

Everybody Dance Now

Caroline Chan*

Shiry Ginosar Tinghui Zhou[†]

Alexei A. Efros

UC Berkeley

Figure 1: "Do as I Do" motion transfer: given a YouTube clip of a ballerina (top), and a video of a graduate student performing various motions, our method transfers the ballerina's performance onto the student (bottom). Video: https://youtu.be/mSaIrz8lM1U

Autotuner for dancing

Everybody dance now

<u>C Chan, S Ginosar, T Zhou</u>... - Proceedings of the IEEE ..., 2019 - openaccess.thecvf.com This paper presents a simple method for" do as I do" motion transfer: given a source video of a person dancing, we can transfer that performance to a novel (amateur) target after only a ... ☆ Save 55 Cite Cited by 818 Related articles All 7 versions Import into BibTeX ≫

Everybody Dance Now

Caroline Chan*

Shiry Ginosar Tinghui Zhou[†]

Alexei A. Efros

UC Berkeley

Figure 1: "Do as I Do" motion transfer: given a YouTube clip of a ballerina (top), and a video of a graduate student performing various motions, our method transfers the ballerina's performance onto the student (bottom). Video: https://youtu.be/mSaIrz8lM1U

Autotuner for dancing

Everybody dance now

 <u>C Chan, S Ginosar, T Zhou</u>... - Proceedings of the IEEE
 ..., 2019 - openaccess.thecvf.com

 This paper presents a simple method for" do as I do" motion transfer: given a source video of

 a person dancing, we can transfer that performance to a novel (amateur) target after only a ...

 ☆ Save 勁 Cite
 Cited by 818

 Related articles
 All 7 versions

 Import into BibTeX
 >>

Last week

Sourajit Saha

Course Project: Reality Checks

For the examples shown before

- Usually resource hungry (data, compute)
- Substantial literature review (reading)
- A lot of trial and error (coding, debugging)
- Enormous time commitment

What you should consider first!

- How much compute do you have?
- How much time can you allocate as a group?

- Group size matters!
- How well does the literature fit into your background?

Feb 21, 2024

Course Project: Reality Checks

For the examples shown before

- Usually resource hungry (data, compute)
- Substantial literature review (reading)
- A lot of trial and error (coding, debugging)
- Enormous time commitment

What you should consider first!

- How much compute do you have?
- How much time can you allocate as a group?

- Group size matters!
- How well does the literature fit into your background?

Feb 21, 2024

It is not uncommon for course projects - with more refinement at a later time; to get published

For the examples shown before

- Usually resource hungry (data, compute)
- Substantial literature review (reading)
- A lot of trial and error (coding, debugging)
- Enormous time commitment (big lab of researchers)

What you should consider first!

Sourajit Saha

- How much compute do you have?
- How much time can you allocate as a group?
- Group size matters!
- How well does the literature fit into your background?

Feb 21, 2024

Seed Idea: Single Image Super Resolution

- Reconstructs a high-resolution (HR) image from a low-resolution (LR) image
- Applications: medical imaging, security, and surveillance
- One-to-many mapping relation to recover HR images from a LR image
- An ill-posed and still challenging problem in the community

Sourajit Saha

WUMBC

Feb 21, 2024

Seed Idea: Single Image Super Resolution

Source: https://openaccess.thecvf.com/content_cvpr_2017_workshops/w12/papers/Lim_Enhanced_Deep_Residual_CVPR_2017_paper.pdf

Sourajit Saha

SRResNet [14]

(34.00 dB / 0.9679)

EDSR+ (Ours)

(34.78 dB / 0.9708)

VDSR [11]

(32.82 dB / 0.9623)

Seed Idea: NEural Radiance Fields (NeRF)

- Creating a 3D view from a series of 2D images. (View Synthesis)
- Creating realistic visual effects, simulations, and scenes
- Volume rendering enables you to create a 2D projection of a 3D discretely sampled dataset.

Seed Idea: Neural Radiance Fields (NeRF)

Sourajit Saha

WUMBC

Feb 21, 2024

https://arxiv.org/pdf/2212.10015.pdf

- Large scale spatial reasoning Dataset SR2D: image, text pair describing two or more objects and the spatial relationships between them with linguistic variations.
- Metric to quantify visual reasoning performance: VISOR

Sourajit Saha

WUMBC

Fig. 3: For text t and corresponding generated image x = g(t), object centroids are located and converted into predicates indicating the spatial relationship between them. These predicates are compared with the ground truth relationship R to obtain the VISOR score.

	(1)	Rate the quality of the image.	01	02	03	4	05			
	(2)	("1" being artificial (e.g. a sketch or cartoon) and "5" being natural (a real photograph)) How likely is the scene to occur in real life 2	01	0.	0.2	04				
	(2)	(Rate from "1" (least likely) to "5" (most likely)		02	00	04				
	(3)	How many objects are in this image?	3		~					
	(4)	Object A: The image contains a wine glass	IT	ue	○ Fal	se				
	(5)	Object B: The image contains a sandwich	IT (ue	○ Fal	se				
	(6)	Choose the spatial relationship between the wine glass and Sum glass to				to the left of sandwich				
		the sandwich.		$\hfill\square$ wine glass to the right of sandwich						
		Multiple Options may be possible. If there are more instances of the same type (example: two dogs and one cat) then select all possible relationships between each dog and the cat. [IMPORTANT] Choose "N/A" if you answered "False" for either question (2) or (3)	wine glass above sandwich							
			wine glass below sandwich							
	(7)	If you answered True for both (4) and (5), are the two								
	(.,	objects merged or distinct	OM	erged	Dis	tinct	O N/A			
		[IMPORTANT] Choose "N/A" if you answered "False" for either question (2) or (3								

Fig. 5: The human study interface with an image on the left and seven multiple choice questions about it.

Metric	CogView2	DALLE-v2	SD	SD-CDM
OA	73.07	73.87	79.25	80.21
VISOR _{uncond}	88.48	77.41	88.43	88.80
VISORcond	75.02	75.62	76.95	74.69

TABLE 5: Agreement(%) of human responses with automated metrics

Seed Idea: Mitigation Domain Gap for CV systems in Urban Driving Scenes

- Internalize data to learn
 representation
- Great for downstream tasks
- Are these learned representations "general" enough?
- DG = accurate prediction on previously unseen domain

Seed Idea: Mitigation Domain Gap for CV systems in Urban Driving Scenes

How does concurrent research deal with DG?

- SSDG vs MSDG
- Data Augmentations (RL, Adv)
- Learning domain invariant features
- Special focus on generalizing to the statistics of the unseen domain

Sourajit Saha

WUMBC

Seed Idea: Mitigation Domain Gap for CV systems in Urban Driving Scenes

Leveraging Large Language Models to understand domains

- Language is the most active medium of communicating intelligence and has been called (Pinker 19941) "the jewel in the crown of cognition."
- How well can LLMs describe domain informations?
- Can encode(description) generate domain invariant data?
- Can encode(description) facilitate domain invariant learning?

prompt = ["a photograph of an astronaut riding a horse"]

Bringing in Your Own Ideas !!!

