
Ch 10
• Shared memory via message passing
• Problems

– Explicit user action needed
– Address spaces are distinct
– Small Granularity of Transfer

• Distributed Shared memory approach can help
with these. Also, unlike tightly coupled
multiprocessors
– Cheaper to build using COTS
– Memory pooled together is significant than local

workstation memory
– More scalable since data bus is not a bottleneck
– SMM based programs can be easily ported

Implementation Approaches

• Central Server Based
– A central server maintains all shared data. Provided to

processors using request/response model with timeouts.
– Problem: Scalability
– Solution: Partition data, allocate each partition to a

processor and have it coordinate requests for that
partition.

– Need a “mapping function” to map VM address to
corresponding processor.

• Migration Algorithm
– Instead of sending request to data, send data to request
– Send a “larger” block of data than needed

• Locality of reference
– Access is serialized
– Can lead to thrashing

• Avoid by using hold downs
– Can allow for integratioon with local VM mechanisms

• Need to have conforming page sizes in VM and DSM.
– How do you locate a block

• Centralized mapping server
• Hints
• Broadcast based discovery

• Read Replication
– Enhance basic migration by allowing multiple read

copies and one write copy.
– Invalidation on read ?
– Useful when read/write >> 1

• Full Replication
– Allow multiple readers and writers
– Consistency ?

• Use a sequencer
• Process in sequence order

Memory Coherence

• In a DSM with replication, what is the semantics
of memory access ?
– Need to define a memory consistency model
– Strict Consistency – read returns latest write
– Sequential Consistency – the result of any execution of

operations of all processors is the same as if they were
executed sequentially, and operations of a particular
process happen in sequence

– General Consistency – All copies of the memory
location eventually contain the same data when all
writes have completed

– Processor Consistency – writes issued by processors
occur in order, but not across processors. So
simultaneous reads on different processors can lead to
different values.

– Weak Consistency – Synchronization access are
sequentially consistent. Regular data accesses and
synchs aren’t mixed. Synch. Up to the programmer.

– Release Consistency – Acquire/manipulate/release
paradigm. Can mix in some combinations. Synchs are
processor consistent.

Coherence Protocols
– Write Invalidate or Write Update
– Coherence in PLUS system

• Page is the unit of replication, word is unit of consistency
• One replica is the “master”. Each replica points to the master

and to the next replica.This forms a distributed copy list.
• On read fault for remote memory, MCM sends message to

remote processor and receives data
• On write, the operation is first performed at master, and then

propagated to replicas.
• Writer is not blocked unless it wants to read from that location.
• Guarantees in process ordering, but not across processors.

• Clouds system uses synchronization locks for memory
coherence. Locking process gets the data segment. Reverts
back to owner upon release.

• Application Specific hints
– Write once objects
– Private objects
– Write Many (use delayed updates, weak consistency)
– Result Objects are a subset of write many, which are read after

writes.
– Synchronization Objects – proxies used for lock management.
– Migratory objects – accessed in phases (critical section)
– Producer consumer objects – eager movement.
– Read Mostly objects – broadcast updates
– General Objects

• General Objects
– Invalid
– Unowned – have valid data and may be replicated.

Need to take ownership before updating
– Owned exclusively -- has valid data and updatable

locally . Must be shared if requested.
– Owned non-exclusively – has valid data, but need to

invalidate others before updates.
– Read operations can be shared or for ownership.

Design Issues

• Granularity
– Multiple of underlying page ?
– Tradeoff between size and contention
– Combination by separating coherence from replication
– Adaptivity ?

• Replacement
– Can’t use things like LRU directly because of sharing

modes
– Avoid disk swapping by memory reservation.

IVY Case Study

– Strict Consistency using multiple reader, single writer
semantics and write invalidation

– Read Fault: Contact page owner. Owner adds you to its
copyset and sends replica.

– Write Fault: Contact owner. Owner sends page and
copysets, and invalidates its own entry. You store the
page and send invalidation message to all in copyset.

– Manager can be centralized, distributed or dynamic
distributed

