CH15 – Security & Crypto

Basics

- What if protection is "broken" by unauthorized user, or system is subverted
 - Crypting information can help
- Definitions of Cryptology
 - Cryptography, Cryptanalysis
- Model
 - Ciphertext = E(Plaintext,Ke)
 - Sent over unsecured channel
 - Plaintext = D(Ciphertext, Kd)
 - Cryptanalyst can see C, knows D and E, sometimes even Ke, and has "extra information"

Threats

- Ciphertext Only The intruder can only see ciphertext. This is the easiest kind of attack to mount
- Known Plaintext The intruder has some corresponding plaintext-ciphertext pairs.
 - Perhaps as the side information
- Chosen Plaintext The intruder can find out the encryption of any arbitrary plaintext
 - Limited breakin ?

Some Design Principles

- Shannon's Principles
 - Diffusion spread correlations and dependencies between keys and strings so that length of plaintext needed to break the code is maximized
 - Confusion make functional dependencies amongst related variables as complex as possible
- Exhaustive Search Principle

Classification of CrytoSystems

Conventional

- Geared towards languages
- Caesar ($E = M+k \mod size of alphabet$)
- Substitution Cipher (size! keys)
- Polyalphabetic (periodic sequence of substitution ciphers : vignere, onetime pad)

Modern

- Geared towards binary information
- Private Key
- Public Key

Private Key/DES

- Basic operations
 - Permutation: diffuse information by permuting bits
 - Substitution: replace an m bit input with an n bit output such that there is no simple relation between them to cause confusion
- DES works on 64 bit Data blocks using 56 bit key+8 parity bits (keylength an issue)

DES Steps

- Permute the 64 bits using IP
- 16 iterations of
 - $-L_{i}=R_{i-1}$
 - $-Ri = L_{i-1} XOR f(R_{i-1}, K_i)$