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7.1 Linear Regression

In linear regression, we aim to model the relationship between a dependent variable and one or more in-
dependent variables by fitting a linear equation to observed data. However, in some cases, a simple linear
model may not capture the underlying relationships adequately.

Figure 7.1: This figure depicts a linear regression model fitted to scattered data points. The straight line
represents the best-fitting equation that minimizes the squared errors between the data points and the
predicted values.

7.1.1 Underfitting

In contrast, underfitting occurs when a regression model is too simplistic and fails to capture the underlying
relationships between features and the target variable. This leads to poor performance on both the training
and test datasets.

7.1.1.1 Manifestations of Underfitting in Regression

1. High bias: An underfitted model exhibits high bias, making oversimplified assumptions about the
relationships between variables.
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2. Inaccurate predictions: These oversimplified assumptions lead to inaccurate predictions on both the
training and test data.

3. Flattened trendlines: Underfitted models often produce trendlines that appear as flat lines or straight
lines, failing to capture the non-linear patterns present in the data.

4. Poor performance metrics: Metrics like R-squared and mean squared error (MSE) reflect the poor fit
of the model, indicating high errors in predictions.

Figure 7.2: When the model does not have the capacity to capture the true function, we call this underfitting.

7.2 Polynomial Regression

Polynomial regression, which fits a polynomial equation to the data, often provides a better fit by allowing
for more flexibility in the regression line. By increasing the degree of the polynomial (adding more basis
functions), the regression line becomes more flexible and can better capture the nuances in the data.
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Figure 7.3: This figure shows a polynomial regression model fitted to scattered data points. The curved
line represents the best-fitting polynomial function that captures the non-linear relationship between the
independent variable (x-axis) and the dependent variable (y-axis).

7.2.1 Overfitting

Overfitting occurs when a regression model becomes too complex and starts capturing noise in the training
data instead of the true underlying relationships between variables. This results in a model that performs
exceptionally well on the training data but fails to generalize to new, unseen data.

Figure 7.4: It occurs when we have too high capacity a model, e.g., too many free parameters, too few data
points to pin these parameters down.

7.2.2 Performance Calculation

To evaluate the performance of a regression model, we typically calculate the error between the estimated
and actual values for all data points and find the average error. This error metric helps us understand how
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well the model predicts the target variable across the entire dataset.

7.2.3 IID Assumption

IID (Independent and Identically Distributed) refers to the assumption that the samples in both the training
and test datasets are drawn from the same probability distribution and are mutually independent. This
assumption is crucial for ensuring that machine learning models generalize well to unseen data. Violations
of the IID assumption can lead to poor model performance in real-world applications.

7.3 Parametric Approach and Linear Classifiers

In a parametric approach, linear classifiers are used to classify data points into different categories based
on a linear decision boundary. The bias parameter (often denoted as ”b”) helps adjust the position of this
decision boundary.

7.3.1 Limitations of Linear Classifiers

One significant limitation of linear classifiers is their inability to classify data points belonging to the XOR
function correctly. The XOR function represents a non-linear relationship between input features and target
labels, which linear classifiers fail to capture effectively.

7.4 The Perceptron: A Building Block for Neural Networks

The perceptron, introduced by Frank Rosenblatt in 1957, is a fundamental unit in the field of artificial neural
networks. It serves as the simplest model of an artificial neuron and lays the groundwork for more complex
neural network architectures.

A perceptron takes a weighted sum of its inputs, applies an activation function to the sum, and produces a
single output. Mathematically, the output (y) of a perceptron can be expressed as:

y = f

 n∑
i=1

wixi + b

 (7.1)

where:

• xi represents the i-th input value.

• wi represents the weight associated with the i-th input.

• b represents the bias term.

• f is the activation function, which introduces non-linearity into the model. Common activation func-
tions include the step function, sigmoid function, and ReLU (Rectified Linear Unit).



Lecture 7: 2024-02-28 ML-for-CV II (Neural Networks) 7-5

The perceptron can be trained using an algorithm called the perceptron learning rule. This algorithm
iteratively adjusts the weights of the perceptron to minimize the error between the desired output and the
actual output for a given set of training data.

Despite its limitations (e.g., inability to learn non-linearly separable patterns), the perceptron played a
crucial role in the early development of artificial neural networks. It paved the way for more sophisticated
architectures that have revolutionized various fields, including machine learning, computer vision, and natural
language processing.

Figure 7.5: Perceptron: A basic artificial neuron receiving weighted inputs, applying an activation function,
and generating an output.

Source: [The Definitive Perceptron Guide](https://towardsdatascience.com/the-definitive-perceptron-guide-
fd384eb93382)

7.5 Linear Layer

We start by considering a 1D input vector x that we want to transform into a new feature space. A linear
layer performs a weighted sum of the input elements, followed by adding a bias term. Here’s the mathematical
notation:

yj =

n∑
i=1

wijxi + bj (7.2)

where:

• yj is the j-th element of the output vector.

• wij is the weight connecting the i-th input element to the j-th output element.

• xi is the i-th element of the input vector.

• bj is the bias term for the j-th output element.
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Figure 7.6: A visual representation of a linear layer, showing the weights and bias term.

7.6 Full Layer

A full layer, also known as a densely connected layer, takes an input vector x and transforms it into an
output vector y. Each element in the output vector is calculated by performing a linear combination of the
input elements, followed by adding a bias term. Mathematically, this can be expressed as:

Figure 7.7: Computation in a neural net – Full Layer

7.7 Non-linearity

While linear layers are powerful tools, they have a significant limitation: they can only represent linear
relationships between the input and output. This limitation becomes apparent when considering problems
like classifying data that cannot be separated by a straight line.
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To overcome this limitation, we introduce non-linear activation functions. These functions transform the
linear output of a layer before passing it to the next layer. This allows the network to learn complex,
non-linear relationships between the input and output.

Figure 7.8: linear classification with a perceptron

7.8 Non-linear Activation Functions: ReLU and Leaky ReLU

These functions transform the output of a layer before passing it to the next layer, allowing the network to
learn complex, non-linear relationships.

The ReLU (Rectified Linear Unit) is a popular non-linear activation function.
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Figure 7.9: ReLU and Leaky ReLU Activation Functions

However, ReLU also has a drawback: Dead neurons. Leaky ReLU addresses this issue by introducing a small
positive slope for negative inputs.

Both ReLU and Leaky ReLU are popular non-linear activation functions used in neural networks. The choice
between these functions often depends on the specific task and network architecture.
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7.9 Stacking Layers

By stacking multiple layers with appropriate hidden units, non-linear activation functions, and connectivity
patterns, neural networks can progressively extract higher-level features from the input data. The first
layers learn basic features, while subsequent layers learn increasingly complex combinations of these features,
ultimately leading to the desired output representation.


