
CMSC 491/691: Computer Vision Spring 2024

Lecture : Pytorch Tutorial
Lecturer: Tejas Gokhale Scribe: Sadia Nasrin Tisha

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

0.1 Introduction

PyTorch is an open source machine learning library for Python and is completely based on Torch. It is
primarily used for applications such as natural language processing. PyTorch is developed by Facebook’s
artificial-intelligence research group along with Uber’s “Pyro” software for the concept of in-built probabilistic
programming. This tutorial will introduce you to basic PyTorch concepts and operations, setting up a simple
neural network, and training it on a dataset. Let’s dive in.

0.2 Prerequisites

• Basic understanding of Python programming

• Familiarity with fundamental machine learning concepts

0.3 Installation

0.3.1 Conda Installation

Conda is a popular, open-source package and environment management system widely used in the scientific
and data science communities to manage packages, dependencies, and environments for various languages
like Python, R, Ruby, Lua, Scala, Java, JavaScript, C/C++, FORTRAN, and more. It is designed to
simplify package management and deployment, making it easier to manage multiple data science projects
with varying requirements. Conda can be installed as part of the Anaconda or Miniconda distribution.
Anaconda includes Conda and a suite of other tools and libraries, while Miniconda includes only Conda and
its dependencies, allowing users to install the packages they need.

0.3.1.1 Anaconda Installation:

• Download Anaconda: Visit the Anaconda website and download the installer for your operating
system.

• Run the Installer: Execute the downloaded installer and follow the on-screen instructions.

• Verify Installation: Open a terminal (or command prompt on Windows) and type “conda list” to
see the installed packages.

0-1

https://www.anaconda.com/

0-2 Lecture : Pytorch Tutorial

0.3.1.2 Miniconda Installation:

• Download Miniconda: Visit the Miniconda website and download the installer for your operating
system.

• Run the Installer: Execute the downloaded installer and follow the on-screen instructions. Ensure
you add Conda to your PATH during installation or initialize it manually.

• Verify Installation: Open a terminal (or command prompt) and type “conda list” to check the
installed packages.

0.3.2 PyTorch Installation

You can download Pytorch via pip or conda, depending on your environment. Visit the PyTorch official
website and select your preferences (OS, package manager, Python version, CUDA version) to get the
appropriate installation command.

For example, to install PyTorch with pip without CUDA support:

pip install torch torchvision torchaudio

0.4 Tensor Basics

Tensors are the core component in PyTorch, similar to NumPy arrays but with GPU support.

0.4.1 Creating Tensors

import torch

import numpy as np

data = [[1, 2],[3, 4]]

x_data = torch.tensor(data)

print(x_data.shape)

print(type(x_data))

torch.Size([2, 2])

<class ’torch.Tensor’>

0.4.2 From a NumPy array

Tensors can be created from NumPy arrays (and vice versa - see Bridge with NumPy).

np_array = np.array(data)

x_np = torch.from_numpy(np_array)

print(x_np)

print(type(x_np))

https://docs.anaconda.com/free/miniconda/
https://pytorch.org/get-started/locally/
https://pytorch.org/get-started/locally/

Lecture : Pytorch Tutorial 0-3

Output:

tensor([[1, 2],

[3, 4]])

<class ’torch.Tensor’>

0.4.3 From another tensor

The new tensor retains the properties (shape, datatype) of the argument tensor, unless explicitly overridden.

x_ones = torch.zeros_like(x_data, dtype=torch.float)

retains the properties of x_data

print(f‘‘Ones Tensor: \n {x_ones} \n")

x_rand=torch.rand_like(x_data,dtype=torch.float)

#overrides the datatype of x_data

print(f‘‘Random Tensor: \n {x_rand} \n")

Output:

Ones Tensor:

tensor([[0., 0.],

[0., 0.]])

Random Tensor:

tensor([[0.6087, 0.8058],

[0.0065, 0.1806]])

0.4.4 Attributes of a Tensor

Tensor attributes describe their shape, datatype, and the device on which they are stored.

tensor = torch.rand(3,4)

print(f"Shape of tensor: {tensor.shape}")

print(f"Datatype of tensor: {tensor.dtype}")

print(f"Device tensor is stored on: {tensor.device}")

Output:

Shape of tensor: torch.Size([3, 4])

Datatype of tensor: torch.float32

Device tensor is stored on: cpu

0-4 Lecture : Pytorch Tutorial

0.4.5 Operations on Tensors

By default, tensors are created on the CPU. We need to move tensors to the GPU using explicitly .to

method(after checking for GPU availability). Remember that copying large tensors across devices can be
expensive regarding time and memory!

if torch.cuda.is_available():

tensor = tensor.to("cuda")

print ("Got GPU")

Output:

Got GPU

0.4.6 PyTorch Indexing and Slicing

In PyTorch, tensors are multi-dimensional arrays analogous to numpy arrays. This tutorial covers the
essentials of indexing and slicing operations in PyTorch, illustrated with a simple tensor example.

0.4.6.1 Creating a Tensor

First, we create a 4x4 tensor with random values:

import torch

tensor = torch.rand(4, 4)

print(tensor)

Output:

tensor([[0.1426, 0.7897, 0.5363, 0.0358],

[0.9354, 0.2958, 0.8098, 0.7668],

[0.6238, 0.3185, 0.8677, 0.3414],

[0.4549, 0.0550, 0.6263, 0.0781]])

The torch.rand function generates a tensor filled with random values between 0 and 1.

0.4.6.2 Indexing a Tensor

PyTorch supports standard Python indexing and slicing. Here’s how to access specific elements or slices of
the tensor:

0.4.6.3 Accessing the First Row

print(f"First row: {tensor[0]}")

Lecture : Pytorch Tutorial 0-5

Output:

First row: tensor([0.1426, 0.7897, 0.5363, 0.0358])

This command selects the first row of the tensor.

0.4.6.4 Accessing the First Column

print(f"First column: {tensor[:, 0]}")

Output:

First column: tensor([0.1426, 0.9354, 0.6238, 0.4549])

To select the first column, we use the : symbol to specify all rows and 0 for the first column.

0.4.6.5 Accessing the Last Column

There are two ways to access the last column:

print(f"Last column: {tensor[..., -1]}")

or equivalently

print(f"Last column: {tensor[:, -1]}")

Output:

Last column: tensor([0.0358, 0.7668, 0.3414, 0.0781])

Both methods retrieve the last column of the tensor.

0.4.6.6 Slicing a Tensor

You can modify slices of a tensor as follows:

tensor[:, 1::2] = 0

print(tensor)

Output:

tensor([[0.1426, 0.0000, 0.5363, 0.0000],

[0.9354, 0.0000, 0.8098, 0.0000],

[0.6238, 0.0000, 0.8677, 0.0000],

[0.4549, 0.0000, 0.6263, 0.0000]])

This code sets elements in the second and fourth columns to 0 by slicing the tensor with [:, 1::2].

0-6 Lecture : Pytorch Tutorial

0.4.7 Joining tensors

You can use torch.cat to concatenate a sequence of tensors along a given dimension. See also torch.stack,
another tensor joining operator subtly different from torch.cat.

t1 = torch.cat([tensor, tensor, tensor], dim=1)

print(t1, t1.shape)

print(tensor)

Output:

tensor([[0.5211, 0.3680, 0.3529, 0.0719, 0.5211, 0.3680, 0.3529, 0.0719, 0.5211,

0.3680, 0.3529, 0.0719],

[0.0061, 0.9109, 0.6086, 0.8240, 0.0061, 0.9109, 0.6086, 0.8240, 0.0061,

0.9109, 0.6086, 0.8240],

[0.6420, 0.6554, 0.0579, 0.1223, 0.6420, 0.6554, 0.0579, 0.1223, 0.6420,

0.6554, 0.0579, 0.1223],

[0.9969, 0.6384, 0.5178, 0.8625, 0.9969, 0.6384, 0.5178, 0.8625, 0.9969,

0.6384, 0.5178, 0.8625]]) torch.Size([4, 12])

t1 = torch.stack([tensor, tensor, tensor], dim=2)

print(t1, t1.shape)

print(tensor)

Output:

tensor([[[0.1426, 0.1426, 0.1426],

[0.0000, 0.0000, 0.0000],

[0.5363, 0.5363, 0.5363],

[0.0000, 0.0000, 0.0000]],

[[0.9354, 0.9354, 0.9354],

[0.0000, 0.0000, 0.0000],

[0.8098, 0.8098, 0.8098],

[0.0000, 0.0000, 0.0000]],

[[0.6238, 0.6238, 0.6238],

[0.0000, 0.0000, 0.0000],

[0.8677, 0.8677, 0.8677],

[0.0000, 0.0000, 0.0000]],

[[0.4549, 0.4549, 0.4549],

[0.0000, 0.0000, 0.0000],

[0.6263, 0.6263, 0.6263],

[0.0000, 0.0000, 0.0000]]]) torch.Size([4, 4, 3])

0.4.8 PyTorch Arithmetic Operations: Matrix Multiplication

In this PyTorch tutorial, we delve into the world of arithmetic operations on tensors, focusing on matrix
multiplication and element-wise multiplication. Tensors are the backbone of PyTorch, and understanding

Lecture : Pytorch Tutorial 0-7

how to manipulate them is crucial for developing deep learning models. We start by exploring the matrix
multiplication operation, using ‘matmul‘ and the ‘@‘ operator to compute the product of a tensor with its
transpose, showcasing three different methods to achieve the same result for enhanced understanding. Then,
we transition to element-wise multiplication, which multiplies corresponding elements of two tensors, again
demonstrating multiple ways to perform this operation for equivalent outcomes.

To multiply a tensor by its transpose:

result = t1.matmul(t1.T)

print("Matrix multiplication of t1 and its transpose:\n", result)

Output:

tensor([[1.6100, 1.8372, 1.8148, 2.9975],

[1.8372, 5.6376, 2.2108, 4.8406],

[1.8148, 2.2108, 2.5800, 3.5816],

[2.9975, 4.8406, 3.5816, 7.2405]])

y1 = tensor @ tensor.T

y2 = tensor.matmul(tensor.T)

y3 = torch.rand_like(y1)

torch.matmul(tensor, tensor.T, out=y3)

This computes the element-wise product. z1, z2, z3 will have the same value

z1 = tensor * tensor

z2 = tensor.mul(tensor)

z3 = torch.rand_like(tensor)

torch.mul(tensor, tensor, out=z3)

Output:

tensor([[1., 0., 1., 1.],

[1., 0., 1., 1.],

[1., 0., 1., 1.],

[1., 0., 1., 1.]])

0.4.9 Single-element tensors

If you have a one-element tensor, for example by aggregating all values of a tensor into one value, you can
convert it to a Python numerical value using item():

agg = tensor.sum()

print (agg, agg.shape)

agg_item = agg.item()

print(agg_item, type(agg_item))

Output:

0-8 Lecture : Pytorch Tutorial

tensor(6.9210) torch.Size([])

6.920967102050781 <class ’float’>

0.4.10 In-place operations

Operations that store the result into the operand are called in-place. They are denoted by a suffix. For
example: x.copy (y), x.t (), will change x.

print(f"{tensor} \n")

tensor.add_(5)

print(tensor)

print(tensor+5)

Output:

tensor([[0.1975, 0.4421, 0.9542, 0.2363],

[0.4391, 0.4525, 0.3842, 0.0386],

[0.4936, 0.1211, 0.1713, 0.1251],

[0.9990, 0.8259, 0.4485, 0.5920]])

tensor([[5.1975, 5.4421, 5.9542, 5.2363],

[5.4391, 5.4525, 5.3842, 5.0386],

[5.4936, 5.1211, 5.1713, 5.1251],

[5.9990, 5.8259, 5.4485, 5.5920]])

tensor([[10.1975, 10.4421, 10.9542, 10.2363],

[10.4391, 10.4525, 10.3842, 10.0386],

[10.4936, 10.1211, 10.1713, 10.1251],

[10.9990, 10.8259, 10.4485, 10.5920]])

Over 100 tensor operations, including: arithmetic, linear algebra, matrix manipulation (transposing, index-
ing, slicing), sampling and more are comprehensively described here

0.5 Working with Data

0.5.1 The FashionMNIST Dataset

The FashionMNIST Dataset is a novel image dataset for benchmarking machine learning algorithms. arXiv
preprint arXiv:1708.07747. 28 × 28 grayscale images 70,000 fashion products 10 categories 7,000 images per
category The training set has 60,000 images, and the test set has 10,000 images.

https://pytorch.org/docs/stable/torch.html

Lecture : Pytorch Tutorial 0-9

Figure 0.1: Fashion MNIST Dataset with labels, descriptions and examples

0.5.2 Loading the Dataset

PyTorch provides a handy utility called torchvision for loading datasets. Here’s how you can load the
FashionMNIST dataset:

import torch

from torch.utils.data import Dataset

from torchvision import datasets

from torchvision.transforms import ToTensor

import matplotlib.pyplot as plt

training_data = datasets.FashionMNIST(

root="data",

train=True,

download=True,

transform=ToTensor()

)

test_data = datasets.FashionMNIST(

root="data",

train=False,

0-10 Lecture : Pytorch Tutorial

download=True,

transform=ToTensor()

)

0.5.3 Exploring the Dataset

Let’s visualize some of the training images to understand what we’re working with. Here we can index
Datasets manually like a list: training data[index]. We use matplotlib to visualize some samples in
our training data.

labels_map = {

0: "T-Shirt",

1: "Trouser",

2: "Pullover",

3: "Dress",

4: "Coat",

5: "Sandal",

6: "Shirt",

7: "Sneaker",

8: "Bag",

9: "Ankle Boot",

}

figure = plt.figure(figsize=(8, 8))

cols, rows = 3, 3

for i in range(1, cols * rows + 1):

sample_idx = torch.randint(len(training_data), size=(1,)).item()

img, label = training_data[sample_idx]

print("img.shape", img.shape)

figure.add_subplot(rows, cols, i)

plt.title(labels_map[label])

plt.axis("off")

plt.imshow(img.squeeze(), cmap="gray")

plt.show()

Output:

img.shape torch.Size([1, 28, 28])

Lecture : Pytorch Tutorial 0-11

0.5.4 Creating a Custom Dataset for your files

In the realm of machine learning, particularly when dealing with specialized or proprietary datasets, the
necessity to tailor data loading mechanisms to specific formats becomes paramount. PyTorch’s custom
dataset functionality caters to this need, allowing for the creation of bespoke dataset classes that integrate
seamlessly with its broader ecosystem. The ‘CustomImageDataset‘ class exemplifies this, leveraging pandas
for annotation management and ‘torchvision‘ for image processing. By defining key operational meth-
ods—initialization for setup, length for determining dataset size, and item retrieval for accessing individual
data points—this class provides a robust framework for ingesting and manipulating data. Such customiza-
tion empowers developers and researchers to adapt their models to a wide array of unique data scenarios,
enhancing the versatility and applicability of machine learning solutions.

import os

import pandas as pd

from torchvision.io import read_image

class CustomImageDataset(Dataset):

def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):

self.img_labels = pd.read_csv(annotations_file)

self.img_dir = img_dir

self.transform = transform

self.target_transform = target_transform

def __len__(self):

return len(self.img_labels)

def __getitem__(self, idx):

img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0])

image = read_image(img_path)

0-12 Lecture : Pytorch Tutorial

label = self.img_labels.iloc[idx, 1]

if self.transform:

image = self.transform(image)

if self.target_transform:

label = self.target_transform(label)

return image, label

0.5.5 Preparing Data for Training

To prepare the data for training, we will use the ‘DataLoader‘ utility to batch, shuffle, and distribute the
process across multiple cores.

from torch.utils.data import DataLoader

train_dataloader = DataLoader(training_data, batch_size=64, shuffle=True)

test_dataloader = DataLoader(test_data, batch_size=64, shuffle=True)

0.5.6 Iterate through the DataLoader

We have loaded that dataset into the DataLoader and can iterate through the dataset as needed. Each
iteration below returns a batch of train features and train labels (containing batch size=64 features
and labels respectively). Because we specified shuffle=True, after we iterate over all batches the data is
shuffled (for finer-grained control over the data loading order, take a look at Samplers).

Display image and label.

train_features, train_labels = next(iter(train_dataloader))

print(f"Feature batch shape: {train_features.size()}")

print(f"Labels batch shape: {train_labels.size()}")

img = train_features[0].squeeze()

label = train_labels[0]

plt.imshow(img, cmap="gray")

plt.show()

print(f"Label: {label}")

Output:

Feature batch shape: torch.Size([64, 1, 28, 28])

Labels batch shape: torch.Size([64])

Lecture : Pytorch Tutorial 0-13

0.5.7 Transforms

The FashionMNIST features are in PIL Image format, and the labels are integers. For training, we need the
features as normalized tensors, and the labels as one-hot encoded tensors. To make these transformations,
we use ToTensor and Lambda.

import torch

from torchvision import datasets

from torchvision.transforms import ToTensor, Lambda

ds = datasets.FashionMNIST(

root="data",

train=True,

download=True,

transform=ToTensor(),

target_transform=Lambda(lambda y: torch.zeros

(10, dtype=torch.float).scatter_(0, torch.tensor(y),

value=1))

)

0.6 Building a Simple Neural Network

0.6.1 Initialization

import os

import torch

import torch.nn.functional as F

0-14 Lecture : Pytorch Tutorial

import torch.nn as nn

from torch.utils.data import DataLoader

from torchvision import datasets, transforms

0.6.2 Get Device for Training

Leveraging the optimal computing resources for training deep learning models significantly enhances perfor-
mance and efficiency. In PyTorch, this entails selecting the most suitable hardware accelerator available—be
it a GPU with CUDA, Apple’s Metal Performance Shaders (MPS) for leveraging Apple Silicon, or defaulting
back to the CPU. The snippet provided smartly detects and selects the best available option for your train-
ing environment. By querying torch.cuda.is available() and torch.backends.mps.is available(), it
ensures your model utilizes the highest-performing hardware at hand, whether you’re working on NVIDIA
GPUs, Apple Silicon, or in environments where only CPU is available. This automatic detection and selec-
tion process is crucial for developing scalable, hardware-agnostic models that can be deployed across various
platforms without requiring manual configuration, thus streamlining the development and deployment pro-
cess.

device = (

"cuda"

if torch.cuda.is_available()

else "mps"

if torch.backends.mps.is_available()

else "cpu"

)

0.6.3 Defining the Network Structure

Now, let’s define a simple neural network. Our network will consist of a sequence of layers: a flattening layer
followed by two linear layers with ReLU activation and a final linear layer for the output.

class NeuralNetwork(nn.Module):

def __init__(self):

super(NeuralNetwork, self).__init__()

self.flatten = nn.Flatten()

self.linear_relu_stack = nn.Sequential(

nn.Linear(1*28*28, 512),

nn.ReLU(),

nn.Linear(512, 512),

nn.ReLU(),

nn.Linear(512, 10),

)

def forward(self, x):

x = self.flatten(x)

logits = self.linear_relu_stack(x)

return logits

model = NeuralNetwork().to(device)

print(model)

Lecture : Pytorch Tutorial 0-15

Output:

NeuralNetwork(

(flatten): Flatten(start_dim=1, end_dim=-1)

(linear_relu_stack): Sequential(

(0): Linear(in_features=784, out_features=512, bias=True)

(1): ReLU()

(2): Linear(in_features=512, out_features=512, bias=True)

(3): ReLU()

(4): Linear(in_features=512, out_features=10, bias=True)

)

)

To use the model, we pass it the input data. This executes the model’s forward, along with some background
operations. Do not call model.forward() directly!

Calling the model on the input returns a 2-dimensional tensor with dim=0 corresponding to each output of
10 raw predicted values for each class, and dim=1 corresponding to the individual values of each output.
We get the prediction probabilities by passing it through an instance of the nn.Softmax module.

X = torch.rand(1, 1, 28, 28, device=device)

logits = model(X)

pred_probab = nn.Softmax(dim=1)(logits)

print(logits)

y_pred = pred_probab.argmax(1)

print(pred_probab)

print(pred_probab.sum())

print(f"Predicted class: {y_pred}")

Output:

tensor([[-0.0618, -0.0455, -0.0247, -0.0107, 0.0277, 0.0921, 0.0142, -0.0620,

0.0164, 0.0599]], grad_fn=<AddmmBackward0>)

tensor([[0.0938, 0.0954, 0.0974, 0.0988, 0.1026, 0.1095, 0.1013, 0.0938, 0.1015,

0.1060]], grad_fn=<SoftmaxBackward0>)

tensor(1.0000, grad_fn=<SumBackward0>)

Predicted class: tensor([5])

0.7 Autograd

PyTorch’s automatic differentiation engine, Autograd, helps with the computation of gradients—crucial for
backpropagation. It consider the simplest one-layer neural network, with input x, parameters w and b, and
some loss function. Tensors have an attribute requires grad that tracks all operations on them for gradient
computation. It can be defined in PyTorch in the following manner:

0-16 Lecture : Pytorch Tutorial

Figure 0.2: Tensors, Functions and Computational graph. In this network, w and b are parameters, which
we need to optimize. Thus, we need to be able to compute the gradients of loss function with respect to
those variables. In order to do that, we set the requiresgradpropertyofthosetensors.

import torch

x = torch.ones(5) # input tensor

y = torch.zeros(3) # expected output

w = torch.randn(5, 3, requires_grad=True)

b = torch.randn(3, requires_grad=True)

z = torch.matmul(x, w)+b

loss = torch.nn.functional.binary_cross_entropy_with_logits(z, y)

0.8 Computing Gradients

In the realm of neural network training with PyTorch, the manipulation and understanding of gradients
play a crucial role in optimizing model parameters. The .backward() method is pivotal for computing
gradients, allowing for the adjustment of weights (w) and biases (b) through gradient descent by accessing
their gradients via w.grad and b.grad. However, there are scenarios where gradient tracking is unnecessary
or computationally expensive, especially during inference. PyTorch provides mechanisms to temporarily
disable gradient tracking, enhancing computational efficiency. Using torch.no grad() suspends the recording
of gradients for operations performed within its context, rendering operations like torch.matmul(x, w)+b
gradient-free. Alternatively, the detach() method offers a more granular approach by creating a new tensor
that does not require gradients, as seen in z det = z.detach(), effectively achieving the same computational
benefit. These features are instrumental in reducing memory usage and computational overhead during the
forward pass when updating model parameters is not needed.

loss.backward()

print(w.grad)

print(b.grad)

Output:

tensor([[0.3128, 0.0550, 0.2104],

[0.3128, 0.0550, 0.2104],

[0.3128, 0.0550, 0.2104],

[0.3128, 0.0550, 0.2104],

[0.3128, 0.0550, 0.2104]])

tensor([0.3128, 0.0550, 0.2104])

Lecture : Pytorch Tutorial 0-17

0.8.1 Disabling Gradient Tracking

z = torch.matmul(x, w)+b

with torch.no_grad():

z = torch.matmul(x, w)+b

Another way to achieve the same result is to use the detach() method on the tensor:

z = torch.matmul(x, w)+b

z_det = z.detach()

0.9 Training the Model

0.9.1 Optimization

0.9.1.1 Loss Function

Common loss functions include nn.MSELoss (Mean Square Error) for regression tasks, and nn.NLLLoss (Neg-
ative Log Likelihood) for classification. nn.CrossEntropyLoss combines nn.LogSoftmax and nn.NLLLoss.

We pass our model’s output logits to nn.CrossEntropyLoss, which will normalize the logits and compute the
prediction error.

loss_fn = nn.CrossEntropyLoss()

0.9.1.2 Optimizer

We initialize the optimizer by registering the model’s parameters that need to be trained, and passing in the
learning rate hyperparameter.

learning_rate = 1e-3

batch_size = 64

epochs = 5

optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

Inside the training loop, optimization happens in three steps:

• Call optimizer.zero grad() to reset the gradients of model parameters. Gradients by default add
up; to prevent double-counting, we explicitly zero them at each iteration.

• Backpropagate the prediction loss with a call to loss.backward(). PyTorch deposits the gradients of
the loss w.r.t. each parameter.

• Once we have our gradients, we call optimizer.step() to adjust the parameters by the gradients
collected in the backward pass.

0-18 Lecture : Pytorch Tutorial

0.9.2 Training and Testing Loops

0.9.2.1 Training Loop

def train_loop(dataloader, model, loss_fn, optimizer):

size = len(dataloader.dataset)

model.train()

for batch, (X, y) in enumerate(dataloader):

X, y = X.to(device), y.to(device)

Compute prediction and loss

pred = model(X)

loss = loss_fn(pred, y)

Backpropagation

loss.backward()

optimizer.step()

optimizer.zero_grad()

if batch % 100 == 0:

loss, current = loss.item(), (batch + 1) * len(X)

print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")

0.9.2.2 Testing Loop

def test_loop(dataloader, model, loss_fn):

model.eval()

size = len(dataloader.dataset)

num_batches = len(dataloader)

test_loss, correct = 0, 0

with torch.no_grad():

for X, y in dataloader:

X, y = X.to(device), y.to(device)

pred = model(X)

test_loss += loss_fn(pred, y).item()

correct += (pred.argmax(1) == y).type(torch.float).sum().item()

test_loss /= num_batches

correct /= size

print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

0.10 Implementation

loss_fn = nn.CrossEntropyLoss()

optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

epochs = 10

Lecture : Pytorch Tutorial 0-19

for t in range(epochs):

print(f"Epoch {t+1}\n-------------------------------")

train_loop(train_dataloader, model, loss_fn, optimizer)

test_loop(test_dataloader, model, loss_fn)

print("Done!")

0.11 Save and Load the Model

In PyTorch, efficiently saving and loading model weights and architectures is crucial for both the continuation
of training and the deployment of trained models. PyTorch offers a straightforward and flexible approach for
this process through its saving and loading mechanisms. Below is a detailed explanation organized around
key practices for saving and loading both model weights and entire model architectures.

Saving and Loading Model Weights

Saving Model Weights

PyTorch models encapsulate the learned parameters in an internal state dictionary, known as state dict.
This dictionary can be easily persisted and retrieved using PyTorch’s torch.save method. Here’s how you
can save the state dict of a pretrained VGG16 model:

import torch

from torchvision import models

Instantiate and load a pretrained VGG16 model

model = models.vgg16(weights=’IMAGENET1K_V1’)

Save the model’s state_dict

torch.save(model.state_dict(), ’model_weights.pth’)

This saves the learned parameters (weights and biases) of the model to a file named ’model weights.pth’.

Loading Model Weights

To load the saved model weights, you must first instantiate an instance of the model’s class, ensuring it has
the same architecture as the saved model. You can then load the saved state dict into this model instance:

Create an instance of the same model

model = models.vgg16() # Note: We do not specify ‘weights‘ here

Load the saved state_dict

model.load_state_dict(torch.load(’model_weights.pth’))

Set the model to evaluation mode

model.eval()

0-20 Lecture : Pytorch Tutorial

It’s crucial to invoke model.eval() after loading the weights to set the model in evaluation mode. This is
especially important for models with layers that behave differently during training and inference, such as
dropout and batch normalization layers.

Saving and Loading Entire Models

While saving and loading only the model weights is often sufficient, there are scenarios where you might
want to save the entire model, including its architecture. This can be particularly useful for sharing models
or deploying them without requiring the model class definition to be available.

Saving the Entire Model

To save a model along with its architecture, you can pass the entire model object to torch.save:

Save the entire model

torch.save(model, ’model.pth’)

This method serializes the whole model using Python’s pickle module, saving the model architecture along
with its weights and biases.

Loading the Entire Model

Loading a saved model along with its architecture is straightforward, as you don’t need to instantiate the
model class beforehand:

Load the entire model

model = torch.load(’model.pth’)

Set the model to evaluation mode

model.eval()

When loading a complete model, ensure the code that defines the model class is accessible in the environment
where the model is loaded, unless the model was saved using a method like torch.jit, which can save models
in a more portable format.

The tutorial covered the basics of PyTorch. PyTorch offers much more, including advanced neural network
layers and models, complex training techniques, and working with large datasets. To dive deeper into
PyTorch, explore the official documentation and tutorials.

The best way to learn is by doing. To improve your skills, try implementing different types of neural networks,
such as convolutional neural networks for image processing, and work on real datasets.

	Introduction
	Prerequisites
	Installation
	Conda Installation
	Anaconda Installation:
	Miniconda Installation:

	PyTorch Installation

	Tensor Basics
	Creating Tensors
	From a NumPy array
	From another tensor
	Attributes of a Tensor
	Operations on Tensors
	PyTorch Indexing and Slicing
	Creating a Tensor
	Indexing a Tensor
	Accessing the First Row
	Accessing the First Column
	Accessing the Last Column
	Slicing a Tensor

	Joining tensors
	PyTorch Arithmetic Operations: Matrix Multiplication
	Single-element tensors
	In-place operations

	Working with Data
	The FashionMNIST Dataset
	Loading the Dataset
	Exploring the Dataset
	Creating a Custom Dataset for your files
	Preparing Data for Training
	Iterate through the DataLoader
	Transforms

	Building a Simple Neural Network
	Initialization
	Get Device for Training
	Defining the Network Structure

	Autograd
	Computing Gradients
	Disabling Gradient Tracking

	Training the Model
	Optimization
	Loss Function
	Optimizer

	Training and Testing Loops
	Training Loop
	Testing Loop

	Implementation
	Save and Load the Model

