] Frank Stajano and Ross Anderson. The Resurrecting Duckling: Security Issues
for Ad-hoc Wireless Networks. In Security Protocols, 7th International Work-
shop, volume 1796 of Lecture Notes in Computer Science. Springer Verlag,
1999.

[53] Trimble Navigation Limited. Data Sheet and Specifications for Trimble
Thunderbolt GPS Disciplined Clock. Sunnyvale, California. Available at
http://www.trimble.com/thunderbolt.html.

[54] Aristotelis Tsirigos and Zygmunt J. Haas. Multipath Routing in Mobile Ad Hoc
Networks or How to Route in the Presence of Topological Changes. In Proceed-
ings of IEEE MILCOM 2001, pages 878–883, October 2001.

[55] Seung Yi, Prasad Naldurg, and Robin Kravets. Security-Aware Ad hoc Routing
for Wireless Networks. Technical Report UIUCDCS-R-2001-2241, Department
of Computer Science, University of Illinois at Urbana-Champaign, August 2001.

[56] Manel Guerrero Zapata. Secure Ad hoc On-Demand Distance Vec-
tor (SAODV) Routing. IETF MANET Mailing List, Message-ID:
3BC17B40.BBF52E09@nokia.com, Available at ftp://manet.itd.nrl.navy.mil/
pub/manet/2001-10.mail, October 8, 2001.

[57] Kan Zhang. Efficient Protocols for Signing Routing Messages. In Proceedings of
the Symposium on Network and Distributed Systems Security (NDSS ’98), March
1998.

[58] Lidong Zhou and Zygmunt J. Haas. Securing Ad Hoc Networks. IEEE Network
Magazine, 13(6):24–30, November/December 1999.

