
CMSC 491/691: Computer Vision Spring 2024

Lecture 10: 2024-03-11 Pytorch Tutorial
Lecturer: Tejas Gokhale Scribe: Faisal Rasheed Khan

Disclaimer: These notes have not been su8bjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

The notes below are an example of what I am expecting. They were taken from a random graduate class.
They illustrate some uses of various LATEX macros. Take a look at this and imitate.

10.1 Recap of Last Lecture

In the last lecture, we have seen the neural network optimization using gradient descent. The gradient
descent aims to find atleast the local minima. The work is done with the help of the loss function and its
derivative, where the weights are updated in the direction of negative gradients.
As seen in the previous chapters, we have seen various loss functions such as Mean-squared, Hinge loss to
mention the few. For multi-layered network there are weights at each network, so we apply gradients and

Figure 10.1: Neural Network with Gradient descent

update it using the chain rule of the derivatives. We have also seen Covolutional Neural Networks and some

Figure 10.2: Multilayer gradients computation

of the architecture. In the next chapter, we see how to code using pytorch the neural networks.

10-1

10-2 Lecture 10: 2024-03-11 Pytorch Tutorial

10.2 Tensor Initialization

Initialization for a tensor can be done in various ways. It can be done using lists, numpy, from another
tensor and also by random initialization by specifying the size. First, we need to import torch.

import torch

Using Lists:

command - torch.tensor()

data = [[1,2],[3,4]]

tensor_data = torch.tensor(data)

We can check the shape, type, datatype of data using the command:

data.shape

type(tensor_data)

tensor.dtype

Using Numpy Arrays:

command - torch.from_numpy()

import numpy as np

np_array = np.array(data)

torch_numpy = torch.from_numpy(np_array)

From another tensor:

command - torch.ones_like()

torch_ones = torch.ones_like(tensor_data, dtype=torch.float)

Using Rand:

command - torch.rand()

tensor = torch.rand(3,4)

We can also use GPU for the tensor processing:

if torch.cuda.is_available():

tensor = tensor.to("cuda")

Lecture 10: 2024-03-11 Pytorch Tutorial 10-3

10.3 Operations on Tensor

There are many operations which can be done on the tensor like indexing, slicing, concatenate tensors and
arithmetic operations.

10.3.1 Indexing

For 1D tensor:

tensor[0] gives the first element

For Multi-dimensional tensors:

tensor[0] gives the first row

tensor[0][0] gives the first row first element

10.3.2 Slicing

For 1D tensor:

tensor[:] gives the all the elements

tensor[-1] gives the last element

tensor[::2] gives alternate elements which takes step 2

For Multi-dimensional tensors:

tensor[:,0] gives the first column

10.3.3 Arithmetic operations

torch.cat() concatenates multiple tensors and takes dim as an argument.
torch.stack() creates multidimensional tensors which also takes dim as an argument.
Theres element-wise multiplication which is given by tensor.mul(tensor2)
In order to do matrix multiplication we need to use tensor.matmul(tensor2). Make sure to have appropriate
shape for the multiplication.

tensor[:] gives the all the elements

tensor[-1] gives the last element

tensor[::2] gives alternate elements which takes step 2

sectionLoading Datasets We can also load the dataset present in the various libraries of the torch. Need to
specify the following commands for the packages:

import torch

from torch.utils.data import Dataset

10-4 Lecture 10: 2024-03-11 Pytorch Tutorial

from torchvision import datasets

from torchvision.transforms import ToTensor

#Training

from torch.utils.data import DataLoader

train_dataloader = DataLoader(training_data, batch_size=64, shuffle=True)

#Iterate the training data

train_features, train_labels = next(iter(train_dataloader))

We can also transform the tensors using ToTensor.

10.4 Neural Network using Pytorch

import os

import torch

import torch.nn.functional as F

import torch.nn as nn

from torch.utils.data import DataLoader

from torchvision import datasets, transforms

class NeuralNetwork(nn.Module):

def __init__(self):

super().__init__()

self.conv1 = nn.Conv2d(3, 6, 5, 1, 0)

self.pool1 = nn.MaxPool2d(2, 2)

self.conv2 = nn.Conv2d(6, 16, 5, 1, 0)

self.pool2 = nn.MaxPool2d(2, 2)

self.fc1 = nn.Linear(16 * 5 * 5, 120)

self.fc2 = nn.Linear(120, 84)

def forward(self, x):

x = self.pool1(F.relu(self.conv1(x)))

x = self.pool2(F.relu(self.conv2(x)))

x = torch.flatten(x, -1) # flatten all dimensions except batch

x = F.relu(self.fc1(x))

x = self.fc2(x)

return x

model = NeuralNetwork().to(device)

print(model)

model_parameters = filter(lambda p: p.requires_grad, model.parameters())

params = ([p.size() for p in model_parameters])

X = torch.rand(1,3, 32, 32, device=device)

Lecture 10: 2024-03-11 Pytorch Tutorial 10-5

logits = model(X)

pred_probab = nn.Softmax(dim=0)(logits)

print(logits)

y_pred = pred_probab.argmax(0)

print(pred_probab)

print(pred_probab.sum())

print(f"Predicted class: {y_pred}")

10.4.1 Gradients for the loss function (Single Layer)

x = torch.ones(5) # input tensor

y = torch.zeros(3) # expected output

w = torch.randn(5, 3, requires_grad=True)

b = torch.randn(3, requires_grad=True)

z = torch.matmul(x, w)+b

loss = torch.nn.functional.binary_cross_entropy_with_logits(z, y)

loss.backward()

print(w.grad)

print(b.grad)

#Disabling the gradient

z = torch.matmul(x, w)+b

print(z.requires_grad)

with torch.no_grad():

z = torch.matmul(x, w)+b

print(z.requires_grad)

10.4.2 Batches for the network

loss_fn = nn.CrossEntropyLoss()

learning_rate = 1e-3

batch_size = 64

epochs = 5

optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

def train_loop(dataloader, model, loss_fn, optimizer):

size = len(dataloader.dataset)

model.train()

for batch, (X, y) in enumerate(dataloader):

Compute prediction and loss

pred = model(X)

loss = loss_fn(pred, y)

10-6 Lecture 10: 2024-03-11 Pytorch Tutorial

Backpropagation

loss.backward()

optimizer.step()

optimizer.zero_grad()

if batch % 100 == 0:

loss, current = loss.item(), (batch + 1) * len(X)

print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")

def test_loop(dataloader, model, loss_fn):

model.eval()

size = len(dataloader.dataset)

num_batches = len(dataloader)

test_loss, correct = 0, 0

with torch.no_grad():

for X, y in dataloader:

pred = model(X)

test_loss += loss_fn(pred, y).item()

correct += (pred.argmax(1) == y).type(torch.float).sum().item()

test_loss /= num_batches

correct /= size

print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

loss_fn = nn.CrossEntropyLoss()

optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

epochs = 10

for t in range(epochs):

print(f"Epoch {t+1}\n-------------------------------")

train_loop(train_dataloader, model, loss_fn, optimizer)

test_loop(test_dataloader, model, loss_fn)

10.4.3 Save and Load the Model

model = models.vgg16(weights=’IMAGENET1K_V1’)

torch.save(model.state_dict(), ’model_weights.pth’)

model = models.vgg16()

model.load_state_dict(torch.load(’model_weights.pth’))

model.eval()

