HW 3 Progress

International Conference on 3D Vision @3DVconf • 17h
Wide baseline stereo matching

© Fascinating \boldsymbol{v} @fasc1nate $\cdot 21 \mathrm{~h}$

This is one of my favorite stories of all time.

A married couple discovered a photo of themselves from 11 years before they met. Xue and her now-husband Ye were photographed together in 2000 as teenagers, but they only found out about it after getting marrie.. Show more

Stereo Vision

- A married couple discovered a photo of themselves from 11 years before they met. Xue and her nowhusband Ye were photographed together in 2000 as teenagers, but they only found out about it after getting married!
- In the summer of 2000, they both visited May Fourth Square in Qingdao, China. Several years later, while going through photos of a younger Xue to compare her resemblance to their daughters, Ye stumbled upon the picture.
- As soon as Ye saw the photo, he instantly recognized himself. He recalled, "I remember her mentioning that she had been to Qingdao, and coincidentally,

(part of) HW3

 had also visited Qingdao and taken pictures at the May Fourth Square. When I saw the photo, I was completely surprised, and I got goosebumps all over my body... it was the exact pose I used for taking photos. I even took a picture from a different angle but in the same posture."
$\mathbf{P}=\mathbf{K}[\mathbf{R} \mid \mathbf{t}]$

$$
\begin{gathered}
\mathbf{P}=\underset{\substack{f \\
\text { intrinsic } \\
\text { parameters }}}{\left[\begin{array}{ccc}
f & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]} \underset{\substack{\text { extrinsic } \\
\text { parameters }}}{\left[\begin{array}{lll:l}
r_{1} & r_{2} & r_{3} & t_{1} \\
r_{4} & r_{5} & r_{6} & t_{2} \\
r_{7} & r_{8} & r_{9} & t_{3}
\end{array}\right]} \\
\mathbf{R}=\underset{\left.\begin{array}{lll}
r_{1} & r_{2} & r_{3} \\
r_{4} & r_{5} & r_{6} \\
r_{7} & r_{8} & r_{9}
\end{array}\right]}{\text { 3D rotation }} \quad \underset{\text { 3D translation }}{\left[\begin{array}{l}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\right]}
\end{gathered}
$$

Recap: Triangulation and Epipolar Geometry

Essential Matrix vs Homography

Epipolar geometry

Longuet-Higgins equation

$$
\boldsymbol{x}^{\prime \top} \mathbf{E} \boldsymbol{x}=0
$$

$$
\begin{array}{ll}
\boldsymbol{x}^{\top} \boldsymbol{l}=0 & \boldsymbol{x}^{\prime \top} \boldsymbol{l}^{\prime}=0 \\
\boldsymbol{l}^{\prime}=\mathbf{E} \boldsymbol{x} & \boldsymbol{l}=\mathbf{E}^{T} \boldsymbol{x}^{\prime}
\end{array}
$$

They are both 3×3 matrices but
$\boldsymbol{l}^{\prime}=\mathbf{E} \boldsymbol{x}$
Essential matrix maps a
$\boldsymbol{x}^{\prime}=\mathbf{H} \boldsymbol{x}$ point to a line
Homography maps a
point to a point

Epipoles
$e^{\prime \top} \mathbf{E}=\mathbf{0}$
$\mathrm{E} e=0$

The fundamental matrix

The Fundamental matrix is a generalization of the Essential matrix,

 where the assumption of calibrated cameras is removed
Same equation works in image coordinates!

$$
\boldsymbol{x}^{\prime \top} \mathbf{F} \boldsymbol{x}=0
$$

it maps pixels to epipolar lines

The 8 -point algorithm

Assume you have M matched image points

$$
\left\{\boldsymbol{x}_{m}, \boldsymbol{x}_{m}^{\prime}\right\} \quad m=1, \ldots, M
$$

Each correspondence should satisfy

$$
\boldsymbol{x}_{m}^{\prime \top} \mathbf{F} \boldsymbol{x}_{m}=0
$$

How would you solve for the 3×3 F matrix?

$$
\begin{gathered}
\boldsymbol{x}_{m}^{\prime \top} \mathbf{F} \boldsymbol{x}_{m}=0 \\
{\left[\begin{array}{lll}
x_{m}^{\prime} & y_{m}^{\prime} & 1
\end{array}\right]\left[\begin{array}{lll}
f_{1} & f_{2} & f_{3} \\
f_{4} & f_{5} & f_{6} \\
f_{7} & f_{8} & f_{9}
\end{array}\right]\left[\begin{array}{c}
x_{m} \\
y_{m} \\
1
\end{array}\right]=0}
\end{gathered}
$$

How many equation do you get from one correspondence?

$$
\left[\begin{array}{lll}
x_{m}^{\prime} & y_{m}^{\prime} & 1
\end{array}\right]\left[\begin{array}{lll}
f_{1} & f_{2} & f_{3} \\
f_{4} & f_{5} & f_{6} \\
f_{7} & f_{8} & f_{9}
\end{array}\right]\left[\begin{array}{c}
x_{m} \\
y_{m} \\
1
\end{array}\right]=0
$$

ONE correspondence gives you ONE equation

$$
\begin{array}{r}
x_{m} x_{m}^{\prime} f_{1}+x_{m} y_{m}^{\prime} f_{2}+x_{m} f_{3}+ \\
y_{m} x_{m}^{\prime} f_{4}+y_{m} y_{m}^{\prime} f_{5}+y_{m} f_{6}+ \\
x_{m}^{\prime} f_{7}+y_{m}^{\prime} f_{8}+f_{9}=0
\end{array}
$$

$$
\left[\begin{array}{lll}
x_{m}^{\prime} & y_{m}^{\prime} & 1
\end{array}\right]\left[\begin{array}{lll}
f_{1} & f_{2} & f_{3} \\
f_{4} & f_{5} & f_{6} \\
f_{7} & f_{8} & f_{9}
\end{array}\right]\left[\begin{array}{c}
x_{m} \\
y_{m} \\
1
\end{array}\right]=0
$$

Set up a homogeneous linear system with 9 unknowns

$$
\left[\begin{array}{ccccccccc}
x_{1} x_{1}^{\prime} & x_{1} y_{1}^{\prime} & x_{1} & y_{1} x_{1}^{\prime} & y_{1} y_{1}^{\prime} & y_{1} & x_{1}^{\prime} & y_{1}^{\prime} & 1 \\
\vdots & \vdots \\
x_{M} x_{M}^{\prime} & x_{M} y_{M}^{\prime} & x_{M} & y_{M} x_{M}^{\prime} & y_{M} y_{M}^{\prime} & y_{M} & x_{M}^{\prime} & y_{M}^{\prime} & 1
\end{array}\right]\left[\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
f_{4} \\
f_{5} \\
f_{6} \\
f_{7} \\
f_{8} \\
f_{9}
\end{array}\right]=\mathbf{0}
$$

Each point pair (according to epipolar constraint) contributes only one scalar equation

$$
\boldsymbol{x}_{m}^{\prime \top} \mathbf{F} \boldsymbol{x}_{m}=0
$$

Note: This is different from the Homography estimation where each point pair contributes 2 equations.

We need at least 8 points

Hence, the 8 point algorithm!

Example

epipolar lines

$$
\mathbf{F}=\left[\begin{array}{ccc}
-0.00310695 & -0.0025646 & 2.96584 \\
-0.028094 & -0.00771621 & 56.3813 \\
13.1905 & -29.2007 & -9999.79
\end{array}\right]
$$

$$
\begin{aligned}
\boldsymbol{l}^{\prime} & =\mathbf{F} \boldsymbol{x} \\
& =\left[\begin{array}{c}
0.0295 \\
0.9996 \\
-265.1531
\end{array}\right]
\end{aligned}
$$

Stereo Imaging

How would you reconstruct 3D points?

Left image

Right image

How would you reconstruct 3D points?

Left image

Right image

1. Select point in one image

How would you reconstruct 3D points?

Left image

Right image

1. Select point in one image
2. Form the epipolar line for that point in second image

How would you reconstruct 3D points?

Left image

Right image

1. Select point in one image
2. Form the epipolar line for that point in second image
3. Find matching point along line

How would you reconstruct 3D points?

Left image

Right image

1. Select point in one image
2. Form the epipolar line for that point in second image
3. Find matching point along line
4. Perform triangulation

Triangulation

Stereo rectification

What's different between these two images?

The amount of horizontal movement is inversely proportional to ...

The amount of horizontal movement is inversely proportional to ...

... the distance from the camera.
... aka ... depth

$$
\begin{aligned}
& \frac{X}{Z}=\frac{x}{f}
\end{aligned}
$$

Disparity

$$
\begin{aligned}
d & =x-x^{\prime} \quad \text { (wrt to camera origin of image plane) } \\
& =\frac{b f}{Z}
\end{aligned}
$$

Disparity

$$
\begin{array}{rlr}
d & =x-x^{\prime} & \begin{array}{l}
\text { inversely proportional } \\
\text { to depth }
\end{array} \\
& =\frac{b f}{Z}
\end{array}
$$

Stereoscopes: A 19 ${ }^{\text {th }}$ Century Pastime

Old Zeiss pocket stereoscope with original test image

A stereoscope is a device for viewing a stereoscopic pair of separate images, depicting left-eye and right-eye views of the same scene, as a single three-dimensional image.

A typical stereoscope provides each eye with a lens that makes the image seen through it appear larger and more distant and usually also shifts its apparent horizontal position, so that for a person with normal binocular depth perception the edges of the two images seemingly fuse into one "stereo window".

A Cardboard viewer unassembled (top) and assembled (bottom)

$$
2+2
$$

(Official viewer, Google Store)
Units $\quad 15$ million shipped

Once the kit is assembled, a smartphone is inserted in the back of the device and held in place by the selected fastening device. A Google Cardboard-compatible app splits the smartphone display image into two,

Apps on the mobile phone substitute for stereo cards; these apps can also sense rotation and expand the stereoscope's capacity into that of a full-fledged virtual reality device.

The underlying technology is otherwise unchanged from earlier

Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923

Mark Twain at Pool Table", no date, UCR Museum of Photography

This is how 3D movies work

THE 3 B CONCERT EXPERTENCE

So can I compute depth from any two images of the same object?

Yes if you can "rectify" them
i.e. make epipolar lines horizontal

1. Rectify images
(make epipolar lines horizontal)
2. For each pixel
a. Find epipolar line
b. Scan line for best match
c. Compute depth from disparity

$$
Z=\frac{b f}{d}
$$

When are epipolar lines horizontal?
When this relationship holds:

$$
R=I \quad t=(T, 0,0)
$$

When are epipolar lines horizontal?
When this relationship holds:

$$
R=I \quad t=(T, 0,0)
$$

Let's try this out.
$E=t \times R=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -T \\ 0 & T & 0\end{array}\right]$

This always has to hold for rectified images

$$
x^{T} E x^{\prime}=0
$$

When are epipolar lines horizontal?

When this relationship holds:

$$
R=I \quad t=(T, 0,0)
$$

Let's try this out.

$$
E=t \times R=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -T \\
0 & T & 0
\end{array}\right]
$$

This always has to hold for rectified images

$$
x^{T} E x^{\prime}=0
$$

Write out the constraint

$$
\left(\begin{array}{lll}
u & v & 1
\end{array}\right)\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -T \\
0 & T & 0
\end{array}\right]\left(\begin{array}{l}
u^{\prime} \\
v^{\prime} \\
1
\end{array}\right)=0 \quad\left(\begin{array}{lll}
u & v & 1
\end{array}\right)\left(\begin{array}{c}
0 \\
-T \\
T v^{\prime}
\end{array}\right)=0
$$

When are epipolar lines horizontal?

Write out the constraint

$$
\left(\begin{array}{lll}
u & v & 1
\end{array}\right)\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -T \\
0 & T & 0
\end{array}\right]\left(\begin{array}{l}
u^{\prime} \\
v^{\prime} \\
1
\end{array}\right)=0
$$

When this relationship holds:

$$
R=I \quad t=(T, 0,0)
$$

Let's try this out.

$$
E=t \times R=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -T \\
0 & T & 0
\end{array}\right]
$$

This always has to hold

$$
x^{T} E x^{\prime}=0
$$

The image of a 3D point will always be on the same horizontal line
$\left(\begin{array}{lll}u & v & 1\end{array}\right)\left(\begin{array}{c}0 \\ -T \\ T v^{\prime}\end{array}\right)=0$

Stereo rectification

2023-10-30

What's different between these two images?

The amount of horizontal movement is inversely proportional to ...

... the distance from the camera.

Disparity

$$
\begin{array}{rlr}
d & =x-x^{\prime} & \begin{array}{l}
\text { inversely proportional } \\
\text { to depth }
\end{array} \\
& =\frac{b f}{Z}
\end{array}
$$

So can I compute depth from any two images of the same object?

Yes if you can "rectify" them
i.e. make epipolar lines horizontal

It's hard to make the image planes exactly parallel

Stereo Rectification

Stereo Rectification

Reproject image planes onto a common plane parallel to the line between camera centers

Stereo Rectification

Reproject image planes onto a common plane parallel to the line between camera centers

Need two
homographies (3x3 transform), one for each input image reprojection

Stereo Rectification

1. Rotate the right camera by \mathbf{R} (aligns camera coordinate system orientation only)
2. Rotate (rectify) the left camera so that the epipole is at infinity
3. Rotate (rectify) the right camera so that the epipole is at infinity
4. Adjust the scale

Parallel cameras

Parallel cameras

Setting the epipole to infinity

(Building $\mathbf{R}_{\text {rect }}$ from \mathbf{e})

$$
\begin{aligned}
& \text { Let } R_{\text {rect }}=\left[\begin{array}{c}
\boldsymbol{r}_{1}^{\top} \\
\boldsymbol{r}_{2}^{\top} \\
\boldsymbol{r}_{3}^{\top}
\end{array}\right] \quad \text { Given: } \begin{array}{c}
\text { epipole e } \\
\begin{array}{c}
\text { (using SVD on E) } \\
\text { (translation from E) }
\end{array} \\
\boldsymbol{r}_{1}=\boldsymbol{e}_{1}=\frac{T}{\|T\|} \\
\boldsymbol{r}_{2}=\frac{1}{\sqrt{T_{x}^{2}+T_{y}^{2}}}\left[\begin{array}{lll}
-T_{y} & T_{x} & 0
\end{array}\right] \begin{array}{c}
\text { epipole coincides with translation vector } \\
\text { cross product of e and } \\
\text { the direction vector of } \\
\text { the optical axis }
\end{array} \\
\boldsymbol{r}_{3}=\boldsymbol{r}_{1} \times \boldsymbol{r}_{2}
\end{array} \quad \begin{array}{l}
\text { orthogonal vector }
\end{array}
\end{aligned}
$$

If $\quad \boldsymbol{r}_{1}=\boldsymbol{e}_{1}=\frac{T}{\|T\|} \quad$ and $\quad \boldsymbol{r}_{2} \quad \boldsymbol{r}_{3} \quad$ orthogonal
then $\quad R_{\text {rect }} \boldsymbol{e}_{1}=\left[\begin{array}{c}\boldsymbol{r}_{1}^{\top} \boldsymbol{e}_{1} \\ \boldsymbol{r}_{2}^{\top} \boldsymbol{e}_{1} \\ \boldsymbol{r}_{3}^{\top} \boldsymbol{e}_{1}\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$

At x-infinity

Stereo Rectification Algorithm

1. Estimate E using the 8 point algorithm (SVD)
2. Estimate the epipole e (SVD of \mathbf{E})
3. Build $R_{\text {rect }}$ from e
4. Decompose \mathbf{E} into \mathbf{R} and \mathbf{T}
5. Set $\mathbf{R}_{1}=\mathbf{R}_{\text {rect }}$ and $\mathbf{R}_{2}=\mathbf{R}_{\text {rect }}$
6. Rotate each left camera point (warp image) $\left[x^{\prime} y^{\prime} z^{\prime}\right]=R_{1}[x y z]$
7. Rectified points as $\mathbf{p}=\mathrm{f} / \mathrm{z}^{\prime}\left[\mathrm{x}^{\prime} \mathrm{y}^{\prime} \mathrm{z}^{\prime}\right]$
8. Repeat 6 and 7 for right camera points using \mathbf{R}_{2}

Use built-in OpenCV functions for this

stereoRectifyUncalibrated()

Computes a rectification transform for an uncalibrated stereo camera.

Parameters

points1 Array of feature points in the first image.
points2 The corresponding points in the second image. The same formats as in findFundamentalMat are supported.
F Input fundamental matrix. It can be computed from the same set of point pairs using findFundamentalMat .
imgSize Size of the image.
H1 Output rectification homography matrix for the first image.
H2 Output rectification homography matrix for the second image.
threshold Optional threshold used to filter out the outliers. If the parameter is greater than zero, all the point pairs that do not comply with the epipolar geometry (that is, the points for which |points2[i] ${ }^{T} * \mathrm{~F} *$ points1[i]| $>$ threshold) are rejected prior to computing the homographies. Otherwise, all the points are considered inliers.

The function computes the rectification transformations without knowing intrinsic parameters of the cameras and their relative position in the space, which explains the suffix "uncalibrated". Another related difference from stereoRectify is that the function outputs not the rectification transformations in the object (3D) space, but the planar perspective transformations encoded by the homography matrices H 1 and H 2 . The function implements the algorithm [88] .

Rectification example

Left

Rectified Left

Right

Rectified Right

What can we do after rectification?

Depth Estimation

Depth Estimation via Stereo Matching

Disparity map

Finding correspondences

We only need to search for matches along horizontal lines.

1. Rectify images
(make epipolar lines horizontal)
2. For each pixel
a. Find epipolar line
b. Scan line for best match

How would
c. Compute depth from disparity you do this?

$$
Z=\frac{b f}{d}
$$

Computing disparity

Computing disparity

Semi-global matching [Hirschmüller 2008]

Stereo Block Matching

- Slide a window along the epipolar line and compare contents of that window with the reference window in the left image
- Matching cost: SSD or normalized correlation

Depth from Single Image

Can also learn depth from a single image

MegaDepth: Learning Single-View Depth Prediction from Internet Photos

Depth from Single Image

Depth Map Prediction from a Single Image using a Multi-Scale Deep Network

Use inference power of deep learning to regress depth directly from single image

David Eigen deigen@cs.nyu.edu

Christian Puhrsch
cpuhrsch@nyu.edu

Rob Fergus fergus@cs.nyu.edu

Dept. of Computer Science, Courant Institute, New York University

Figure 1: Model architecture.

My Research: ICCV 2021: Answering Questions about Images using Depth Information

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
Except for this watermark, it is identical to the accepted version;

Weakly Supervised Relative Spatial Reasoning for Visual Question Answering

$$
\begin{aligned}
& \text { Pratyay Banerjee } \text { Tejas Gokhale Yezhou Yang Chitta Baral } \\
& \text { Arizona State University } \\
& \text { \{pbanerj6, tgokhale, yz.yang, chitta\}@asu.edu }
\end{aligned}
$$

VPD: Language-Guided Depth Estimation

Unleashing Text-to-Image Diffusion Models for Visual Perception

Wenliang Zhao ${ }^{1 *}$ Yongming Rao ${ }^{1 *}$ Zuyan Liu ${ }^{1 *}$ Benlin Liu ${ }^{2}$ Jie Zhou ${ }^{1}$ Jiwen Lu $^{1 \dagger}$
${ }^{1}$ Tsinghua University ${ }^{2}$ University of Washington

My Research: CVPR 2024: Quantifying Efficacy of Language-Guided Depth Estimation

On the Robustness of Language Guidance for Low-Level Vision Tasks:
 Findings from Depth Estimation

Agneet Chatterjee ${ }^{\diamond}$ Tejas Gokhale ${ }^{\wedge}$ Chitta Baral ${ }^{\diamond}$ Yezhou Yang ${ }^{\diamond}$
\diamond Arizona State University \quad University of Maryland, Baltimore County

Figure 2. An illustration of depth maps generated by language-guided depth estimation methods such as VPD (zero-shot) when prompted with various sentence inputs that we use as part of our study. The first row shows the effect of progressively adding descriptions as input, while the second row shows depth maps generated by single sentence inputs.

