Recap

Homography and RANSAC

Problem Statement

Given a set of matched feature points $\left\{p_{i}, p_{i}^{\prime}\right\}$ find the best estimate of H such that

$$
P^{\prime}=H \cdot P
$$

original image

target image

How many correspondences do we need?

Determining the homography matrix

Write out linear equation for each correspondence:

$$
P^{\prime}=H \cdot P \quad \text { or } \quad\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\alpha\left[\begin{array}{lll}
h_{1} & h_{2} & h_{3} \\
h_{4} & h_{5} & h_{6} \\
h_{7} & h_{8} & h_{9}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Determining the homography matrix

Write out linear equation for each correspondence:

$$
P^{\prime}=H \cdot P \quad \text { or } \quad\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\alpha\left[\begin{array}{lll}
h_{1} & h_{2} & h_{3} \\
h_{4} & h_{5} & h_{6} \\
h_{7} & h_{8} & h_{9}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Expand matrix multiplication:

$$
\begin{aligned}
x^{\prime} & =\alpha\left(h_{1} x+h_{2} y+h_{3}\right) \\
y^{\prime} & =\alpha\left(h_{4} x+h_{5} y+h_{6}\right) \\
1 & =\alpha\left(h_{7} x+h_{8} y+h_{9}\right)
\end{aligned}
$$

Determining the homography matrix

Write out linear equation for each correspondence:

$$
P^{\prime}=H \cdot P \quad \text { or } \quad\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\alpha\left[\begin{array}{lll}
h_{1} & h_{2} & h_{3} \\
h_{4} & h_{5} & h_{6} \\
h_{7} & h_{8} & h_{9}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Expand matrix multiplication:

$$
\begin{aligned}
x^{\prime} & =\alpha\left(h_{1} x+h_{2} y+h_{3}\right) \\
y^{\prime} & =\alpha\left(h_{4} x+h_{5} y+h_{6}\right) \\
1 & =\alpha\left(h_{7} x+h_{8} y+h_{9}\right)
\end{aligned}
$$

Divide out unknown scale factor:

$$
\begin{aligned}
& x^{\prime}\left(h_{7} x+h_{8} y+h_{9}\right)=\left(h_{1} x+h_{2} y+h_{3}\right) \\
& y^{\prime}\left(h_{7} x+h_{8} y+h_{9}\right)=\left(h_{4} x+h_{5} y+h_{6}\right)
\end{aligned}
$$

$$
\begin{gathered}
x^{\prime}\left(h_{7} x+h_{8} y+h_{9}\right)=\left(h_{1} x+h_{2} y+h_{3}\right) \\
y^{\prime}\left(h_{7} x+h_{8} y+h_{9}\right)=\left(h_{4} x+h_{5} y+h_{6}\right) \\
\text { Just rearrange the terms }
\end{gathered}
$$

$$
\begin{aligned}
& h_{7} x x^{\prime}+h_{8} y x^{\prime}+h_{9} x^{\prime}-h_{1} x-h_{2} y-h_{3}=0 \\
& h_{7} x y^{\prime}+h_{8} y y^{\prime}+h_{9} y^{\prime}-h_{4} x-h_{5} y-h_{6}=0
\end{aligned}
$$

Determining the homography matrix

Re-arrange terms:

$$
\begin{array}{r}
h_{7} x x^{\prime}+h_{8} y x^{\prime}+h_{9} x^{\prime}-h_{1} x-h_{2} y-h_{3}=0 \\
h_{7} x y^{\prime}+h_{8} y y^{\prime}+h_{9} y^{\prime}-h_{4} x-h_{5} y-h_{6}=0
\end{array}
$$

Rewrite in matrix form:
How many equations

$$
\mathbf{A}_{i} \boldsymbol{h}=\mathbf{0}
$$

$$
\mathbf{A}_{i}=\left[\begin{array}{ccccccccc}
-x & -y & -1 & 0 & 0 & 0 & x x^{\prime} & y x^{\prime} & x^{\prime} \\
0 & 0 & 0 & -x & -y & -1 & x y^{\prime} & y y^{\prime} & y^{\prime}
\end{array}\right]
$$

$$
\boldsymbol{h}=\left[\begin{array}{lllllllll}
h_{1} & h_{2} & h_{3} & h_{4} & h_{5} & h_{6} & h_{7} & h_{8} & h_{9}
\end{array}\right]^{\top}
$$

Determining the homography matrix

Stack together constraints from multiple point correspondences:

$$
\mathbf{A} \boldsymbol{h}=\mathbf{0}
$$

$$
\left[\begin{array}{l}
h_{1} \\
h_{2} \\
h_{3} \\
h_{4} \\
h_{5} \\
h_{6} \\
h_{7} \\
h_{8} \\
h_{9}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

$\mathbf{A} \boldsymbol{h}=\mathbf{0}$

Solve it using SVD

(or any other least-squares solver)

What we've studied so far ...

- Given two images with matched features, calculate homography (transformation) "H"

- Do so robustly (deal with bad matches) by using RANSAC

How can we use it for creating panoramas?

HW3 !!! (will be released after the midterm)

Given two images...

find matching features (e.g., SIFT) and a translation transform

Matched points will usually contain bad correspondences

how to estimate the transform while dealing with bad correspondences ?

Use RANSAC

Estimating homography using RANSAC

- RANSAC loop

1. Get four point correspondences (randomly)
2. Compute H using DLT
3. Count inliers
4. Keep H if largest number of inliers

- Recompute H using all inliers

Pick one correspondence, count inliers

Pick one correspondence, count inliers

Pick one correspondence, count inliers

Pick one correspondence, count inliers

Pick one correspondence, count inliers

Pick the model with the highest number of inliers!

Estimating homography using RANSAC

- RANSAC loop

1. Get four point correspondences (randomly)
2. Compute H using DLT
3. Count inliers
4. Keep H if largest number of inliers

- Recompute H using all inliers

RANSAC

- An example of a "voting"-based fitting scheme
- Each hypothesis gets voted on by each data point, best hypothesis wins
- There are many other types of voting schemes
- E.g., Hough transforms...

Lecture 13

Camera Models and Calibration

The camera as a coordinate transformation

A camera is a mapping from:
the 3D world
to:

2D image point

camera 3D world matrix point

The camera as a coordinate transformation

$\boldsymbol{x}=\mathbf{P X}$

$$
\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{cccc}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

homogeneous
image coordinates
3×1
camera matrix
3×4
homogeneous world coordinates
4×1

The pinhole camera

The (rearranged) pinhole camera

The (rearranged) pinhole camera

What is the equation for image coordinate x in terms of X ?

The 2D view of the (rearranged) pinhole camera

What is the equation for image coordinate x in terms of X ?

The 2D view of the (rearranged) pinhole camera

The (rearranged) pinhole camera

What is the camera matrix P for a pinhole camera?

$$
\boldsymbol{x}=\mathbf{P X}
$$

The pinhole camera matrix

Relationship from similar triangles:

$$
\left[\begin{array}{lll}
X & Y & Z
\end{array}\right]^{\top} \mapsto\left[\begin{array}{ll}
f X / Z & f Y / Z
\end{array}\right]^{\top}
$$

What does the pinhole camera projection look like?

$$
\mathbf{P}=\left[\begin{array}{llll}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

The pinhole camera matrix

Relationship from similar triangles:

$$
\left[\begin{array}{lll}
X & Y & Z
\end{array}\right]^{\top} \mapsto\left[\begin{array}{ll}
f X / Z & f Y / Z
\end{array}\right]^{\top}
$$

General camera model:

$$
\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{cccc}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

Example: Pinhole Camera Model

$$
\mathbf{P}=\left[\begin{array}{llll}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Generalizing the camera matrix

In general, the camera and image have different coordinate systems.

- \boldsymbol{X} world point

Generalizing the camera matrix

In particular, the camera origin and image origin may be different:

How does the camera matrix change?

$$
\mathbf{P}=\left[\begin{array}{llll}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Generalizing the camera matrix

In particular, the camera origin and image origin may be different:

shift vector transforming
How does the camera matrix change?

$$
\mathbf{P}=\left[\begin{array}{cccc}
f & 0 & p_{x} & 0 \\
0 & f & p_{y} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$ camera origin to image origin

Camera matrix decomposition

We can decompose the camera matrix like this:

$$
\begin{gathered}
\mathbf{P}=\left[\begin{array}{cccc}
f & 0 & p_{x} & 0 \\
0 & f & p_{y} & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \\
\mathbf{P}=\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
\end{gathered}
$$

What does each part of the matrix represent?

Camera matrix decomposition

We can decompose the camera matrix like this:

$$
\mathbf{P}=\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll:l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

(homogeneous) transformation from 2D to 2D, accounting for not unit focal length and origin shift
(homogeneous) projection from 3D to 2 D , assuming image plane at $\mathrm{z}=1$ and shared camera/image origin

Also written as: $\mathbf{P}=\mathbf{K}[\mathbf{I} \mid \mathbf{0}]$ where $\mathbf{K}=\left[\begin{array}{ccc}f & 0 & p_{x} \\ 0 & f & p_{y} \\ 0 & 0 & 1\end{array}\right]$

Generalizing the camera matrix

In general, there are three, generally different, coordinate systems.

We need to know the transformations between them.

World-to-camera coordinate system transformation

World-to-camera coordinate system transformation

World-to-camera coordinate system transformation

Modeling the coordinate system transformation

In heterogeneous coordinates, we have:

$$
\widetilde{\mathbf{X}}_{\mathbf{c}}=\mathbf{R} \cdot\left(\widetilde{\mathbf{X}}_{\mathbf{w}}-\tilde{\mathbf{C}}\right)
$$

How do we write this transformation in homogeneous coordinates?

Modeling the coordinate system transformation

In heterogeneous coordinates, we have:

$$
\widetilde{\mathbf{X}}_{\mathbf{c}}=\mathbf{R} \cdot\left(\widetilde{\mathbf{X}}_{\mathbf{w}}-\tilde{\mathbf{C}}\right)
$$

In homogeneous coordinates, we have:

$$
\left[\begin{array}{c}
X_{c} \\
Y_{c} \\
Z_{c} \\
1
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{R} & -\mathbf{R C} \\
\mathbf{0} & 1
\end{array}\right]\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right] \quad \text { or } \quad \mathbf{X}_{\mathbf{c}}=\left[\begin{array}{cc}
\mathbf{R} & -\mathbf{R} \tilde{\mathbf{C}} \\
\mathbf{0} & 1
\end{array}\right] \mathbf{X}_{\mathbf{W}}
$$

Incorporating the transform in the camera matrix

The previous camera matrix is for homogeneous 3D coordinates in camera coordinate system:

$$
\mathbf{x}=\mathbf{P} \mathbf{X}_{\mathbf{c}}=\mathbf{K}[\mathbf{I} \mid \mathbf{0}] \mathbf{X}_{\mathbf{c}}
$$

We also just derived:

$$
X_{c}=\left[\begin{array}{cc}
R & -R \tilde{C} \\
0 & 1
\end{array}\right] X_{w}
$$

Putting it all together

We can write everything into a single projection:

$$
\mathbf{x}=\mathbf{P} \mathbf{X}_{\mathbf{w}}
$$

The camera matrix now looks like:

$$
\mathbf{P}=\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right][\mathbf{R}:-\mathbf{R C}]
$$

intrinsic parameters (3×3):

correspond to camera internals (sensor not at $\mathrm{f}=1$ and origin shift)
extrinsic parameters (3×4) : correspond to camera externals (world-to-image transformation)

General pinhole camera matrix

We can decompose the camera matrix like this:

$$
\mathbf{P}=\mathbf{K R}[\mathbf{I} \mid-\mathbf{C}]
$$

Another way to write the mapping:

$$
\begin{aligned}
& \mathbf{P}=\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
& \text { where } \mathbf{t}=-\mathbf{R C}
\end{aligned}
$$

General pinhole camera matrix

$\mathbf{P}=\mathbf{K}[\mathbf{R} \mid \mathbf{t}]$

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc:c}
r_{1} & r_{2} & r_{3} & t_{1} \\
r_{4} & r_{5} & r_{6} & t_{2} \\
r_{7} & r_{8} & r_{9} & t_{3}
\end{array}\right] \\
& \text { intrinsic extrinsic } \\
& \text { parameters parameters } \\
& \mathbf{R}=\left[\begin{array}{lll}
r_{1} & r_{2} & r_{3} \\
r_{4} & r_{5} & r_{6} \\
r_{7} & r_{8} & r_{9}
\end{array}\right] \quad \mathbf{t}=\left[\begin{array}{c}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\right]
\end{aligned}
$$

Perspective distortion

Finite projective camera

$$
\left.\mathbf{P}=\left[\begin{array}{ccc}
\alpha_{x} & s & p_{x} \\
0 & \alpha_{y} & p_{y} \\
0 & 0 & 1
\end{array}\right] \begin{array}{cc}
\mathbf{R} & -\mathbf{R C}
\end{array}\right]
$$

What does this matrix look like if the camera and world have the same coordinate system?

Forced perspective

Figure 3. Common optical illusions occur because objects closer to the camera are magnified. This illustrates the need to understand 3D scene geometry to perform spatial reasoning on 2D images.

The Ames room illusion

The Ames room illusion

Perspective distortion

long focal length

mid focal length

short focal length

Dolly Zoom: "Vertigo" effect

Named after Alfred Hitchcock's movie

Vertigo effect

Other camera models

What if...

camera is close to object and has small focal length

perspective

weak perspective
camera is far from object and has large focal length
increasing focal length

Different cameras

perspective camera
weak perspective camera

Weak perspective vs perspective camera

Comparing camera matrices

Let's assume that the world and camera coordinate systems are the same.

- The perspective camera matrix can be written as:

$$
\mathbf{P}=\left[\begin{array}{llc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

- What would the matrix of the weak perspective camera look like?

Comparing camera matrices

Let's assume that the world and camera coordinate systems are the same.

- The perspective camera matrix can be written as:

$$
\mathbf{P}=\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

- The weak perspective camera matrix can be written as:

$$
\mathbf{P}=\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & Z_{o}
\end{array}\right]
$$

Comparing camera matrices

Let's assume that the world and camera coordinate systems are the same.

- The finite projective camera matrix can be written as:

$$
\mathbf{P}=\mathbf{K}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

where we now have the more general intrinsic matrix

- The affine camera matrix can be written as:

$$
\mathbf{P}=\mathbf{K}\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & Z_{o}
\end{array}\right]
$$

$$
\mathbf{K}=\left[\begin{array}{ccc}
\alpha_{x} & s & p_{x} \\
0 & \alpha_{y} & p_{y} \\
0 & 0 & 1
\end{array}\right]
$$

In both cameras, we can incorporate extrinsic parameters same as we did before.

When can we assume a weak perspective camera?

When can we assume a weak perspective camera?

1. When the scene (or parts of it) is very far away.

Weak perspective projection applies to the mountains.

When can we assume a weak perspective camera?

2. When we use a telecentric lens.

Orthographic camera

Special case of weak perspective camera where:

- constant magnification is equal to 1 .
- there is no shift between camera and image origins.
- the world and camera coordinate systems are the same.

What is the camera matrix in this case?

Orthographic camera

Special case of weak perspective camera where:

- constant magnification is equal to 1 .
- there is no shift between camera and image origins.
- the world and camera coordinate systems are the same.

Orthographic in traditional drawing

- projection plane parallel to a coordinate plane
- projection direction perpendicular to projection plane

Orthographic projection

Camera Calibration

What does it mean to "calibrate a camera"?

Estimate the Projection Matrix P (camera intrinsics and extrinsics)

Many different ways to calibrate a camera:

- Radiometric calibration.
- Color calibration.
- Geometric calibration.
- Noise calibration.
- Lens (or aberration) calibration.

$\mathbf{P}=\mathbf{K}[\mathbf{R} \mid \mathbf{t}]$

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc:c}
r_{1} & r_{2} & r_{3} & t_{1} \\
r_{4} & r_{5} & r_{6} & t_{2} \\
r_{7} & r_{8} & r_{9} & t_{3}
\end{array}\right] \\
& \text { intrinsic extrinsic } \\
& \text { parameters parameters } \\
& \mathbf{R}=\left[\begin{array}{lll}
r_{1} & r_{2} & r_{3} \\
r_{4} & r_{5} & r_{6} \\
r_{7} & r_{8} & r_{9}
\end{array}\right] \quad \mathbf{t}=\left[\begin{array}{c}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\right] \\
& \text { 3D rotation } \\
& \text { 3D translation }
\end{aligned}
$$

Application: Pose Estimation

Given a single image, estimate the exact position of the photographer

Camera Calibration Procedure

Step 1: Capture an image of an object with known geometry.

Object of Known Geometry

Camera Calibration Procedure

Step 2: Identify correspondences between 3D scene points and image points.

Object of Known Geometry

Captured Image

Camera Calibration Procedure

Step 3: For each corresponding point i in scene and image:
$\frac{\left[\begin{array}{c}u^{(i)} \\ v^{(i)} \\ 1\end{array}\right]}{\text { Known }} \frac{\left[\begin{array}{llll}p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34}\end{array}\right]\left[\begin{array}{c}x_{w}^{(i)} \\ y_{w}^{(i)} \\ z_{w}^{(i)} \\ 1\end{array}\right]}{\text { Unknown }} \frac{\text { Known }}{1}$

- Solve using least squares ...

Geometric camera calibration

Given a set of matched points
$\left\{\mathbf{X}_{i}, \boldsymbol{x}_{i}\right\}$

$$
\begin{array}{cc}
\text { point in 3D } & \text { point in the } \\
\text { space } & \text { image }
\end{array}
$$

and camera model

Find the (pose) estimate of

We'll use a perspective camera model for pose estimation

Mapping between 3D point and image points

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{cccc}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

Mapping between 3D point and image points

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{cccc}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]} \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{ll}
- & \boldsymbol{p}_{1}^{\top}- \\
- & \boldsymbol{p}_{2}^{\top}-
\end{array}\right]\left[\begin{array}{c}
\mid \\
\boldsymbol{X} \\
\mid
\end{array}\right]}
\end{aligned}
$$

Heterogeneous coordinates

$$
x^{\prime}=\frac{\boldsymbol{p}_{1}^{\top} \boldsymbol{X}}{\boldsymbol{p}_{3}^{\top} \boldsymbol{X}} \quad y^{\prime}=\frac{\boldsymbol{p}_{2}^{\top} \boldsymbol{X}}{\boldsymbol{p}_{3}^{\top} \boldsymbol{X}}
$$

(non-linear relation between coordinates)

$$
x^{\prime}=\frac{\boldsymbol{p}_{1}^{\top} \boldsymbol{X}}{\boldsymbol{p}_{3}^{\top} \boldsymbol{X}} \quad y^{\prime}=\frac{\boldsymbol{p}_{2}^{\top} \boldsymbol{X}}{\boldsymbol{p}_{3}^{\top} \boldsymbol{X}}
$$

Make them linear with algebraic manipulation...

$$
\begin{aligned}
& \boldsymbol{p}_{2}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} y^{\prime}=0 \\
& \boldsymbol{p}_{1}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} x^{\prime}=0
\end{aligned}
$$

Now we can setup a system of linear equations with multiple point correspondences

$$
\begin{aligned}
\boldsymbol{p}_{2}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} y^{\prime} & =0 \\
\boldsymbol{p}_{1}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} x^{\prime} & =0
\end{aligned}
$$

$$
\begin{gathered}
\boldsymbol{p}_{2}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} y^{\prime}=0 \\
\boldsymbol{p}_{1}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} x^{\prime}=0 \\
\text { In matrix form } \ldots\left[\begin{array}{ccc}
\boldsymbol{X}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}^{\top} \\
\mathbf{0} & \boldsymbol{X}^{\top} & -y^{\prime} \boldsymbol{X}^{\top}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{p}_{1} \\
\boldsymbol{p}_{2} \\
\boldsymbol{p}_{3}
\end{array}\right]=\mathbf{0}
\end{gathered}
$$

$$
\begin{aligned}
& \boldsymbol{p}_{2}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} y^{\prime}=0 \\
& \boldsymbol{p}_{1}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} x^{\prime}=0
\end{aligned}
$$

In matrix form $\ldots\left[\begin{array}{ccc}\boldsymbol{X}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}^{\top} \\ \mathbf{0} & \boldsymbol{X}^{\top} & -y^{\prime} \boldsymbol{X}^{\top}\end{array}\right]\left[\begin{array}{l}\boldsymbol{p}_{1} \\ \boldsymbol{p}_{2} \\ \boldsymbol{p}_{3}\end{array}\right]=\mathbf{0}$
For N points $\ldots \quad\left[\boldsymbol{X}^{\top} \quad \mathbf{0} \quad \boldsymbol{x}^{\prime} \boldsymbol{X}^{\top} \quad{ }^{\text {Theses should be } x_{1}, y_{-1}}\right.$

Solve for camera matrix by

$$
\begin{aligned}
& \hat{\boldsymbol{x}}=\underset{\boldsymbol{x}}{\arg \min }\|\mathbf{A} \boldsymbol{x}\|^{2} \text { subject to }\|\boldsymbol{x}\|^{2}=1 \\
& \mathbf{A}=\left[\begin{array}{ccc}
\boldsymbol{X}_{1}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}_{1}^{\top} \\
\mathbf{0} & \boldsymbol{X}_{1}^{\top} & -y^{\prime} \boldsymbol{X}_{1}^{\top} \\
\vdots & \vdots & \vdots \\
\boldsymbol{X}_{N}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}_{N}^{\top} \\
\mathbf{0} & \boldsymbol{X}_{N}^{\top} & -y^{\prime} \boldsymbol{X}_{N}^{\top}
\end{array}\right]
\end{aligned}
$$

Solve for camera matrix by

$$
\begin{aligned}
\hat{\boldsymbol{x}} & =\underset{\boldsymbol{x}}{\arg \min }\|\mathbf{A} \boldsymbol{x}\|^{2} \text { subject to }\|\boldsymbol{x}\|^{2}=1 \\
\mathbf{A}=\left[\begin{array}{ccc}
\boldsymbol{X}_{1}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}_{1}^{\top} \\
\mathbf{0} & \boldsymbol{X}_{1}^{\top} & -y^{\prime} \boldsymbol{X}_{1}^{\top} \\
\vdots & \vdots & \vdots \\
\boldsymbol{X}_{N}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}_{N}^{\top} \\
\mathbf{0} & \boldsymbol{X}_{N}^{\top} & -y^{\prime} \boldsymbol{X}_{N}^{\top}
\end{array}\right] & \boldsymbol{x}=\left[\begin{array}{l}
\boldsymbol{p}_{1} \\
\boldsymbol{p}_{2} \\
\boldsymbol{p}_{3}
\end{array}\right]
\end{aligned}
$$

Solution \mathbf{x} is the column of \mathbf{V} corresponding to smallest singular
value of
$\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$

Solve for camera matrix by

$$
\begin{aligned}
& \hat{\boldsymbol{x}}=\underset{\boldsymbol{x}}{\arg \min }\|\mathbf{A} \boldsymbol{x}\|^{2} \text { subject to }\|\boldsymbol{x}\|^{2}=1 \\
& \mathbf{A}=\left[\begin{array}{ccc}
\boldsymbol{X}_{1}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}_{1}^{\top} \\
\mathbf{0} & \boldsymbol{X}_{1}^{\top} & -y^{\prime} \boldsymbol{X}_{1}^{\top} \\
\vdots & \vdots & \vdots \\
\boldsymbol{X}_{N}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}_{N}^{\top} \\
\mathbf{0} & \boldsymbol{X}_{N}^{\top} & -y^{\prime} \boldsymbol{X}_{N}^{\top}
\end{array}\right]
\end{aligned}
$$

Equivalently, solution \boldsymbol{x} is the
Eigenvector corresponding to smallest Eigenvalue of
$\mathbf{A}^{\top} \mathbf{A}$

Now we have: $\quad \mathbf{P}=\left[\begin{array}{cccc}p_{1} & p_{2} & p_{3} & p_{4} \\ p_{5} & p_{6} & p_{7} & p_{8} \\ p_{9} & p_{10} & p_{11} & p_{12}\end{array}\right]$

Almost there $\ldots \quad \mathbf{P}=\left[\begin{array}{cccc}p_{1} & p_{2} & p_{3} & p_{4} \\ p_{5} & p_{6} & p_{7} & p_{8} \\ p_{9} & p_{10} & p_{11} & p_{12}\end{array}\right]$

How do you get the intrinsic and extrinsic parameters from the projection matrix?

Decomposition of the Camera Matrix

$$
\mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]
$$

Decomposition of the Camera Matrix

$$
\begin{aligned}
& \mathbf{P}= {\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] } \\
& \mathbf{P}=\mathbf{K}[\mathbf{R} \mid \mathbf{t}]
\end{aligned}
$$

Decomposition of the Camera Matrix

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] \\
& \begin{aligned}
\mathbf{P} & =\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
& =\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}] \\
& =[\mathbf{M} \mid-\mathbf{M c}]
\end{aligned}
\end{aligned}
$$

Decomposition of the Camera Matrix

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] \\
& \begin{aligned}
\mathbf{P} & =\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
& =\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}] \\
& =[\mathbf{M} \mid-\mathbf{M c}]
\end{aligned}
\end{aligned}
$$

Find intrinsic \mathbf{K} and rotation \mathbf{R}

Decomposition of the Camera Matrix

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] \\
& \begin{aligned}
\mathbf{P} & =\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
& =\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}] \\
& =[\mathbf{M} \mid-\mathbf{M c}]
\end{aligned}
\end{aligned}
$$

Find intrinsic \mathbf{K} and rotation \mathbf{R}

Decomposition of the Camera Matrix

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] \\
& \begin{aligned}
\mathbf{P} & =\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
& =\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}] \\
& =[\mathbf{M} \mid-\mathbf{M c}]
\end{aligned}
\end{aligned}
$$

Find intrinsic \mathbf{K} and rotation \mathbf{R}

Decomposition of the Camera Matrix

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] \\
& \begin{aligned}
\mathbf{P} & =\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
& =\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}] \\
& =[\mathbf{M} \mid-\mathbf{M c}]
\end{aligned}
\end{aligned}
$$

Find the camera center \mathbf{C}

$$
\mathrm{Pc}=\mathbf{0}
$$

SVD of P!
c is the Eigenvector corresponding to smallest Eigenvalue

Find intrinsic \mathbf{K} and rotation \mathbf{R}

$$
\mathbf{M}=\mathbf{K R}
$$

Any useful properties of K and R we can use?

Decomposition of the Camera Matrix

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] \\
& \begin{aligned}
\mathbf{P} & =\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
& =\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}] \\
& =[\mathbf{M} \mid-\mathbf{M c}]
\end{aligned}
\end{aligned}
$$

Find intrinsic \mathbf{K} and rotation \mathbf{R}

How do we find K and R ?

Decomposition of the Camera Matrix

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] \\
& \begin{aligned}
\mathbf{P} & =\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
& =\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}] \\
& =[\mathbf{M} \mid-\mathbf{M c}]
\end{aligned}
\end{aligned}
$$

Find intrinsic \mathbf{K} and rotation \mathbf{R}

$$
\mathbf{M}=\mathbf{K R}
$$

QR decomposition

Geometric camera calibration

Given a set of matched points

$$
\left\{\mathbf{X}_{i}, \boldsymbol{x}_{i}\right\}
$$

Where do we get these matched points from?
point in 3D space
point in the
image
and camera model

Find the (pose) estimate of

We'll use a perspective camera model for pose estimation

Calibration using a reference object

Place a known object in the scene:

- identify correspondences between image and scene
- compute mapping from scene to image

Issues:

- must know geometry very accurately
- must know 3D->2D correspondence

Geometric camera calibration

Advantages:

- Very simple to formulate.
- Analytical solution.

Disadvantages:

- Doesn't model radial distortion.
- Hard to impose constraints (e.g., known f).
- Doesn't minimize the correct error function.

For these reasons, nonlinear methods are preferred

- Define error function E between projected 3D points and image positions
$-E$ is nonlinear function of intrinsics, extrinsics, radial distortion
- Minimize E using nonlinear optimization techniques

Practical Camera Calibration

In general, its annoying to setup a 3D target for calibration (controlled environment)

Can we do it with just 2D pictures?

Very Important Research Question for AR/VR

