
CMSC 491/691: Computer Vision Fall 2023

Lecture 10: 2024-03-11 Pytorch Tutorial
Lecturer: Tejas Gokhale Scribe: Kathleen Koerner

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

The notes below are an example of what I am expecting. They were taken from a random graduate class.
They illustrate some uses of various LATEX macros. Take a look at this and imitate.

10.1 Recap of Last Lecture

In the last lecture, we talked about ConvNet, which is a combination of convolutional layers that use functions
in order to transform inputs to outputs. It is a series of relationships between the various layers.

Convolution involves sliding a filter over an image and computing the dot products between the filter and the
image. Images are 3 dimensions, and these filters will always match the depth of the image. Each position
of the filter combined with the image results in one dot product, and thus the output of this function will
have differing length and height dimensions, based on the size of the filter and image, and a depth of 1.

This function results in an activation map. This can be done with several filters, to output several different
activation maps, such as 8 filters would result in 8 activation maps. Each map would have a depth of 1, so
the depth of the resulting image would be 8 (1 for each map).

10.2 Pytorch

Pytorch is a machine-learning library that is helpful for creating deep learning models.

The tutorial starts with initializing tensors, which are data structures that can be compared to arrays and
matrices. One way these can be created is by using the torch.tensor() method. They can also be created
from a NumPy array, or from another tensor. Tensors have attributes associated with them as well, such as
their shape, their datatype, and the device that they are stored on.

Various operations can be used on tensors, but first they must be moved to the GPU using the tensor.to()
method. Tensors can be indexed, sliced, and concatenated. Other arithmetic operations can be performed,
such as multiplication and transposition.

With the Pytorch library, you can also load and view datasets to be used for model training. Refer to the
.ipynb file provided during class. There is even an example of a simple one-layer neural network that can be
built as a starting point. This also include how to compute gradients and optimization.

I have included below the examples for the training loop, testing loop, and full implementation of this
one-layer neural network:

Finally, you can use Pytorch to save and load the model weights, so that the model can be used again.

10-1



10-2 Lecture 10: 2024-03-11 Pytorch Tutorial

Figure 10.1: The implementation written in python for the training loop.

Figure 10.2: The implementation written in python for the testing loop.

Figure 10.3: The implementation written in python for the full implementation of the simple one-layer neural
network.


