
Chapter 2/6

– Critical Section Problem / Mutual exclusion
• progress, bounded wait

– Hardware Solution
• disable interrupts

– problems ?

– Software Solution
• busy wait ?

– Tokens
– Bakery algorithm
– Special instructions (atomic test-set)

• Semaphores
• Monitors

Other Synchrnization Problems

• Dining Philosophers
• Producer Consumer
• Readers Writers

– reader’s priority, writer’s priority

Readers/Writers with R priority

• Reader
P(mutex)
if (nr == 0) {

nr++; P(notaccessed);
} else

nr++;
V(mutex);

// Read Operations
P(mutex);
nr --;
if (nr == 0) V(notaccessed);
V(mutex);

• Writer
P(exclw);
P(notaccessed);

//Write Operations
V(notaccesed);
P(exclw);

Serializers

– Monitor Problems
• If monitor encapsulates resource, then concurrency is reduced even

where it is possible
• If resource is outside, then rouge processes can bypass the monitor.

– Serializers try to avoid this:
• They are still an ADT with defined operations that encapsulate data,

and enforce mutual exclusion.
• Procedures ma have “hollow” regions where they may allow other

processes to access the serializer.
– join-crowd (crowdid) then body end
– enque (prio,qname) until (condition)

• all events that gain and release the serializer are totally ordered.

Serializer to solve
Readers/Writers

• Read
Enque (rq) until empty(wcrowd)
Joincrowd(rc) then

//Read operation
end

• Write
Enque (wq) until (empty(wc) && empty(rc) && empty(rq))
Joincrowd (wc) then

//Write Operation
end

Path Expressions

– Defines possible “valid” execution histories of the
operations

• Sequencing: a;b – a precedes b, no concurrency.
• Selection: a+b – either a or b is done, but not both and in any

order.
• Concurrency: {a} – any number of instances of a can be done

at the same time.

– Path {read} + write end gives a weak reader’s priority
solution.

CSP

– P2?v
• Get the value of v from P2 as an input

– P1!10
• Output value 10 to P1

– The input and output are synchronized if they name each other as
source/destination, and the types match

– G-> CL – execute commands in list CL if guard G is true.
– Alternative command – execute one of the choices where is guard

is true.
• G1 -> CL1 o G2 -> CL2 … o … Gn -> CLn

– Repetitive Command *[Alternative] – repeat until all guards are
false.

Ch6

– In a distributed system, a site can either be requesting
CS execution, executing CS, or none of the above.

– Requirements for solutions:
• Deadlock free, starvation free, Fair, Fault tolerant

– Metrics of performance (loading conditions)
• # of messages needed for CS
• Synch. Delay – time between one site leaving CS and another

entering.
• Response time – Time interval between CS request and end of

CS
• Throughput: rate at which system executes CS.

– 1 / (snych. delay + CS execution time)

Solutions
– Centralized approach: Make a single site responsible

for permissions.
• Needs only 3 messages / CS (which 3 ?)
• Single point of failure, load on central site, 2T synch. Delay

– Lamports algorithm (non token based, FIFO delivery)
• When Si needs CS, it sends REQ(tsi, i) to all sites in its request

set., and places it in its request queue. A site Sj which receives
this places it in its own queue, and sends a timestamped
REPLY message

• Si can enter CS when
– Its request is as the top of the queue
– It has a reply from all sites it sent a message to with timestamp >

timestamp of request
• Upon exiting CS, removes its request, and sends a release

message to all sites. Each receiving site dequeues the request
as well

Does it work ?

– Can Prove by contradiction
• Basically this means that a process entered CS even though a request

from another process with lower timestamp was in its queue.
– Requires 3(n-1) messages / CS, sd is T
– Improvement – Ricart-Agrawala Algorithm

• A request is sent just as in Lamport’s algo.
• On receiving a request, a reply is sent if this site is neither executing

its CS nor requesting it. Otherwise, timestamps are compared and a
reply sent if the received tstamp is lower than the local tstamp.
Otherwise defer.

• Enter CS when reply received from all.
• Upon exiting CS, send replies to defered sites.

– Note that once I have clearance to go into CS, I can do so many
times as long as I don’t send back reply.

Maekawa’s Algo.
– Each site’s request set is constructed so that

• Intersection of request set for any pair of sites is not null
• Each site is in its own request set
• The request set size is K for any site.
• Each site is contained in K sets (K = sqrt(N))

– To request
• Site Si sends REQ(i) to all sites in its request set.
• On receiving the request, Sj will send REPLY(j) if it hasn’t sent a

reply to anyone since it got the last release. Otherwise hold.

– To Execute CS
• When you get all Replies

– To Release CS
• Send Release(i) to all sites in request set.
• When Sj gets release message, it sends reply to next waiting request.

– Need 3*sqrt(N) messages, 2*T synch. delay.
– Problem – deadlock can occur

• Imagine a situation with three sites each requesting CS.

– Solution – prioritize request using timestamps and do
some extra processing.

• Basically, eliminate circular wait. Site will send a failure
message if it can’t honor your request.

• If a site is locked, but receives a request from a site with higher
priority, it “inquires” from the locking site to see if the lock
can be released.

• Message traffic now 5*sqrt(N)

Token Based
– Suzuki Kasami Broadcast Algorithm:

• Basically, need a token to get into CS. Site possesing the token can get into CS
repeatedly. RN is an array of integers denoting the largest number in request
sequence from a site. The token itself has an array LN containing sequence
number of most recently executed request and a queue Q of requesting sites.

– Request
• If requesting site does not have token, it increments RNi[i] and sends

REQ(i, RNi[i]) to everyone else. When Sj receives this, it updates
RNj[i]. If it has idle token it sends it to Si

– CS is executed when token is received
– Release

• Set LN[i] to RNi[i]. If RNi[j] = LN[j]+1, then Sj is appended to token
Q

• If token queue is nonempty, delete top entry and send token to that
site. This makes it “non-symmetric”

– Messages is 0 or N, Snych. delay is 0 or T.

Raymond’s Tree Based Algo.
– The site with the token is the root of a tree. Each node has a variable

called holder pointing to parent. Each node also has a r-q that contains
requests for tokens from children.

– Request
• To request, send request to parent if your r_q is empty and add yourself to the

r_q
• When you get a request, add to r_q and forward to parent if you have not sent

a previous request.
• When root site gets request, it sends token to requesting site and sets holder to

point to that site.
• When site gets a token, it deletes top entry from r_q, sends token and points

holder. If r_q is nonempty, it sends request to holder.
– Execute

• When get the token and your request at top of r_q
– Release

• If r_q is nonempty, delete top entry , send token,point holder. If r_q still
nonempty, send request to holder.

– Message complexity is O(logN), Synch. Delay is (T log N) /2
• Do Section 6.14

