
Chapter 7

– System Model – typical assumptions underlying the
study of distributed deadlock detection

• Only reusable resources, only exclusive access, single copy of
resource in system.

– Besides deadlocks due to resources, we can have
communication deadlocks

– Strategies
• Prevention – can cause further problems. Consider one shot

allocation where resources and requesters are on different sites.
• Avoidance – global state needs to be maintained, safe state

checks need to be mutually exclusive.

Detection

• Issues
– Detection

• Deadlocks should be detected in finite time.
• No false positives (phantom deadlocks)

– Realize that states are not coherent.

– Resolution
• Clean up the information upon rollback.

• Control Organizations
• Centralized
• Distributed
• Hierarchical

Distributed Deadlock Detection
– Basic Centralized.

• All requests and release messages are sent to a designated site,
which maintains a global WF Graph

• Problems – bottleneck, single POF, phantom deadlocks

– Ho-Ramamoorthy 2 Phase
• Each site maintains a status table – resources locked and

resources being waited upon. The central site periodically
requests this table, constructs a global WFG, and searches for
cycles. If a cycle is found, it requests the tables again, and
constructs WFG from those transactions that are common to
both tables. If a cycle is still detected, then a deadlock is
declared.

– Ho-Ramamoorthy 1 phase
• Each site maintains 2 tables, one for resources (transactions

that have locked a resource) and one for process status
(resources locked/waited). These tables requested periodially
by central site, and WFG constructed using those entries in the
resource table which have corresponding entry in process table.

• Distributed Algorithms
• Path pushing: WFG constructed by disseminating dependency

sequences
• Edge chasing: process sends out probes. A blocked process

receiving probes circulates it along its outgoing dependency
edges

• Diffusion: queries are diffused (sucessively propagated) and
reflected

• Global State Detection

Obermack’s Algo.
– Path pushing approach deals with transactions. Each transaction

may have sub transactions, but they execute sequentially.
Transactions are totally ordered.

– Each site waits for deadlock related information (paths) from other
sites. It abstracts the nonlocal portion of the WFG with a single
node called EX.

– It combines this with its own WFG. It then detects cycles and
breaks those which do not contain EX.

– For all cycles involving EX, the string indicating the cycle (EX-
T1-T2-EX) is sent to all sites which have subtransactions of T2
waiting to recv a message from the subtransaction of T2 at this
site.

– Problem – this algorithm can detect phantom deadlocks. Needs
n(n-1)/2 messages of O(n) size and detects in linear time.

Chandy-Misra- Haas

– Edge chasing algorithm based on the AND model.
– A process Pj is dependent on Pk if there is a sequence

Pj, Pi1….Pin,Pk such that all process but Pk are
blocked, and each process except Pj has something that
is needed by its predecessor.

• Locally dependent

– If Pi is locally dependent on itself, then we have a
deadlock. Otherwise

• Forall Pj, Pk such that Pi locally depends on Pj and Pj is
waiting(not locally) on Pk, send probe(i,j,k) to Pk.

– On receiving probe(i,j,k)
• If (Pk is deadlocked && ! dependentk(i) && Pk has not

replied to all requests of Pj)
– Dependentk(i) = true.
– If (k == i)

» Then Pi is deadlocked
» Else Forall Pm, Pn such that Pk locally depends on Pm and Pm is dependent

(not locally) on Pn, send probe(i,m,n) to Pk.

– Sends 1 proble message on each edge of WFG, so m(n-
1)/2 messages for a deadlock with m processes over n
sites. Size is fixed, and detection time is linear in
number of sites

Diffusion Based Algorithm
– Works for OR request model
– Initiation:

• A blocked process i sends query(i,i,j) to all Pj in its dependent
set; numi(i) = |DSi| , waiti(i) = true;

– When a blocked process Pk recvs query (i,j,k)
• If this is engaging query, send query(i,k,m) to all processes in

its dependent set, and set numk(i) and waitk(i)
• Else if waitk(i) then send reply(i,k,j)

– When Pk gets reply(i,j,k)
• If waitk(i)

– Decrement numk(i), if it becomes 0 then
» If k == I then deadlock else reply(i,k,m) to the process which sent the

engaging query.

Heirarchical Algorithms

• Menasce-Muntz
• Resources are managed by nodes that form the “leaves” of a

tree. They maintain TWF/WFGs corresponding to the
resources they manage.

• Several leaf controllers have a single parent, and so on in a tree
fashion. Each non-leaf controller maintains WFG which is
union of child WFGs. Changes are propagated upwards, and
deadlocks detected on the way

• Hierarchical Ho-Ramamoorthy
• Sites split into disjoint clusters.
• Each cluster has its own control site. There is also a central

control site.

Issues
– Formal methods to prove correctness
– Performance metrics

• No of messages ? Message size? Time to detect ? Storage
overhead ? Computation overhead ?

– Resolution – basically aborting a process
• How does a process know which others are involved in a

deadlock ?
• Can two process detect the same deadlock simultaneously ?
• Use Priorities!
• Rollback – release resources, clean up graph

– Phantom Deadlocks.

