
Ch 11

• Distributed Scheduling
– Resource management component of a system which

moves jobs around the processors to balance load and
maximize overall performance.

– Typically makes sense in LAN level distributed
systems due to latency concerns.

– Needed because of uneven distribution of tasks on
individual processors

• Can be due to several reasons.
• Can even make sense for homogeneous systems with (on

average) even loads.

• How does one characterize
– Performance : average response time
– Load:

• It has been shown that queue lengths for resources (e.g. CPUs)
can be a good indicator.

• How does one handle the delay of transfer when systems are
unevenly loaded and we seek to rectify that ?

– Timeouts, holddowns

• Queue length not very appropriate for (nor correlated with)
CPU utilization for some tasks (e.g. interactive).

• Load balancing approaches may be
– Static: Decisions are “hard wired” a-priori into the

system based on designers understanding.
– Dynamic: Maintain state information for the system and

make decisions based on them. Better than static, but
have more overhead.

– Adaptive: A subtype of dynamic, they can change the
parameters they analyze based on system load.

• Load balancing vs. Load sharing
– Balancing typically involves more transfers. However,

sharing algorithms that transfer in anticipation can also
cause more transfers.

• Transfers may be preemptive or non-preemptive
– Preemptive transfers involve transferring execution state as well as

the task. Non-preemptive transfers are essentially “placements”
• Load Distribution System Components

– Transfer policy: Which node should send, who should receive
(threshold based approaches are common)

– Selection policy: Which task should be moved (new tasks, location
independent tasks, long running tasks …)

– Location Policy: Finding a receiver for a task. Typical approaches
are polling or broadcast.

– Information Policy
• Demand driven, Periodic, or State Change driven

• Stability in a load sharing system
– Queuing Theoretic: When total work arrival (tasks +

load sharing overhead) is greater than rate at which
CPU can work. Alternatively, look at the effectiveness
of the algorithm.

– Algorithmic : Does the algorithm lead to thrashing ?

Sender Initiated LD Algorithms
• The overloaded node attempts to send tasks to

lightly loaded node
– Transfer Policy: If new Tasks takes you above

threshold, become sender. If receiving task will not lead
to crossing over threshold, then become receiver

– Selection Policy: Newly arrived tasks
– Location Policy

• Random – still better than no sharing. Constrain by limiting the
number of transfers

• Threshold – chose nodes randomly but poll them before
sending task. Limited no. of polls. If process fails execute
locally.

• Shortest – Poll all randomly selected nodes and transfer to least
loaded. Doesn’t improve much over threshold.

– Information Policy, Stability

Receiver initiated
• Load sharing process initiated by a lightly loaded

node
– Transfer Policy: Threshold based.
– Selection Policy: Can be anything
– Location Policy: Receiver selects upto N nodes and

polls them, transferring task from the first sender. If
none are found, wait for a predetermined time, check
load and try again

– Information Policy
– Stability: At high loads, few polls needed since senders

easy to find. At low loads, more polls but not a
problem. However, transfers will tend to be preemptive.

Symmetric Algorithms
– Simple idea – combine the previous two. One works

well at high loads, the other at low loads.
– Above Average Algorithm: Keep load within a range

• Transfer Policy: maintain 2 thresholds equidistant from
average. Nodes with load > upper are senders, Nodes with load
< lower are receivers.

• Location Policy: Sender Initiated:
– Sender broadcasts “toohigh” message and sets up toohigh alarm
– Receiver getting toohigh message replies with accept, cancels its

toolow alarm, starts an awaitingtask alarm, and increments load
value

– Sender which gets accept message will transfer task as
appropriate. If it gets toolow message, it responds with a toohigh
to the sender.

– If no accept has been received within timeout, send out
changeaverage message.

• Location Policy: Receiver Initiated
– A receiver broadcasts a toolow message and sets toolow alarm.
– Upon receiving toohigh message, do as in sender initiated
– If toolow alarm expires, send changeaverage message

• Selection Policy
• Information Policy is demand driven, and has low

overhead. Each node can change the range
individually.

Adaptive Algorithms
• Stable Symmetric Algorithm.

– Use information gathered during polling to change behaviour. Start
by assuming that everyone is a receiver.

– Transfer Policy: Range based with Uppper and Lower Threshold
– Location Policy: Sender Initiated component polls node at head of

receiver list. Depending on answer, either a task is transferred or
node moved to OK or sender list. Same thing happens at the
receiving end. Receiver initiated component polls senders list in
order, OK list and receivers list in reverse order. Nodes are moved
in and out of lists at sender and receiver.

– Selection Policy – any, Information Policy – Demand driven
– At high loads, receiver lists get empty preventing future polling

and “deactivating” sender component. At low loads, receiver
initiated polling is deactivated, but not before updating receiver
lists.

– Read Section 11.7, 11.8

Requirements for load distribution

• Scalability
• Location Transparency
• Determinism
• Preemption
• Heterogeniety

Case Studies
• V System

– Measure system parameters and broadcast. Each node
caches “n best” nodes to migrate a job to. When it gets
a new job, checks if it is in “ n best” else migrate to one
of the others

• Sprite
– Receivers notify coordinator of status. Sender selects

jobs manually. Preemptive transfers to provide “console
user” with best service.

• Task Migration Issues
– Policy mechanism separation, state transfer and restarts,

location transparency, performance issues.

