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Formal Methods for Protocol Testing: A Detailed
Study

DEEPINDER P. SIDHU, SENIOR MEMBER, IEEE, AND TING-KAU LEUNG

Abstract—A protocol standard, in general, can lead to different im-
plementations, which necessitates the need for conformance testing of
an implementation to its standard. Testing is carried out with the help
of a test sequence generated from a protocol specification. This paper
presents a detailed study of four formal methods (T-, U-, D-, and W-
methods) for generating test sequences for protocols. Applications of
these methods to NBS Class 4 Transport Protocol are discussed. This
paper also presents an estimation of fault coverage of four protocol
test sequences generation techniques using Monte Carlo simulation.
The ability of a test sequence to decide whether a protocol implemen-
tation conforms to its specification heavily relies upon the range of faults
that it can capture. Conformance is defined at two levels, namely, weak
and strong conformance. This study shows that a test sequence pro-
duced by T-method has a poor fault detection capability whereas test
sequences produced by U-, D- and W-methods have comparable (su-
perior to that for T-method) fault coverage on several classes of ran-
domly generated machines used in this study. Also, some problems with
a straightforward application of the four protocol test sequence gen-
eration methods to real-world communication protocols are pointed
out.

Index Terms—Formal description technique, formal modeling, pro-
tocol conformance testing, protocol specification, protocol standards,
protocol verification, state transition model.

I. INTRODUCTION

HE modern advances in hardware technologies has
been playing a key role in the rapid development of
computer communications networks and distributed pro-
cessing systems. Within the last decade, several success-
ful networks have been designed and implemented. The
success of the first generation experimental networks has
given impetus to the development of several public, pri-
vate and commercial computer communication networks.
The computer systems attached to a network commu-
nicate with each other using a common set of rules and
conventions called protocols. The ISO/OSI Reference
Model defines a seven layered protocol architecture [1]
for communication systems. The layering concept was
used to divide the communication functions into sets
which can be specified separately. This allows indepen-
dent development and implementation of standards at each
layer. Several organizations are working on developing
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protocol standards for the different layers in the ISO/OSI
model using formal description techniques.

A protocol, in general, is quite complex and takes a
considerable effort to implement on a system. The imple-
mentation of a protocol is generally derived from a spec-
ification standard. A protocol standard, in general, can
lead to several different implementations. This calls for
testing each protocol implementation for conformance to
the specification of the protocol standard. The complexity
of protocols necessitates the use of automated tools to
provide assistance in the specification, verification, im-
plementation, and testing of communication protocols.

A test sequence for a protocol is a sequence of input-
output pairs derived from the protocol specification. These
inputs are applied to an implementation under test. The
implementation is assumed to be a black box with an input
port and output port. The inputs to this black box are given
at its input port and the outputs can be observed at its
output port. The outputs generated by the implementation
are then compared with the corresponding outputs in the
test sequence. If they match, such a protocol implemen-
tation is said to conform to the specification. Otherwise,
the implementation is assumed to be faulty.

In Section II, we briefly discuss four test sequence gen-
eration techniques (T-, U-, D-, and W-methods) and their
implementation as automated software tools. Section III
discusses the fault coverage of the four protocol test meth-
ods. The ability of a test sequence to decide whether a
protocol implementation conforms to its specification
heavily relies upon the range of faults that it can capture.
Section IV demonstrates an application of the automated
protocol test sequence generators to the derivation of test
sequences from the specification standard of NBS Class 4
Transport Protocol (NBS TP4). In Section V, we examine
and compare certain aspects of the four protocol test se-
quence generation methods. Section VI contains some
conclusions. The Appendixes include some test se-
quences for NBS TP4 used in estimating the fault detec-
tion capabilities of the test methods.

II. TesT SEQUENCE GENERATION TECHNIQUES

The specification of a protocol standard is, in general,
a detailed document describing the interfaces and mech-
anism of the protocol. If the description technique used
in specifying a protocol standard is not formal, it is pos-
sible that this protocol specification is ambiguous in some
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sense. The presence of ambiguities in a protocol specifi-
cation can lead to different implementations of the pro-
tocol. Two such implementations may not be able to com-
municate with each other using that protocol.

In spite of using a formal description technique for
specifying a protocol standard, it is still possible that two
implementations derived from the standard are not com-
patible. This can result due to incorrect implementation
of some aspects of the protocol. This means that there is
a need for testing each protocol implementation for con-
formance to its specification standard [2]-[{6]. Testing is
carried out by using test sequences.

In this section, we briefly describe four protocol test
sequence generation techniques, namely, the T-method,
U-method, D-method, and W-method. All four methods
assume a Mealy machine model for protocol entity spec-
ifications. A Mealy machine is a finite state machine
which produces an output upon each transition. Examples
are given for the application of each test sequence gen-
eration method.

In the subsequent discussion, we use M to denote
‘“Mealy machine M’ and adopt the following notation.

Mis = machine M at state s.

M|s(a) = the last output symbol on input
string o to M|s.

M|s < a> = the output string on input string « to

M]|s.

First we give some definitions which are needed for the
foliowing discussion.

Definition 1: A machine M is minimal if the number of
states of M is less than or equal to the number of states of
M’ for any Mealy machine M’ equivalent to M.

Definition 2: A machine M is completely specified if
from each state it has a transition for each input symbol.
M is incompletely specified if it is not completely speci-
fied.

Definition 3: A machine M is strongly connected if for
each state pair (s;, 5;) there is a transition path going from
5; to s;.

Definition 4: A transition table of M is a table consist-
ing of two subtables: an output subtable and a next-state
subtable, each with rows and columns identified by the
states and input symbols of M, respectively. An entry in
the output (next-state) subtable specifies, corresponding
to a state s and an input symbol A of M, the output (next-
state) of M|s on A.

Definition 5: A test subsequence for M is a sequence
of input symbols for testing either a state or a transition
of M.

Definition 6: A B-sequence for M is a concatenation of
test subsequences for testing all transitions of M.

Definition 7: A test sequence for M is a sequence of
input symbols which can be used in testing conformance
of implementations of M against the specification of M.

For the U-, D-, and W-methods, test sequences consist
of concatenation of test subsequences of a (3-sequence
after suitable optimizations.
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Definition 8: An optimized test sequence is a test se-
quence such that no subsequence of it is completely con-
tained in any other subsequence.

It is understood throughout this paper that I, O, and s
(possibly with subscripts or superscripts) will denote in-
put symbol I, output symbol O, and state s, respectively,
for a machine. We use A to denote the null output, and r
(or Rset) for reset input symbol. The reset input takes a
machine M to its initial state from any state of the ma-
chine.

In Fig. 1 and Table I, we give the transition diagram
and the transition table for a Mealy machine M used as an
example for generating test sequences by the four meth-
ods mentioned above. In this example, machine M has
two inputs which are 4 and B. M has transitions for both
inputs from all states except for state 0. Machine M is
made fully specified by adding a self loop B/ to state 0,
where the symbol A represents null output. Transitions on
reset input r for each state in M are not shown in Fig. 1
as they are not part of the original machine. But adding
an edge r/\ from each state to the initial state O guaran-
tees that M is strongly connected. Also, it is easy to check
that M is minimal.

A. The T-Method

The T-method [7] is relatively simple, compared to the
other three methods discussed. This method assumes a
minimal, strongly connected, and completely specified
Mealy machine model. A test sequence (called a transi-
tion-tour sequence) can be generated by simply applying
random inputs to a fault-free machine until the machine
has traversed every transition at least once. However, the
sequence generated may contain many redundant inputs
which in turn generate loops in the transition tour. These
redundant inputs are removed using a reduction proce-
dure.

In our implementation of the T-method, a machine does
not need to be completely specified but it must be strongly
connected as it is a necessary condition for producing a
transition tour. For an incompletely specified machine,
the transition tour is obtained by traversing edges in the
original machine.

It is obvious that a test sequence generated by the T-
method only checks for the existence of transitions and
does not test the tail states of the transitions.

Example: A transition-tour sequence for machine M in
Fig. 1 is shown below (together with the corresponding
state sequence in the line below):

BABABAAAAAAABB
00334034214212

Note that the above test sequence visits the transition
from state O to state O, which is not part of the original
machine.

B. The U-Method

The U-method [8] assumes a minimal, strongly con-
nected, and completely specified Mealy machine M. This
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Fig. 1. A transition diagram for a machine M.
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method involves deriving a unique input/output (UIO) se-
quence for each state of M. A UIO sequence for a state
of M is an I/0 behavior that is not exhibited by any other
state of M.

A -sequence is constructed by concatenating the test
subsequence for each transition. For each state transition
edge (s;, §;) in machine M, we generate its test subse-
quence as follows: 1) apply reset input r to M so that M
is reset to the initial state 0, 2) find the shortest path SP (s;)
from state O to state s;, 3) apply an input symbol such that
M makes a state transition to state s;, 4) apply the UIO
for state s;.

In our implementation of the U-method, a machine does
not need to be completely specified for the generation of
UIO sequences for the states of the machine.

Example: As an application of this method, we use the
machine M shown in Fig. 1 and Table I. Table II shows
a set of UIO sequences for states of M. A state can be
uniquely identified by observing the output string pro-
duced by the application of the input string from its UIO
sequence. Thus, if the input string is AA and the output
string is 11, we know we were at state 1 before the ap-
plication of the string.

The (-sequence generated by the application of U-
method for M in Fig. 1 is given below.

B-sequence:

rABB

rB B
rAAAAAAA
rAAAABB
rAAAAAA
rAAABBB
rAAAA
rABBB
rAAAB
rAABB
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TABLE 11
UIO SEQUENCES FOR M IN FIG. 1

state UIO
0 B/A
1 A/l A/l
2 B/O
3 B/1 B/1
4 A/l A/O

An optimized test sequence constructed from the above
test subsequences is:

rAAAAAAArAAAABBrAAABBBrAABBrABBBrBB

C. The D-Method

The D-method [10] assumes a Mealy machine which is
minimal, strongly connected, completely specified and
possesses a distinguishing sequence (DS). An input string
x is said to be a distinguishing sequence of a machine M
if the output string produced by M in response to x is dif-
ferent for each starting state. The key idea of this method
is to compute a DS (if it exists) for a machine M. This
can be done by constructing the ‘‘distinguishing tree’’ in-
ductively on tree levels [11].

The construction of 8-sequence for the D-method fol-
low the same procedure as for the U-method but with
every occurrence of a UIO sequence for a state replaced
with the DS. But unlike the U-method, our implementa-
tion of this method requires a completely specified ma-
chine for the generation of a DS.

Example: We use the machine M in Fig. 1 and Table I
to show an application of the D-method. It is easy to check
that BB is the shortest DS for this machine. Table III
shows the output string obtained by applying this DS to
each state of M. Thus, if the output string is 10 on apply-
ing DS, we know we were at state 1 before the application
of DS.

The B-sequence generated by the application of D-
method for M in Fig. 1 is given below.

B-sequence:

rABB
rBBB
rAAA

An optimized test sequence constructed from the above
test subsequences is:

rAAAAABBrAAAABBBrAAABBBrAABBBrABBBrBBB

D. The W-Method

The W-method [12] assumes a minimal, strongly con-
nected, and completely specified Mealy machine. It in-
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TABLE III
OuTpUTS ON DS FOR M IN FIG. 1
state Mis<DS>
0 AL
1 10
2 01
3 11
4 1A

volves deriving a characterization set W of the FSM. A
characterization set W for M is a set consisting of input
strings «;, * * * , oy such that the last output symbols ob-
served from the application of these strings (in a fixed
order) are different at each state of M, i.e., M|s,(a;,

c L ap) = M|s;(ap, c 0, o), where s, and s, are
any two different states of M and M |s; (o, * =+, ) =
(M|s;(ety), =+, M[si (), i=1,2.

Our modification to the W-method uses an idea similar
to U-method in the generation of test sequences. Here the
W set plays the role of identifying a state of a machine M.
Test sequences for M are generated as follows:

1) Construct the characterization set W = {«a,, a,

-, o} as in [12], where o, 1 < i < k, is an input
string.

2) Generate a 3-sequence as for the U-method except
replace UIO (s) for state s with W with the understanding
that

SP(s) @ W

SP(s) @ {a), a. " ** , o}
{SP(s) @a, SP(s) @ oy, * -+,
SP(s) @ o}

where SP (s) is the shortest path from the initial state to
state s.

Il

TABLE IV
LasT QOuTPUT SYMBOLS ON W FOR M IN FiG. 1
| statc | Mis(A) Mis(AA) Mis(B)
0 0 0 A
1 1 1 1
2 0 1 0
3 0 1 1
4 1 0 1
rB B

rAAAAAA
rAAAAAAA
rAAAAAB
rAAAABA
rAAAABAA
rAAAABB
rAAAAA
rAAAAAA
rAAAAB
rAAABA
rAAABAA
rAAABB
rAAA
rAAAA
rAAB
rABA
rABAA
rABB
rAAAA
rAAAAA
rAAAB
rAABA
rAABAA
rAABB

An optimized test sequence constructed from the above
test subsequences is:

rAAAAAAATAAAAABrAAAABAArAAAABBrAAABAATAAABBrAABAATAABBrABAArABBrBAArBB

Like the D-method, our implementation of W-method
requires a completely specified machine for the genera-
tion of a characterization set W.

Example: It is easy to check that { 4, AA, B} is a char-
acterization set W for machine M in Fig. 1. Table IV
shows the last output symbols from characterization set W
applied to the states of M in Fig. 1. By observing the
output sequences, we can easily identify each state of M.
Thus, if the output produced on applying the character-
ization set W is 101, we know machine M was in state 4
before W was applied.

The (-sequence generated by the application of W-
method for M in Fig. 1 is given below.

B-sequence:

rAA
rAAA
rAB
rBA
rBAA

E. Software Tools for Generating Test Sequences

All four protocol test sequence generation techniques
(T-, U-, D-, and W-methods) have been implemented in
C language [13] and all run on the VAX/UNIX system.
Each implementation of these methods accepts a machine
input in the form

<cs, ns, i, 0>

where cs, ns, i, and o are integer representations for the
current state, next state, input, and output, respectively,
for each transition in the formal specification of a proto-
col. It is assumed that the state and input numberings are
consecutive and each starts from 0. This speeds up the
implementations by embedding state and input numbers
into the array indexes as arrays are used to store infor-
mation about transitions in the FSM. To generate test se-
quences for a protocol using these software tools, two
constants, NoOfStates and NoOflnputs, need to be pro-
vided to define the numbers of states and input symbols
in the protocol machine.
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The implementation of the T-method is straightforward
and directly follows the algorithms given in [7]. Only one
output file, Tseq, containing the test sequence is gener-
ated.

For the U-, D-, and W-methods, five output files named
below are generated.

1) UIO or DS or Wset: The file UIO contains the UIO
sequences for the U-method, file DS contains the distin-
guishing sequence for the D-method, and file Wset con-
tains the characterization set for the W-method.

2) Bseq: This file contains the 8-sequence for testing
the transitions. Each line of the file represents a test sub-
sequence for a transition.

3) Bopt: This file contains the optimized test sequence
for testing a machine. The optimization is done by elim-
inating all of the test subsequences in the file Bseq which
are completely contained in other test subsequences in that
file.

In our implementation of the software tools for the D-
and W-methods, the procedures described in [10] and [12]
for the derivation of test sequences have been modified.
For the D-method, we use the algorithm for the compu-
tation of distinguishing sequence given in [10] but follow
the U-method for the generation of the test sequence. The
same is done to the W-method. Thus, a characterization
set is derived as given in [12] while the test sequence is
generated as in the U-method.

III. FauLt COVERAGE OF ProTOCOL TEST METHODS

The ability of a test sequence to decide whether a pro-
tocol implementation conforms to its specification solely
relies upon the range of faults or errors that it can detect.
To evaluate the fault coverage of a test sequence, we must
compute the class of FSM’s which are not equivalent to
the specification FSM but will produce the same outputs
as the specification when the test sequence is applied.
Such machines are the ones whose nonequivalence with
the specification would not be detected by the test se-
quence. This arises from the fact that not all faults may
be detected by a test sequence.

The following definitions are introduced to enhance
subsequent discussion of this section.

A protocol entity is modeled as a deterministic finite
state machine, which is represented as a directed graph.
The vertices of the graph are the states of the FSM. Each
edge is a possible state transition in the finite state ma-
chine, and has a label containing an input and output op-
eration. For a real protocol, however, it may not cover all
possible state-input combinations in the finite state ma-
chine. The edges in a given protocol machine are referred
to as core edges. For the unspecified state-input combi-
nations, we assume that the protocol entity produces null
output and remains in its present state. These edges are
referred to as noncore edges.

As explained above, a test sequence for a protocol is
generated to determine whether the input/output behavior
of an implementation conforms to its specification. Since
most protocols are not completely specified, conformance
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is defined at two levels, namely, weak and strong confor-
mance [23].

Definition 11: An implementation has strong confor-
mance to the specification if both generate the same out-
puts for all input sequences.

Definition 12: An implementation has weak confor-
mance to a specification if the implementation has the
same input/output behavior as the protocol specification
consisting of core edges only. But it has unspecified be-
havior for the input-state combinations specified by those
noncore edges.

The test sequences for a protocol generated by the T-,
U-, D-, and W-methods are expected to detect, in gen-
eral, different combinations of faults in a protocol imple-
mentation. The following theorems can be stated for the
fault detection capabilities of the weak and strong con-
formance test sequences generated by the four test meth-
ods.

Theorem 1: The fault coverage of the weak confor-
mance test sequence for the U-method is better than the
fault coverage of the weak conformance test sequence for
the T-method.

The proof of this theorem is based on the observation
that the weak conformance test sequence for the U-method
tests edge labels as well as tail states of transitions, while
the weak conformance test sequence for the T-method
tests edge labels of transitions only.

Theorem 2: The fault coverage of the strong confor-
mance test sequence for the U-, D-, and W-methods is
better than the fault coverage of the strong conformance
test sequence for the T-method.

The proof of this theorem is similar to the proof in
Theorem 1.

Theorem 3: The fault coverage of strong conformance
test sequences for the U-, D-, and W-methods are the
same.

The proof of this theorem is based on 1) the machine
under test is complete, 2) all U-, D-, and W-method test
sequences are derived in the same manner except different
characterizing entities for testing state are used, 3) each
of U-, D-, and W-method test sequence can detect errors
in the edge labels as well as errors in the tail states of
transitions.

A. Procedure to Estimate Fault Coverage

Estimation of fault coverage of a test sequence is a dif-
ficult task because the number of machines that must be
examined is very large. For example, a specification ma-
chine with n states, m inputs, and p outputs can have
(np)"™ possible implementations [14], [15]. It is ob-
viously impossible to examine all of these machines. In-
stead, we confine to testing random machines that are
marginally different from the specification machine.

Random faulty machines are generated by changing the
tail state(s) and/or the output(s) of one or more edges of
the specification machine and can be categorized into the
following classes:
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Class 1: This class is formed by altering the output of
a random edge from the specification machine.

Class 2: Same as class | except the tail state of one
random edge is modified.

Class 3: The outputs of two random edges in the spec-
ification machine are changed to form this class of ma-
chines.

Class 4: Same as class 3 except the tail states of two
random edges are altered.

Class 5: The class of random machines is generated by
changing the tail state of one random edge and the output
of another edge of the specification machine.

Class 6: The tail state and the output of a random edge
in this class of machine are different from the specification
machine.

Class 7: The tail states and the outputs of two random
edges are changed to obtain this class of random ma-
chines.

Class 8: This class of machines is obtained by chang-
ing the tail state of one random edge and the outputs of
another two random edges of the specification machine.

Class 9: The tail states of two random edges and the
outputs of another two random edges of this class of ran-
dom machines differ from the specification machine.

Class 10: The tail states of three random edges and the
outputs of another two random edges are modified to gen-
erate this class of random machines.

To ensure fairness, edge(s), new values for the tail
state(s), and the output(s) are taken from independent
pseudo-random sequences [16].

Because most real protocols are incompletely specified,
conformance testing is studied at two levels using weak
and strong conformance test sequences. Thus, we need to
estimate fault coverage of two test sequences for a spec-
ification machine. For deriving weak conformance test se-
quence using the methods described in Section II, how-
ever, we may need to add artificial edge(s) to the machine
to satisfy the necessary condition(s) of the method. For
strong conformance test sequence derivation, we must add
those missing edges to the original machine so that it be-
comes fully specified. These artificial edges will produce
N\ (null) as outputs and machine remains in the same state
(self loop).

To assess the reliability of a test sequence, we must
have a way to determine whether those machines which
pass the test sequence test (i.e., produce the same outputs
as the specification machine) actually conform to the
specification machine. The following algorithm [24] can
be employed for this purpose.

is; :
is; :

initial state for machine F,;
initial state for machine F,;

Setl := ¢,
Set2 := {(is,, is1)};
while (Set2 # &)
begin
pick an element (s, s,) € Set2;

Il

for (each outgoing edge e, from s;)
if (there exists an outgoing edge e, from s,
with the same label as ¢,)
begin
tuple : = {(tail(e,), tail(e,))};
if (= (tuple € Setl) and — (tuple € Set2))
Set2 := Set2 U tuple;
Set2 := Set2 — {(s,82)};
Setl : = Setl U {(s;,s1)}:
end;
else
F2 does not conform to F1;
end;
F2 conforms to F1;

The following summarizes the essential steps in esti-
mating the fault coverage of a test sequence.

1) The specification finite state machine is read in.

2) The test sequence generated by a test sequence gen-
eration method is read in.

3) Random machines which are marginally different
from the specification finite state machine are generated
as described above.

4) The test sequence is applied to each of the machines
generated in step 3) to check if they produce the same
output as the specification machine.

5) Machines that passed the test in step 4) are checked
if they actnally conform to the cpecification machine

Our procedure for studying fault coverage of a protocol
test sequence generated by the four methods discussed
above is similar to a procedure used in [23] for a similar
study for sequences generated by the U-method. Similar
ideas have also been used in the testing of digital circuits

[11].

B. Fault Coverage Estimation Using an Example

Fig. 1 and Table I in Section II show the transition
digram and the transition table for a Mealy machine to be
used for the estimation of fault coverage of test sequences
produced by the four methods above. This machine is typ-
ical of a machine for a real-world protocol standard which
is generally more complex. In Section IV, we discuss test
sequences and their fault coverage for a subset of NBS
Class 4 Transport Protocol. This protocol subset has 15
states and 27 inputs.

To estimate the fault coverage of various test se-
quences, ten classes of random machines are constructed
as described in the previous section. For each class, one
million randomly generated machines are subjected to
weak and strong conformance test sequences generated by
the test sequence generation techniques. The results are
presented below.

1) Weak Conformance Test: Although the machine in
Fig. 1 is not fully specified, it is strongly connected. Thus
our implementation of the T-method is able to generate a
test sequence for doing the weak conformance test against
the specification machine. The optimized weak confor-
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mance test sequence generated is:
AAAAABABAABAAAB

and the results of its fault coverage are given in Table V.

The entries in Table V show that the T-method is able
to detect one or more faults in output labels (class 1 and
class 3) but not in tail states of transitions (class 2 and
class 4). This is because the T-method test sequence does
not test whether the tail state of a transition is correct or
not. Thus, combination of faults in one or more edges
involving an error in the tail state of a transition (classes
5-10) cannot all be detected by a T-method test sequence.

As for the T-method, our implementation of the U-
method is able to generate a UIO sequence for each state
even though the machine is not fully specified. The op-
timized test sequence produced by the method for the ex-
ample machine in Fig. 1 is:

rAAAAAAArAAAABBrAAABBBrAABAArABBB

and the results of its fault coverage are given in Table VI.

Unlike the T-method test sequence, however, the re-
sults of Table VI show that the U-method test sequence
is able to detect all single faults, multiple faults of the
same kind, and combination of faults in one single edge
(class 1-4 and class 6). But it is not the case for the com-
bination of faults in multiple edges as in machines for
class 5 and classes 7-10. A simple example described in
Section V illustrates this point.

Because our implementations of the D-method and the
W-method assume a fully specified machine, they are un-
able to generate a test sequence for doing weak confor-
mance test. Therefore, we do not have the results of fault
coverage of the D-method and W-method for weak con-
formance testing.

2) Strong Conformance Test: To generate strong con-
formance test sequences, we add self loops for those un-
specified inputs and treat the loops as core edges. In our
example machine, one self loop with label B/\ is added
to state O for completing the machine. To estimate the
fault coverage of strong conformance test sequences gen-
erated by the four methods, the same procedure is carried
out as in the estimation of weak conformance test se-
quences except we apply the strong conformance test se-
quence to the faulty machines. The results of the strong
conformance test sequences are given below.

Because the original machine is strongly connected, our
implementation of the T-method has no problem in gen-
erating the strong conformance test sequence. An opti-
mized test sequence is:

AAAAABBABAABAAAB
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TABLE V
WEAK CONFORMANCE TEST FOR T-METHOD

Test for No. of Randomly No. Passing Test | No. Passing Machine No. Equivalent 1o
Class Generated Machines Sequence Test qui Test P Machine
1 1000000 531770 531770 468634
1000000 367325 257976 202667
3 1000000 309725 309725 246883
4 1000000 156320 83495 58779
5 1000000 195805 136331 94491
6 1000000 214588 160360 97224
7 1000000 60864 35024 19453
8 1000000 115238 79787 50183
9 1000000 50380 26023 14519
10 1000000 24595 9773 4837
TABLE VI
WEAK CONFORMANCE TEST FOR U-METHOD
Tost for No. of Randomly No. Passing Test | No. Passing Machine No. Equivalent to
Class Generated Machines Sequence Test Equivalence Test Specification Machine
1 1000000 531770 531770 468634
2 1000000 257976 257976 202667
3 1000000 309725 309725 246883
4 1000000 83495 83495 58779
s 1000000 138716 136331 94491
6 1000000 160360 160360 97224
7 1000000 37156 35024 19453
8 1000000 82175 79787 50183
9 1000000 27462 26023 14519
10 1000000 10492 9773 4837
TABLE VII
STRONG CONFORMANCE TEST FOR T-METHOD
Test for No. of Randomly No. Passing Test No. Passing Machine
Class G d Machines Sequence Test Equivalence Test
1 1000000 374685 374685
2 1000000 295799 202667
3 1000000 165058 165058
4 1000000 104785 58779
5 1000000 111266 75750
6 1000000 122495 75793
7 1000000 25816 13696
8 1000000 49083 33521
9 1000000 17530 9635
10 1000000 7178 3376

results in Table VII. Again, this arises from the fact that
the T-method test sequence does not test the tail state of
a transition. Thus, the T-method will not be able to detect
all faults involving errors in the tail states of transitions.

Because of changes in the machine, different UIO se-
quences for some states of the machine are generated. The
optimized strong conformance test sequence produced by
our implementation of the U-method is:

rTAAAAAAArAAAABBrAAABBBrAABBrABBBrBB.

Since the machine becomes fully specified, our imple-
mentation of the D-method is therefore able to generate
an optimized strong conformance test sequence as given
below:

rAAAAABBrAAAABBBrAAABBBrAABBBrABBBrBBB

For the W-method, our implementation generates an
optimized strong conformance test sequence for the mod-
ified machine as shown below:

rAAAAAAATAAAAABrAAAABAATAAAABBrAAABAArAAABBrAABAArAABBrABAArABBrBAATrBB.

and the results of its fault coverage is shown in Table VII.

The T-method strong conformance test sequence, like
its weak conformance counterpart, is only able to detect
faults in output labels but not others, as shown by the

The results of fault coverage for U-, D-, and W-meth-
ods are given in Table VIII since they all have the same
performance.

The results of Table VIII show that U-, D-, and W-
method strong conformance test sequences are able to de-
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TABLE VIII
STRONG CONFORMANCE TEST FOR U-, D-, AND W-METHODS

Test for No. of Randomly No. Passing Test No. Passing Machine
Class Generated Machines Sequence Test Equivalence Test

1 1000000 374685 374685
2 1000000 202667 202667
3 1000000 165058 165058
4 1000000 58779 58779
5 1000000 75750 75750
6 1000000 75793 75793
7 1000000 13696 13696
8 1000000 33521 33521
9 1000000 9635 9635

10 1000000 3376 3376

tect all faults. This is because for a strong conformance
test of a completely specified machine, each transition in
the machine along with its tail state are tested and there-
fore the test sequences capture all faults. As the test se-
quences for the three methods are generated in the same
manner except for using different characterizing entities
(UIO for U-method, DS for D-method and W set for W-
method), it is expected that the three methods give the
same performance for the strong conformance test.

C. Analysis of Results

For weak conformance testing, the test sequence for the
T-method is not able to detect all of the single faults. In
fact, it is perfect for detecting errors in the output labels
but not in the tail states of transitions. For the U-method,
the weak conformance test sequence is perfect in detect-
ing single faults. But for a combination of faults such as
errors in the output of one edge and tail state of another
edge (class 5 and class 7), it is not able to detect all of
them. For the D- and W-methods, we are not able to es-
timate their fault coverage since our implementations are
not able to generate test sequences from a partially spec-
ified machine.

For strong conformance testing, the T-method test se-
quence again is not able to detect all single faults. All the
other methods are perfect in detecting faults in all classes
of machines and have the same performance. This is be-
cause strong conformance test sequences for these meth-
ods test all edges, including the tail states of these edges,
of a machine.

Based on the results in the tables above, we can con-
clude that the fault detection capabilities of test sequences
for the U-, D-, and W-methods are better than that for the
T-method. Also the fault detection capabilities of the test
sequences for the U-, D-, and W-methods are the same
for strong conformance testing. Similar conclusions are
drawn for the fault coverage of protocol test sequence
generation methods applied to a subset of NBS Class 4
Transport Protocol discussed in Section IV.

IV. TesT SEQUENCES FOR NBS CLASS 4 TRANSPORT
ProTOCOL

We now describe an application of our protocol test se-
quence generators based on the four methods (T-, U-,
D-, and W-methods) discussed in Section 1I to an actual
communication protocol. To actually test a protocol im-
plementation for conformance to its specification, an ad-
equate test architecture needs to be provided [2], [5]. Re-

search in developing suitable test architectures is being
conducted in several countries. A general organization of
a testing architecture consists of a tester which is presum-
ably a correct implementation of the protocol and a re-
sponder which contains an implementation under test.

A. NBS Class 4 Transport Protocol

The National Bureau of Standards has developed a set
of standards for the transport protocol layer which is di-
vided into several classes [17]-[19]. Each class provides
the same service to the session layer, but is built on dif-
ferent types of service provided by the network layer. The
class 2 transport protocol assumes a reliable service of-
fered by the network layer which is responsible for error-
free transmission of data, while the class 4 protocol as-
sumes an unreliable network service and takes care of all
error detection and recovery. The class 4 transport pro-
tocol is the most complex of all the NBS protocol classes
[20]. It uses a large number of timers (12) to ensure that
data arrives at destinations in order. The transport proto-
col has five types of service primitives which are: request,
indication, response, confirm, and cancel. The request
primitive is an initial request from the user for a service.
The indication primitive signals the corresponding user of
the connection establishment attempt. The response and
confirm primitives are used only in connection establish-
ment and represent the request (response) and indication
(confirm) of the entity that, having received initial con-
nection request, wishes to establish the connection. Can-
cel is used to inform the operating system that a timer is
no longer needed that had previously been requested. NBS
TP4 defines ten Transport Protocol Data Units (TPDU’s)
which are CR, CC, DR, DC, GR, ERR, DT, XPD, AK,
and XAK.

B. Test Sequences for NBS TP4 from the Four Methods

We applied protocol test sequence generators (based on
T-, U-, D-, and W-methods) to a subset of the NBS TP4
shown in Fig. 2. This subset excludes transitions for unit
data, expedited data, data transfer, and close request ser-
vice primitives. It is clear from Fig. 2 and Table IX that
the FSM for this protocol subset is incomplete. In fact,
for each of the 15 states in this machine, no more than 6
out of 27 possible outgoing edges are specified. Thus, the
number of noncore edges is about six times as many as
the number of core edges in the machine. Table IX lists
the names and abbreviations for the inputs to the FSM
across the user (U), network (N) and system interfaces
(S). Table X gives the abbreviated forms of the output
primitives used in the analysis of this protocol.

In applying our tools to generate test sequences, several
things need to be done. For the D- and W-methods, we
must complete the FSM in order to produce a distinguish-
ing sequence and a W set, respectively. There are many
ways to complete an FSM, we chose to complete the FSM
such that for each unspecified input at each state a tran-
sition edge is added for that input with null output. For
the U-method, completion of this particular subset of TP4
FSM is not necessary. Complete specification is only a
sufficient condition (not necessary condition) in applying
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Fig. 2. A subset of NBS Class 4 transport protocol.
TABLE IX TABLE X

ABBREVIATED FORMS OF THE INPUT PRIMITIVES USED IN THE ANALYSIS OF

THE NBS TP4 SUBSET

N.CR from N:N_DATA .indication(connection_request)

N.CR* from N:N_DATA.indication(bad CR)

N.CC from N:N_DATA.indication(connection_confirm)

N.CC’ from N:N_DATA.indication(bad CC)

N.DR from N:N_DATA indication(disconnect_request)

N.DC from N:N_DATA.indication{disconnect_confirm)

N.AK from N:N_DATA.indication(acknowledgement)

N_AK' from N:N_DATA.indication(AK and AK.ok)

N.GR from N:N_DATA. indication(graceful close_request and
GR _arived)

N.GR’ from N:N_DATA indication(graceful_close.request and not

GR_arrived and cond 1)

N.GR" from N:N_DATA indication(graceful_close_request and
mndz)

U.cq from U:CONNECT.request

Ucq’ from U:CONNECT.request and nc_required

Uer from U:CONNECT.response

Udr from U:DISCONNECT.request

N.ci from N:CONNECT.indication

N.cc from N:CONNECT.confirm

N.di from N:DISCONNECT indication

St from S:S_TIMER .response(terminate._timer)

S.it from S:S_TIMER .response(initiate_timer)

S.it’ from S:S.TIMER response(initiate.timer) and condy

St from S:S_TIMER response(giveup.timer)

S from S:S_TIMER response(reference.timer)

Saxt from S:S_TIMER.response(retransmit_CC _timer)

Sxt’ from S:S_TIMER .response(retransmit CC_timer) and cond3

S from S:S_TIMER .response(incoming nc_timer)

cond, is [from N:TPDU.ipdu_nr] < rcv_window.
aond2 is [from N:TPDU.tpdu_nr] < rcv_nxt or 2 rev_window.
cand3 is [from S:Datum] 2 rcount.

it. Also, we added a reset edge for each state to the initial
state for applying the U-, D-, and W-methods.
Since the TP4 machine is not completely specified, only

ABBREVIATED FORMS OF THE QUTPUT PRIMITIVES USED IN THE ANALYSIS OF
THE NBS TP4 SUBSET

Output Label Output Events
00 CR.TPDU (CR)
o1 CC.TPDU (CC)
[i73 DR.TPDU (DR)
03 DC_TPDU (DC)
04 acknowledgment (AK)
09 set reference timer (S_RT)
10 set initiate timer (SIT)
n set giveup timer (S.GT)
12 set retransmit timer (S RTT)
13 set terminate timer (S.TT)
14 cancel all timer (C_AT)
15 null output (Null)
25 N_connect.request (N.cq)
26 N._disconnect request (N _dr)
27 N_connect_response (N_cr)
28 set incoming.nc timer (SINCT)
51 connect.indication (ci)
61 connect.confirm (cc)
71 disconnect.confirm (dc)
80 cancel initiate timer (CIT)
81 cancel giveup timer (C.GT)
82 cancel inactivity timer (CIAT)
83 set inactivity timer (SJAT)
84 set flow_control timer (S_FCT)
85 set window timer (S.WT)
86 cancel retransmit timer (CRTT)
87 cancel reference timer (CRT)
91 close.confim (kc)

the T- and U-methods are able to generate weak confor-
mance test sequences for TP4 and they are included in
Appendixes A and B, respectively.

By completing the TP4 machine with self-loops, all of
the four methods are able to generate strong conformance
test sequences for TP4. The T-, U-, and W-method strong
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conformance test sequences are too long to be included in
this paper. The strong conformance test sequences for the
T-, U-, and D-methods can be found in [26] in Appen-
dixes C, D, and E, respectively. The characterization set
W for the TP4 subset discovered by this method is

{N_CR N_CC N_DR N_AK’ U_cq U_cr N_AK N_GR}.

Note that in each Appendix, the test sequence from each
method is obtained by concatenating each line (test sub-
sequence) in the given Appendix. For the T-method, there
is no particular significance for each line. However, for
the U-, D-, and W-methods, a line may either be a test
subsequence for testing a particular state or a test subse-
quence for testing a particular transition edge for this TP4
FSM.

C. Fault Coverage of Test Sequences for NBS TP4

To estimate the fault coverage of the NBS TP4 test se-
quences generated by the four methods, ten classes of ran-
dom machines were constructed as described in Section
HI-A. Because TP4 is such a large machine, only 10 000
random machines for each class were generated and sub-
jected to weak and strong conformance test sequences of
each method produced by our software tools. The results
are presented below.

1) Weak Conformance Test: Since our implementa-
tions of the D- and W-methods require a fully specified
machine, we are only able to do weak conformance test-
ing for the T- and U-methods. The results of fault cov-
erage of the T- and U-method weak conformance test se-
quences are given in Table XI and Table XII, respectively.

The results of Table XI are similar to those obtained for
the T-method weak conformance test sequence for the ex-
ample machine in Section III. The only differences are the
entries for class 6 machines in the third and fourth col-
umns of this table. A nonequivalent machine in class 6
passes the test sequence test only if one of its edges has
the same output label but different tail state as the same
edge in the specification machine. But since the number
of core edges is so small compared to the number of non-
core edges, it is expected that faults are introduced to non-
core edges more than to the core edges in the 10 000 ran-
dom machines generated for TP4. Therefore, it is possible
that no such nonequivalent random machines are gener-
ated and we have same number of machines pass the test
sequence and machine equivalence tests.

The results of Table XII have a similar pattern to the
results obtained by the U-method weak conformance test
sequence for the example machine in Section III. The dif-
ference is that the test sequence for TP4 is able to detect
more combinations of faults such as classes 7-10. This,
again, can be explained by the fact that faults are intro-
duced to noncore edges more than to the core edges.
Hence, fewer nonequivalent machines pass the test se-
quence test.

2) Strong Conformance Test: By completing the TP4

TABLE X1
WEAK CONFORMANCE TEST FOR T-METHOD
Test for No. of Randomly No. Passing Test No. Passing Machine No. Equivalent to
Class Generated Machi Seq Test Equi Test Specification Machine
1 10000 8523 8523 60
2 10000 8579 8546 726
3 10000 7227 1227 1
4 10000 7350 7296 61
s 10000 7280 7250 4
6 10000 8469 8469 6
7 10000 7136 7134 0
8 10000 6230 6200 0
9 10000 5317 5273 0
10 10000 4554 4505 0
TABLE XII
WEeAK CONFORMANCE TEST FOR U-METHOD
Test for No. of Randomly No. Passing Test | No. Passing Machine No. Equivalent to
Class Generated Machi S Test Equivalence Test Specification Machine
1 10000 8523 8523 60
2 10000 8546 8546 726
3 10000 1227 7227 1
4 10000 7296 729 61
5 10000 7250 7250 4
6 10000 8469 8469 6
7 10000 7134 7134 o
8 10000 6201 6200 0
9 10000 5273 5273 o
10 10000 4505 4505 0
TABLE XIII
STRONG CONFORMANCE TEST FOR T-METHOD
Test for No. of Randomly No. Passing Test No. Passing Machine
Class Generated Machines Seq Test Equivalence Test
1 10000 218 218
2 10000 947 726
3 10000 11 11
4 10000 99 61
5 10000 20 15
6 10000 21 19
7 10000 0 0
8 10000 0 0
9 10000 0 0
10 10000 0 0

machine, our software tools are able to generate strong
conformance test sequences of the four methods. To es-
timate fault coverage of these test sequences, the same
procedure is carried out as in the estimation of weak con-
formance test sequences and their results are given below.

Table XIII shows results for the strong conformance
test sequence of T-method for TP4 similar to those ob-
tained by the T-method strong conformance test sequence
for the example machine in Section III. Because the TP4
is such a large machine and no fewer than three faults are
introduced in classes 7-10, it is therefore unlikely to gen-
erate machines that are equivalent to the specification ma-
chine. Thus, we have no random machines in these four
classes pass the test sequence test.

The results of fault coverage for the U-, D-, and W-
methods strong conformance test sequences generated for
TP4 are given in Table XIV since they all have the same
performance.

Like the results obtained by the strong conformance test
sequences of the three methods for the example machine
in Section III, Table XIV shows that the U-, D-, and W-
method strong conformance test sequences are able to de-
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TABLE XIV
STRONG CONFORMANCE TEST FOR U-, D-, AND W-METHODS
Test for No. of Randomly No. Passing Test No. Passing Machine
Class Generated Machines Sequence Test Equivalence Test
1 10000 218 218
2 10000 726 726
3 10000 11 11
4 10000 61 61
S 10000 15 15
6 10000 19 19
7 10000 0 0
8 10000 0 0
9 10000 0 0
10 10000 0 0

tect all faults. As explained above, it is unlikely to gen-
erate machines in classes 7-10 that are equivalent to the
specification machine and hence, we have no machine pass
the test sequence tests.

V. COMMENTS ON ProTrocoL TEST METHODS

In this section, we discuss the assumptions, applicabil-
ity, fault detection capability, lengths of test sequences,
and nonuniqueness of test sequences and test subse-
quences generated by the T-, U-, W-, and D-methods dis-
cussed in the previous sections.

1) Assumptions: All of these four methods assume
minimal, strongly connected, and completely specified
Mealy machine models of protocol entities.

Minimality provides an effective standard that enables
one correctly implemented machine to test against others.

The assumption of strong connectivity guarantees that
a machine can reach other states from any state. In the
case of T-method, this guarantees that a transition-tour
sequence can be generated. This assumption is not ex-
plicitly required for the generation of UIO sequences, dis-
tinguishing sequence DS or characterization set W for the
U-, D-, and W-methods, respectively.

A completely specified machine may not be needed for
generating a weak conformance test sequence by the T-
method but it is necessary for generating strong confor-
mance test sequences by all the methods. However, the
completely specified machine assumption is rarely met in
the specification of a protocol machine for a real-world
protocol such as the NBS class 4 transport protocol dis-
cussed in Section IV.

2) Applicability: A completely specified protocol FSM
is a necessary and sufficient condition for generating a
distinguishing sequence (if it exists) and a W set for the
D- and W-methods, respectively. But for the U-method,
it is only a sufficient condition for producing a set of UIO
sequences. Since real protocols are seldom complete, the
completion of the protocol FSM, in general, introduces a
large number of artificial transition edges, which, in turn,
result in a test sequence which has intolerably long length.
For the T-method, it may not be able to generate a test
sequence for a machine that is not strongly connected.

Except for the D-method, the other three methods guar-
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antee the existence of a testing sequence for an FSM which
satisfies the assumption of minimality, strong connectiv-
ity, and complete specification. The D-method requires
further that a distinguishing sequence be existent [11].
However, it is not certain how to provide a *‘dressing up”’
procedure for a machine so that it possesses a distinguish-
ing sequence as is done for machines that are incom-
pletely specified or not strongly connected. The D-method
may thus not be applicable for all protocols.

3) Fault Detection Capability: For incompletely spec-
ified machines, T-method weak conformance test se-
quences are able to detect faults in output labels but not
in tail states of transitions. In fact, they are unable to de-
tect any combination of faults involving errors in the tail
states of transitions. The main reason is that the T-method
only checks for the existence of transitions regardless of
their starting states and ending states.

As the results in Section III show, U-method weak con-
formance test sequences are able to detect single faults but
not two or more faults. It is not possible to assess fault
detection capabilities of the D- and W-methods for weak
conformance testing since we are unable to generate weak
conformance test sequences from these methods.

For completely specified finite state machines, test se-
quences generated by the four methods are able to detect
faults in output labels of transitions. The same is true for
all but the T-method for detecting faults in tail states of
transitions. T-method strong conformance test sequence
is not able to detect faults in tail states for the same reason
explained above for T-method weak conformance test se-
quences.

Besides capturing single faults, the strong conformance
test sequences for the U-, D-, and W-methods are capable
of detecting all other faults. This is because all edges
along with their tail states in a completely specified finite
state machine are tested. Since test sequences of these
three methods are generated in the same manner except
different characterizing entities (UIO or U-method, DS for
D-method, and W set for W-method) are used for recog-
nizing states, they are expected to give the same perfor-
mance.

4) Lengths of Test Sequences: The lengths of test se-
quences generated by the four methods, in the worst case,
may differ to a large extent from each other. Based upon
our modifications to the original D- and W-methods for
generating (3-sequence, the major factor contributing to
the length of each test sequence lies in the choice of those
characterizing entities (distinguishing sequence for D-
method and W set for W-method). For example, if the
length of a distinguishing sequence from the D-method is
greater than the maximal length of UIO sequences from
the U-method, then the test sequence generated from the
D-method will be longer than the one from the U-method.
Similar discussions hold for other cases. On the average,
T-method will produce the shortest test sequence and W-
method the longest test sequence among the four meth-
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ods, while D- and U-methods generate test sequences of
comparable lengths.

It is important to compare test methods in terms of the
length of test sequences for some real protocols [25]. For
the NBS TP4 subset discussed in Section IV, the approx-
imate length of the strong conformance test sequences are:

T-Method 47 lines
U-Method 391 lines
D-Method 406 lines
W-Method 3240 lines.

These test sequences are too long to be included in this
paper (see [26]). It is clear that the W-method gives an
unacceptably long test sequence.

5) Nonuniqueness of Test Sequences: The test se-
quences generated by the four methods are not guaranteed
to be unique. This is clearly true for the T-method since
the test sequence, which is obtained from a transition tour
through the states of an FSM, is generated randomly. The
other three (U-, D-, and W-) methods also produce test
sequences which are not necessarily unique. It is easy to
see for the W-method since, in general, more than one
W-set of a given size may exist for an FSM. Similar ar-
guments apply to the U- and D-methods.

6) Building Test Sequence from Test Subse-
quences: The test sequence generated by the T-method is
obtained by applying random inputs to a fault-free ma-
chine until the machine has traversed every transition at
least once. Since edge(s) may have been added to an FSM
to satisfy the strong connectivity assumption, a test se-
quence will test all the transitions in the original machine
as well as those corresponding to added edge(s).

The test sequence generated by the U-method consists
of a 8-sequence which includes the reset inputs which en-
able the machine to go back to the start state to begin
another test after testing a state or a transition. The reset
provides a convenient way to reset the machine to the start
state without turning off the machine or finding a lengthy
input sequence to go back to the start state. An optimi-
zation procedure can be applied to the test sequence
formed from test subsequences by eliminating test sub-
sequences which are completely contained in some other
test subsequences.

A test sequence generated by the D-method consists of
a $3-sequence. It differs from the U-method in that every
test subsequence ends with a distinguishing sequence (DS)
instead of a UIO sequence. A reset input begins every test
subsequence and a similar optimization procedure can be
applied to generate an optimized test sequence.

A test sequence generated by the W-method also con-
sists of a B-sequence. It differs from the U- and D-meth-
ods in that a W-set is used in place of a UIO sequence or
a DS. A reset input begins every subsequence. A similar
optimization procedure is used to generate an optimized
test sequence.

As a general evaluation of the four methods, we can

make the following comments: T-method is simple but
may not capture all single faults; D-method is more in-
volved in its implementation and requires the existence of
a distinguishing sequence, which may not exist for an
FSM; U-method is easy to comprehend; and W-method,
in general, will produce longer test sequences than others.

VI. CONCLUSIONS

In this paper, we discussed four formal methods (T-,
U-, D-, and W-methods) for generating protocol test se-
quences from their specification. All of these four meth-
ods assume minimal, strongly connected, and fully spec-
ified Mealy machine models of protocol entities. These
three conditions are not always true for real protocols. A
fully or completely specified FSM is a necessary and suf-
ficient condition for generating a distinguishing sequence
(if it exists) and a W set for the D- and W-methods, re-
spectively. But it is only a sufficient condition for pro-
ducing a set of UIO sequences for the U-method. On the
other hand, strong connectivity for a protocol FSM is a
necessary condition for the T-method for generating a test
sequence.

All of these methods except the T-method employ the
same basic idea in generating test sequences: 1) use a
characterizing entity (UIO sequences for U-method, dis-
tinguishing sequence for D-method, and W set for W-
method) as a means for identifying the states of an FSM,
and 2) apply the characterizing entity in generating a (8-
sequence for testing an FSM. For the T-method, a test
sequence for an FSM is generated by visiting all the tran-
sitions of the FSM. The lengths of test sequences gener-
ated by the four methods, in the worst case, may differ to
a large extent from each other. On the average, T-method
will produce the shortest test sequence and W-method the
longest test sequence among the four methods, while D-
and U-methods generate test sequences of comparable
lengths.

To assess the fault detection capabilities of these test
methods, we use Monte-Carlo simulation to estimate the
classes of implementation machines which, upon the ap-
plication of the test sequence, produce the same outputs
as the specification machine but are not equivalent to it.
Our results show that T-method weak conformance test
sequences are able to detect faults in output labels but not
in tail states of transition edges. For U-method weak con-
formance test sequences, they can detect both kinds of
single faults but not combinations of faults in some cases.
In particular, they cannot detect double faults as demon-
strated in Section VI. For strong conformance testing, T-
method test sequences show the same behavior as its weak
conformance counterpart while U-, D-, and W-method test
sequences are capable of detecting all kinds of faults and
give the same performance.

Since most real communication protocols are incom-
pletely specified, only T- and U-methods are ablie to gen-
erate weak conformance test sequences. But these test se-
quences do not possess reliable fault detection capabilities
as the results in Sections III and IV demonstrate. One so-
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lution is to complete the protocols by adding self-loops
for the missing edges. Then the strong conformance test
sequences for U-, D-, and W-methods are able to detect
all kinds of faults. However, this creates a large number
of artificial edges, which, in turn, produces test sequences
of intolerable lengths.

In this paper, we have not considered synchronization
problem [21] and optimality of a test in generating test
sequences from protocol specifications by the four meth-
ods. Both problems are important and deserve consider-
ation. In connection with the optimal length test se-
quence, a method has been proposed in [22] which is
based on the solution to the Chinese Postman Problem.
The method generates a transition tour for an FSM like in
the T-method.

For further details about this paper, see [26].

APPENDIX A
WEAK CONFORMANCE TEST SEQUENCE FOR NBS TP4
USING THE T-METHOD

The NBS Class 4 transport protocol subset discussed in
Section IV was used to generate a weak conformance test
sequence given below using the T-method. The test se-
quence is a concatenation of the following lines.

N_CR U_cr N DRN DR N _di S_rt U_cq N.CC N_AK’' N_GR
NAK’NGR"UkrN AK’NAKN _GR”"S_rtN CR‘chN _CR
U_drN DR S nU _cq'N_diN CRU crN AK’ NGR NGR”
UkrN AK’NAKN AK’NGRS U ch DR S rt N _ci
Nde _cq’ NccSnS _gtS_tN CRU drN DCS
chSnt NCC NdlS nNanCR SCtN CRU _cr
S_gtS U _cq N_ CCNGRU krN GR”NAKS ntN _ci
N_CRU_drS gtS N CRU ch xt S_xt’ U_kr N DR

S it N CRUdrSttN _DCS_ U _cq’ NchCCU _kr
N_GRN _AK'N_AKS 1t U ch CCU_krN GR NGR”NAK
N_GR’'N_GR" N GRS N CRU crU ke N _AK’ NGRN GR”
NAKS nN CRU crU krSng rt N CRU _cr U_kr

SxtS _xt’

APPENDIX B
WEAK CONFORMANCE TEST SEQUENCE FOR NBS TP4
UsING THE U-METHOD

The NBS Class 4 transport protocol subset discussed in
Section IV was used to generate a weak conformance test
sequence using the U-Method. The UIO sequences for the
states of the TP4 subset discovered by this method are:

State ulo State ulo
Closed U_cq/16 Cr_Sent N_CC/20
Cr_Revd U_cr/22 Ack_Wait N_AK'/15
Estab N_GR/33 Closing N_DR/23
Ref_ Wait N_DR/24 Calling N_cc/16
Called S_ct/26 C_Ack_Wait N_AK'/34
G_Closing_A N_AK/31 Gelsl N_GR/32
G_Closing_P U_kr/50 N_AK/23 Gels3 N_AK/23
Gels2 N_AK/36

where the numerical output labels in the UIO sequence
for states in the above table stand for following strings of
outputs:

16 : CR S_IT
20 : AK S TAT ¢¢ C_IT C_GT

22 : CC S_RTT

23: C_AT S_RT

24 : DC S_IT C_RT

31 : S_IAT C_IAT

32 : AK ke C_AT S_RT

33 : C_IAT S_IAT AK ke

34 : C_RTT C_GT S_IAT S_FCT S_ WT
36 : C_AT S_RT ke

An optimized weak conformance test sequence derived
using the U-method is given below.

Rset N_CR U_cr N_DR N_DR

Rset N_CR U_cr N_AK' N_GR

Rset N_.CR U_crS_gt N_DR

Rset N_CR U_cr S_xt N_AK’

Rset N_.CR U_cr S_xt’ N_AK’

Rset N.CRU_cr U kr N DRN _DR

Rset N CR U_cr U kr N‘AK’ N_AK

Rset N_CR U_cr U_kr S_gt N_DR

Rset N_CR U_cr U_kr S_xt N_AK’

Rset N_CR U_cr U_kr S_xt' N_AK’

Rset N_CR U_dr N_DR

Rset U_cqg N_CC N_AK’ N_GR

Rset U_cq N.CC N GR N AK U_kr N_AK
Rset U_cq N_CC N_GR N_GR” U_kr N_AK
Rset U_cq N_CC N_GR U _kr N_AK’ N_AK
Rset U_cq N_CC N_GR U_kr N_AK N_DR
Rset U_cq N_CC N_GR U_kr N_GR” N_AK
Rset U_cq N_CC N_GR’ N_GR

Rset U_cq N_.CC N_GR” N_GR

Rset U_cq N_CC U_kr N AK' N_AK
Rset U_cq N_CC U kr N_AK N AK' N _GR
Rset Ucq N_.CC U krN _AK N_GR N DR
Rset U_cq N_CC U_kr N_AK N_GR’ N_GR
Rset U cq N_CCU krN AK N_GR” N_ _GR
Rset U_cq N_CC U_kr N_GR N_AK’ N_AK
Rset U_cq N_CC U_kr N_GR N_AK N_DR
Rset U_cq N_CC U_kr N_.GR N_GR" N_AK
Rset U_cq N_CC U_kr N GR N_AK

Rset U_cq N_CC U kr N_.GR" N_ _AK

Rset U_cq N_DR N_DR N_DR

Rset U_cq N_DR N_di N_DR

Rset U_ cq N_.DR S rt U_cq

Rset U_cq N_.DR N_GR"” N_DR

Rset U_cq S_it N_CC

Rset U_cq S_gt N_DR

Rset U_cq S_it’ N_ _CC

Rset U cq N_CC''N _DR N_DR

Rset U_cq N_CC’ N_ DCN DR

Rset U_cq N_CC’' N le DR

Rset U_cq N_CC' S_gt N_DR

Rset U_cq N_CC’ S_tt N_DR

Rset N_CR’ U_cq

Rset N_c¢i N_CR U_cr

Rset N_ci N_di U_cq

Rset N_ci N_CR' S_et

Rset N_ci S_ct U_cq

Rset U_cq’ N_di U_cq

Rset U_cq’ N_cc N_CC
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