
CMSC 491/691: Computer Vision Fall 2023

Lecture 1: 2023-09-06 Title
Lecturer: Tejas Gokhale Scribe: Emmanuel Ugwuabonyi

1.1 Recap of Last Lecture

In the last lecture, we learned that as the neural network gets larger, incremental learning strategy or gradi-
ent descent enables us to learn the weight parameters. This can be stated as follows: Given several examples
(x1, y1), (x2, y2), ..., (xn, yn) and a perceptron ŷ = wx, Modify weight w such that ŷ gets ‘closer’ to y. Then
the Loss function is used to compute the value of the difference between y and ŷ. They include the Absolute
or L1 Loss l(ŷ, y) = |ŷ − y|
the Euclidean or L2 Loss l(ŷ, y) = |ŷ − y|2
Zero-one Loss l(ŷ, y) = 1|ŷ − y| and
Hinge Loss l(ŷ, y) = max(0, 1− y.ŷ)
but we will not use the 0-1 loss because it is not differentiable.

1.2 Gradient descent

Gradient descent allows us to calculate the loss at each step. Once we know our gradient, we can update
the weight using the update rule w = w −∇w. In order words the weight update rule allows us to update
the weight with each new example.

To calculate the loss in Table 1.1

x y
10 10.1
2 1.9
3.5 3.4
1 1.1

Table 1.1: data

Using the data in the first row of the table w = 10.1/10 = 1.01, ŷ = 10.1, y = 10.1, therefore the loss
l = |ŷ − y| = 0 But if we apply it to the second example, the loss increases, we then need to update the
weight so that the prediction ŷ gets closer to the true output y

The Loss L = 1/2(y − ŷ)2

The rate of change of loss with respect to weight
dL

dw
= 1/2(w2x2− 2wxy+2y2) = x(wx− y) = −(y− ŷ)x =

∇w.

1-1

1-2 Lecture 1: 2023-09-06 Title

Figure 1.1: Gradient Descent

The idea behind the gradient descent is to
For each sample xi, yi
1. Compute the forward pass ŷ = wxi

2. Calculate the loss L = 1/2(y − ŷ)2

3. Find the gradient which is the rate of change of loss ∇w
4. Update the weight w = w −∇w

Multi-Layered perceptron

Figure 1.2: multi-layer perceptron

The above neural network can be computed as follows: 1: compute the linear function a1 = w.x1 + b1
2: a2 = w2.f1(w.x1 + b1)
3: a3 = w3.f − 2(w2.f1(w.x1 + b1))
y = f3(w3.f − 2(w2.f1(w.x1 + b1)))
where f1, f2, f3 are activation functions.

Lecture 1: 2023-09-06 Title 1-3

To update the weight for each of the parameters, we compute the rate of change of loss with respect to each

weight. That is we compute
dL

dw3
,
dL

dw2
,
dL

dw1
,
dL

db
.

This can be done using the chain rule. For example, to compute
dL

dw1
we use

dL

dw3
=

dL

df3
.
df3
da3

.
da3
dw3

= −η(y − ŷ)
df3
da3

.
da3
dw3

1.2.1 Learning Rate

Learning rate η defines the adjustment in the weights of our network with respect to the loss gradient descent.

Figure 1.3: Learning rate

.

• If the η is too small say 0.001, it will take time to get to the minimum because it will move slowly.

• If the η is too large, you will never get to the minimum.

Hence it is important to choose the right learning rate for better convergence at . We can also control the
learning rate using Adaptive learning rate.
SGD + Momentum is give a better update especially in training CNNs

1-4 Lecture 1: 2023-09-06 Title

1.3 Convolutional Neural Networks (CNNs)

CNNs changed a lot of things for Computer Vision. Convolutions are useful for vision. So we can learn
features like edges or textures using convolutions hence it is a nice idea to use CNNs while training the
neural networks especially for image data. It helps neural networks to become better and efficient.CNNs in
2012 was a major breakthrough in image classification, it used the model known as AlexNet.
Before deep learning the process usually follows: given an input image, extract the features, concatenate
into a vector and apply a linear classifier such as SVM. The key challenge here is that when the image is
flattened, we lose some structures. However, CNNs allow us to retain the image that is non-linear giving the
3D shape of the height, width and depth which is usually a 3 color channel(RGB). For instance a cifar10
dataset consists of 32x32x3, that is height, width and depth respectively.

1.3.1 ConvNets

ConvNets are neural networks with 3D ativations and weight sharing. At every layer, you apply convolutions
followed by an activation function.

Figure 1.4: Enter Caption

1.3.2 3D Activations

All neural networks are arranged in 3 dimensions; height, width and depth. From the above diagram,

• The input in 3D Activations is a 3x32x32 input image

• Assuming that we have a 3x5x5 filters, then the neuron depends on a 3x5x5 chunk of the input.

• Here, we convolve the filter with the image meaning slide over the image spatially computing the dot
products.

• the neuron also has a 3x5x5 set of weights and bias. i.e wTx+ b

Lecture 1: 2023-09-06 Title 1-5

Figure 1.5: (A) 1D Activation (B) 3D Activation

1.3.3 Padding

Padding is used to add extra pixels around the input image or feature map to maintain spatial dimensions
during the convolution operation.

1.3.4 Stride

Strides is used to reduce the size of the output. When the stride is 1, the filter moves across the input matrix
1 pixel at a time. When the stride is 2, the filter jumps 2 pixels at a time and so on. This will give lesser
number of rows and columns in the output. In general if you want to control the intermediate layer, you can
change the value of strides or padding.

1.3.5 Pooling

Pooling creates a smaller representation while retaining the most important information.
The ’Max’ operation is the most common. It calculates the maximum value for patches of a feature map,
and uses it to create a downsampled (pooled) feature map. In general, max pool means divide your output
into a grid of 2x2 windows and in each window select the maximum value.
There is also an average pooling but it is not necessarily a good choice because it smooths out the image
and hence the sharp features may not be identified. Back propagation rule for max pooling

• In the forward pass, store the index that took the max.

• The backprop gradient rule is the input gradient at that index.

ConvNet Example[hbt!]

From the image (Figure 1.7), the dark area shows that ReLU zero out the negative gradient.

Generally, training a neural network involves:

1-6 Lecture 1: 2023-09-06 Title

Figure 1.6: Enter Caption

Figure 1.7: Convnet visualization

1. Split and process your data.

2. Choose your network architecture.

3. Initialize the weights.

4. Find a learning rate and regularization strength.

5. Minimize the loss and monitor progress.

6. Fiddle with knobs

Mini-Batch Gradient Descent

• Sample of a batch of training data(100 images)

• Forward Pass: compute loss

• Backward Pass: compute gradient.

Lecture 1: 2023-09-06 Title 1-7

• update all parameters

1.3.6 Regularization

This is used to reduce overfitting. Regularization can be L1, L2, Elastic Net, MAx Norm and Dropout.

1.3.7 Overfitting

This involves modeling noise in the training set instead of the ’true’ underlying relationships. Here, the
model is memorizing the data it has seen and is unable to generalize to unseen examples

1.4 References

Lecture Slides

