

Lecture 11

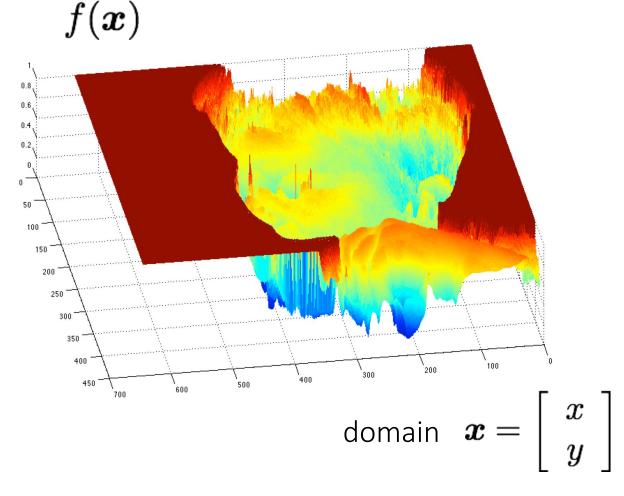
Image Transformations

Some slides from Yang, Jayasuriya

What is an image?

grayscale image

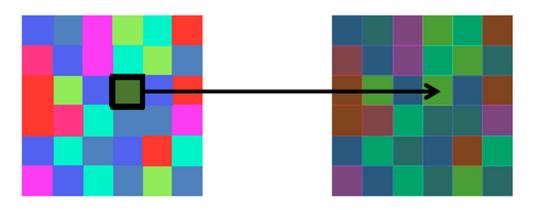
What is the range of the image function f?



A (grayscale) image is a 2D function.

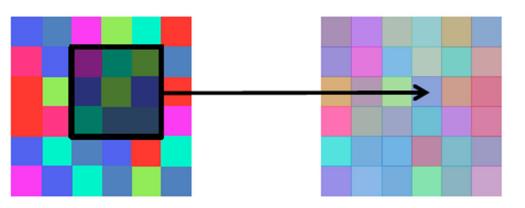
RECALL Point Processing and Image Filtering

Point Operation



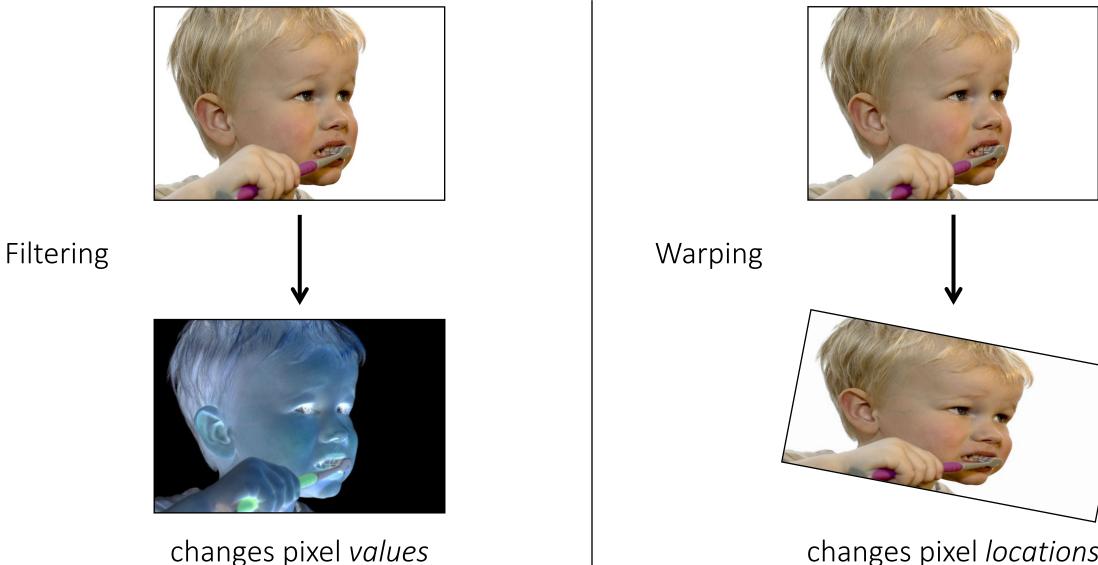
point processing

Neighborhood Operation



"filtering"

What types of image transformations can we do?

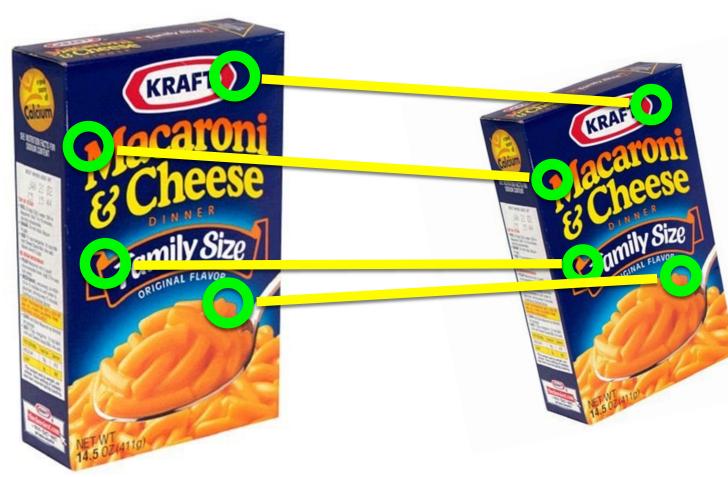


changes pixel locations

What types of image transformations can we do?

changes *range* of image function

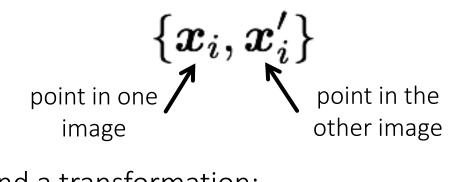
changes *domain* of image function



- object recognition
- 3D reconstruction
- augmented reality
- image stitching

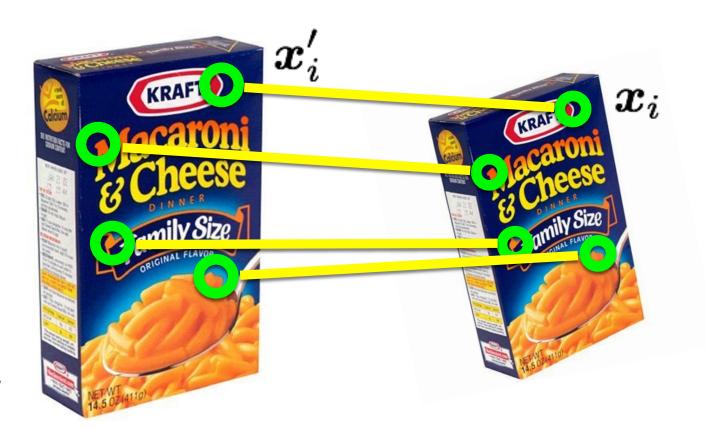
How do you compute the transformation?

Given a set of matched feature points:



and a transformation:

$$x' = f(x; p)$$
transformation \checkmark sparameters



find the best estimate of the parameters

What kind of transformation functions f are there?

2D transformations

2D transformations

translation

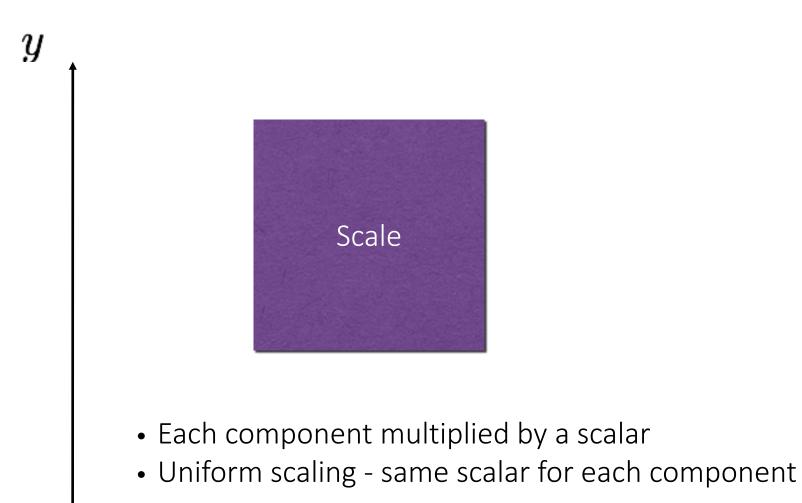
rotation

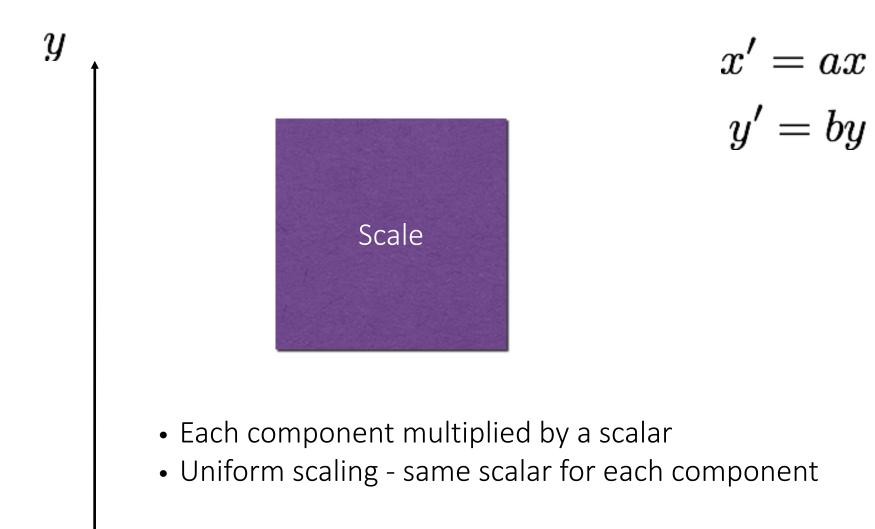
perspective

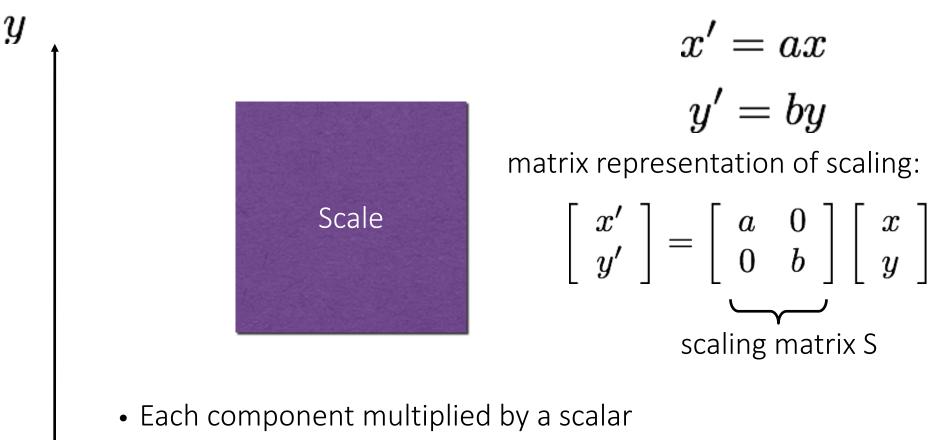
aspect

cylindrical

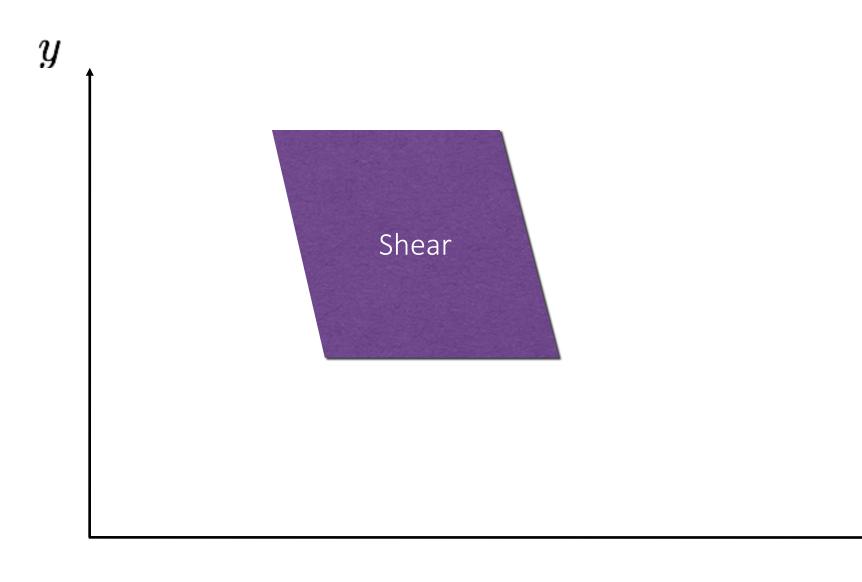
affine

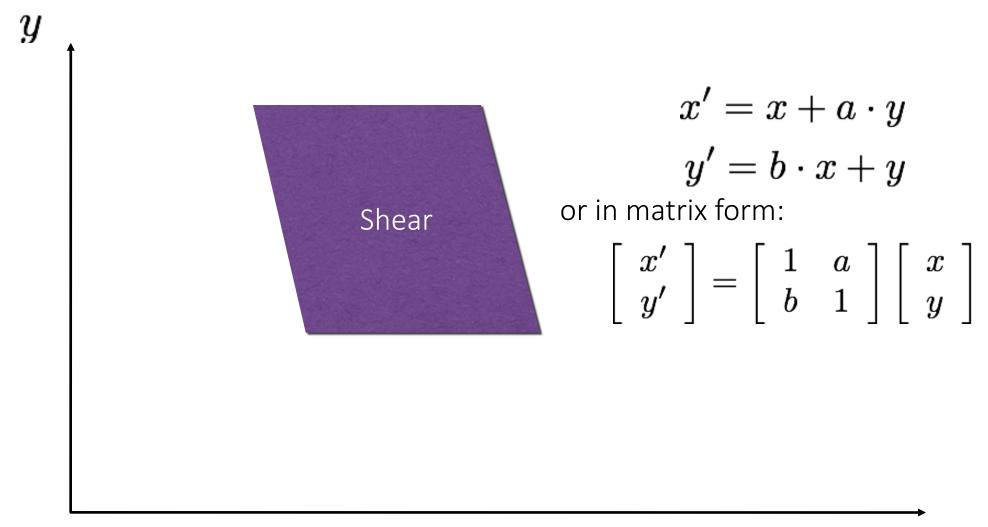


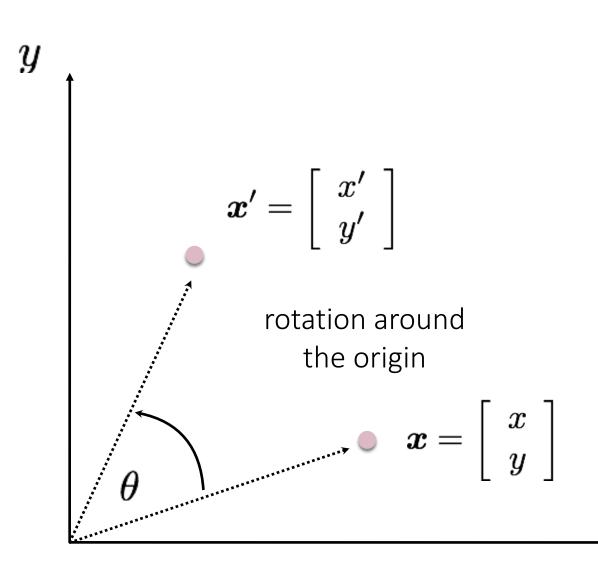




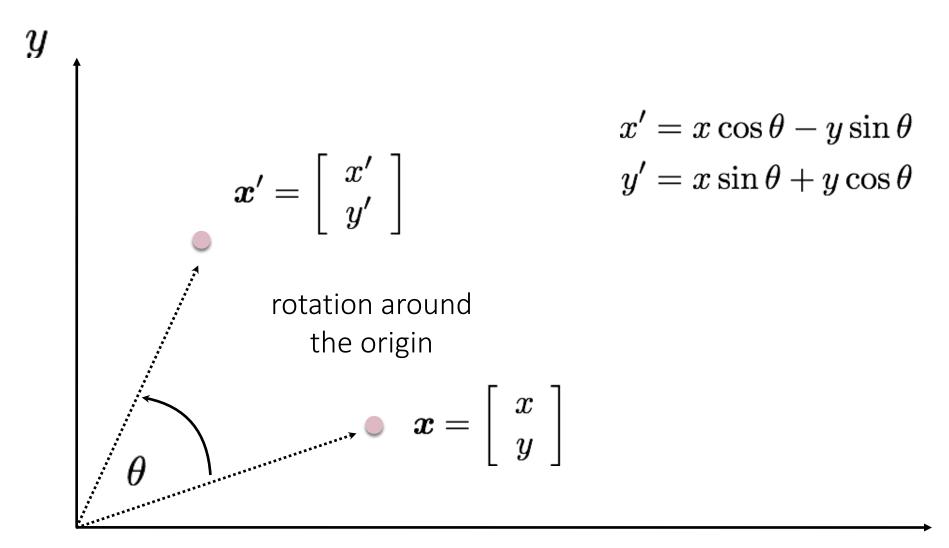
• Uniform scaling - same scalar for each component

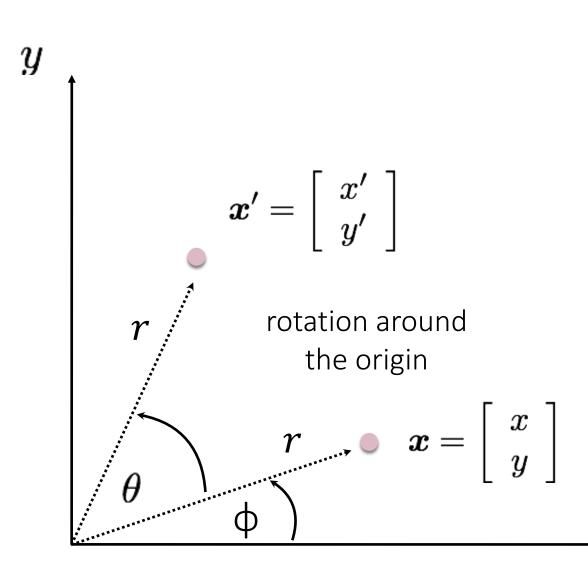






x



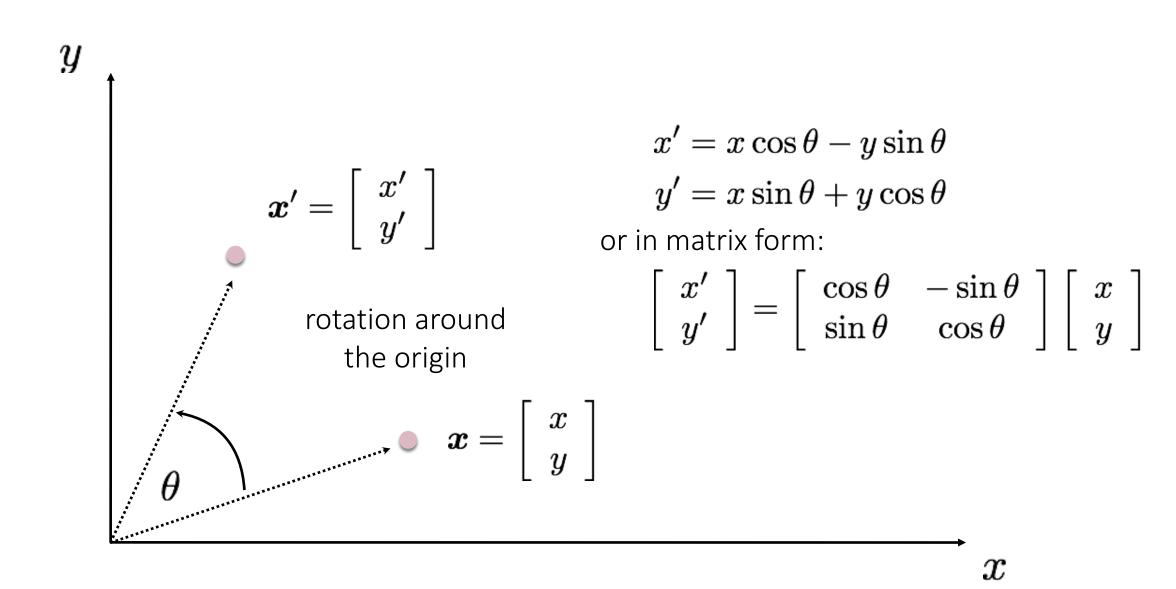


Polar coordinates... $x = r \cos (\phi)$ $y = r \sin (\phi)$ $x' = r \cos (\phi + \theta)$ $y' = r \sin (\phi + \theta)$

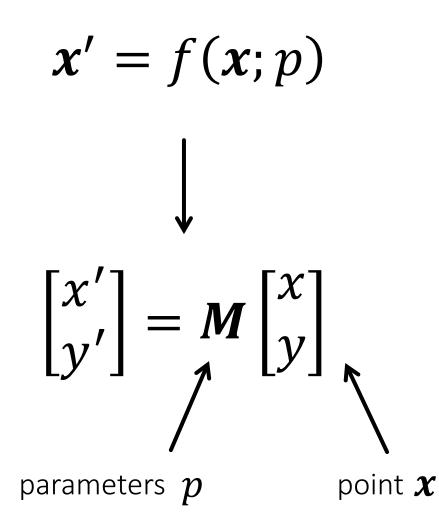
Trigonometric Identity... $x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta)$ $y' = r \sin(\phi) \cos(\theta) + r \cos(\phi) \sin(\theta)$

Substitute... $x' = x \cos(\theta) - y \sin(\theta)$ $y' = x \sin(\theta) + y \cos(\theta)$

x

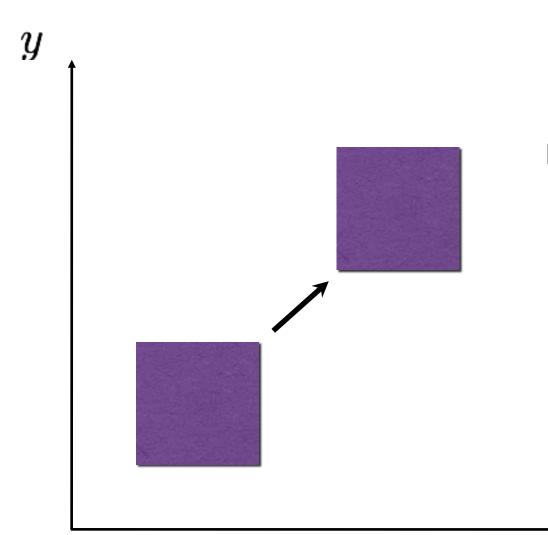


2D planar and linear transformations

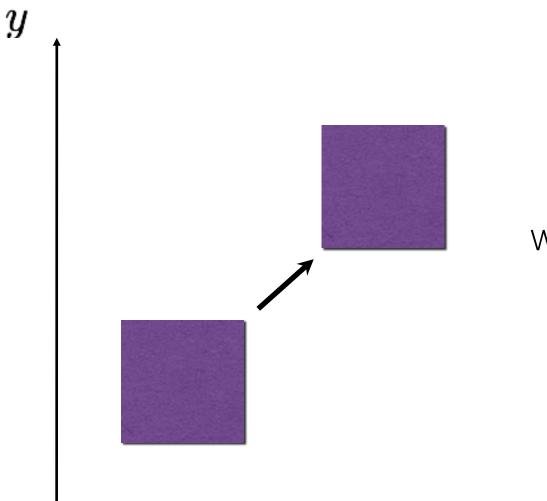


2D planar and linear transformations

Flip across y $\mathbf{M} = \begin{bmatrix} s_x & 0\\ 0 & s_y \end{bmatrix} \qquad \mathbf{M} = \begin{bmatrix} -1 & 0\\ 0 & 1 \end{bmatrix}$ Scale Rotate Flip across origin $\mathbf{M} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \qquad \mathbf{M} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ Shear Identity $\mathbf{M} = \begin{bmatrix} 1 & s_x \\ s_y & 1 \end{bmatrix} \qquad \qquad \mathbf{M} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$



How would you implement translation?

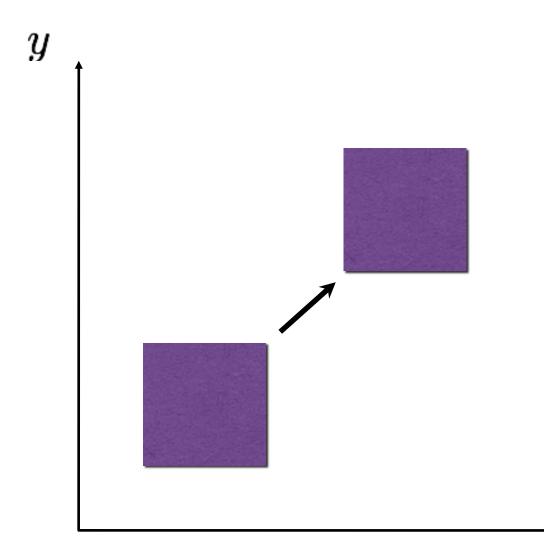


$$x' = x + t_x$$
$$y' = y + t_x$$

What about matrix representation?

$$\mathbf{M} = \left[\begin{array}{cc} ? & ? \\ ? & ? \end{array} \right]$$

x



$$x' = x + t_x$$
$$y' = y + t_x$$

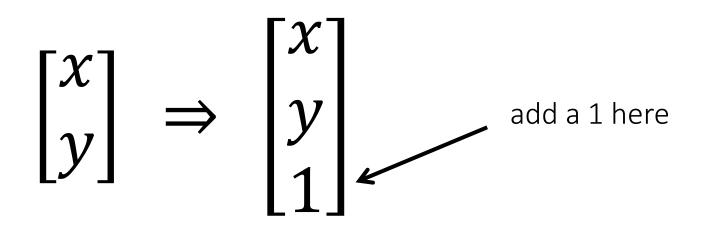
What about matrix representation?

Not possible.

Projective geometry 101

Homogeneous coordinates

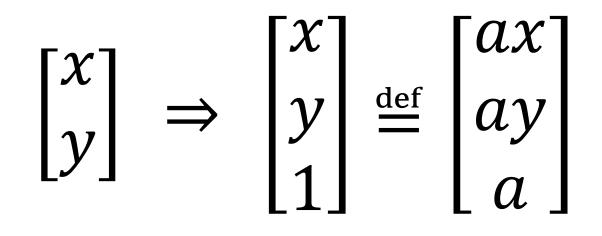
heterogeneous homogeneous coordinates coordinates



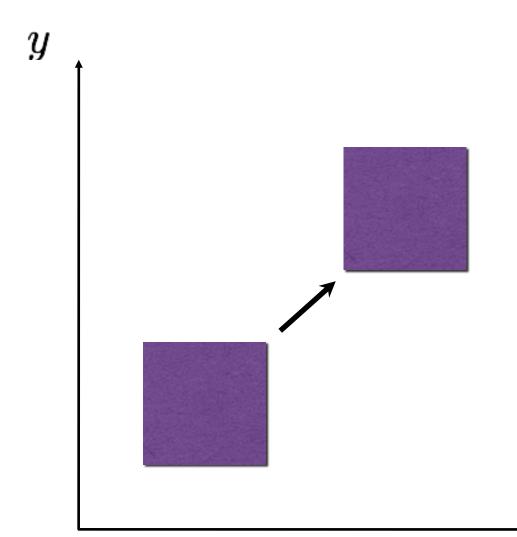
• Represent 2D point with a 3D vector

Homogeneous coordinates

heterogeneous homogeneous coordinates coordinates

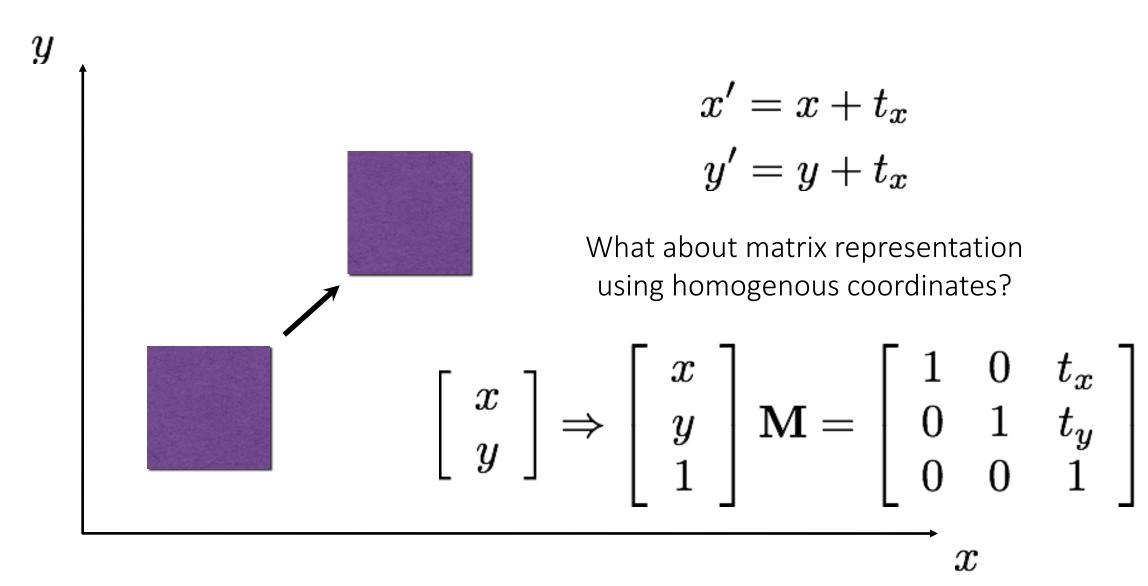


- Represent 2D point with a 3D vector
- 3D vectors are only defined up to scale



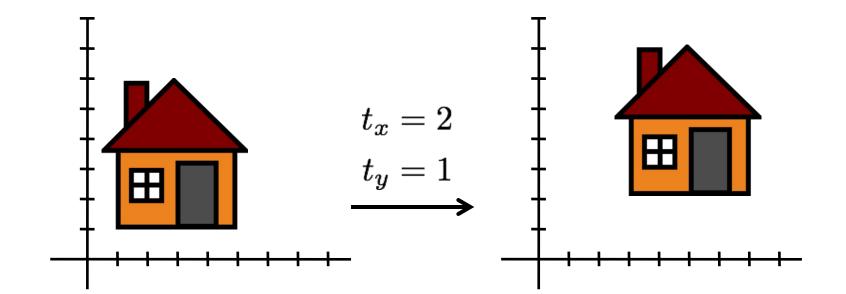
$$x' = x + t_x$$
$$y' = y + t_x$$

What about matrix representation using homogeneous coordinates?



2D translation using homogeneous coordinates

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix}$$



Homogeneous coordinates

Conversion:

• heterogeneous \rightarrow homogeneous

 $\left[\begin{array}{c} x\\ y\end{array}\right] \Rightarrow \left[\begin{array}{c} x\\ y\\ 1\end{array}\right]$

• homogeneous \rightarrow heterogeneous

$$\left[\begin{array}{c} x\\ y\\ w \end{array}\right] \Rightarrow \left[\begin{array}{c} x/w\\ y/w \end{array}\right]$$

• scale invariance

$$\begin{bmatrix} x & y & w \end{bmatrix}^{ op} = \lambda \begin{bmatrix} x & y & w \end{bmatrix}^{ op}$$

Special points:

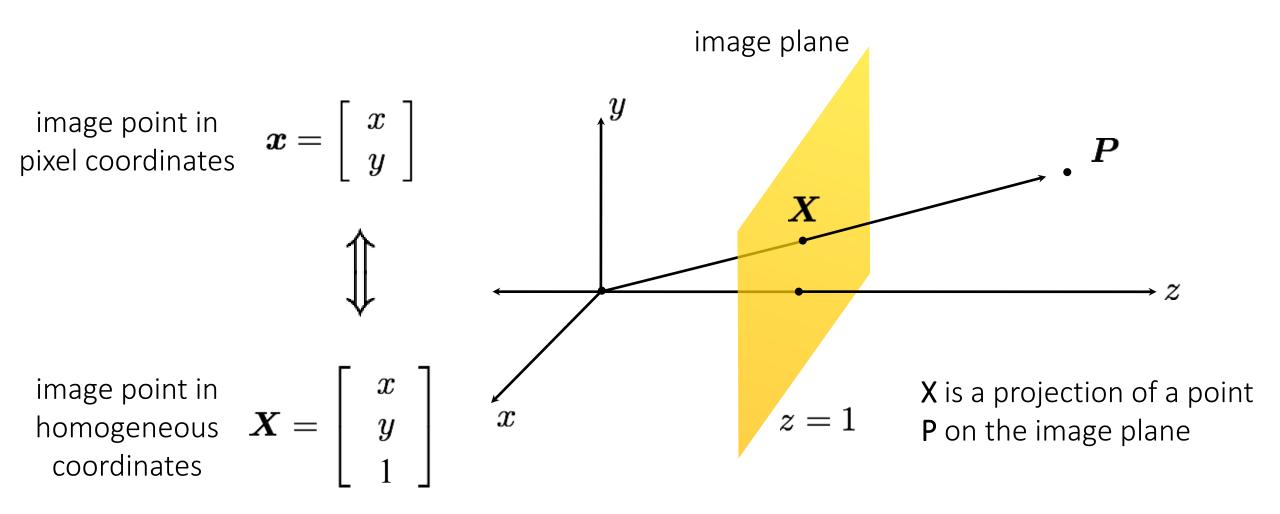
• point at infinity

$$\left[egin{array}{ccc} x & y & 0 \end{array}
ight]$$

undefined

$$\left[\begin{array}{ccc} 0 & 0 & 0 \end{array}\right]$$

Projective geometry

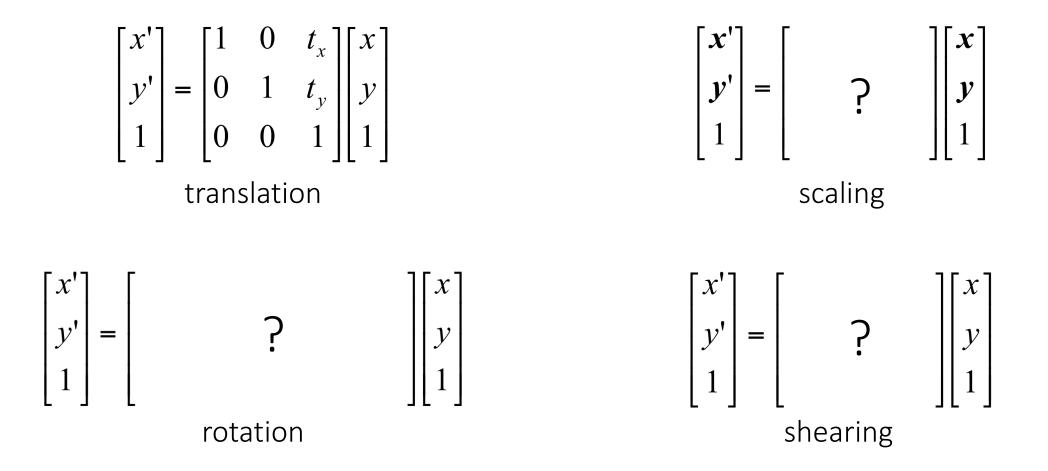


What does scaling X correspond to?

Transformations in projective geometry

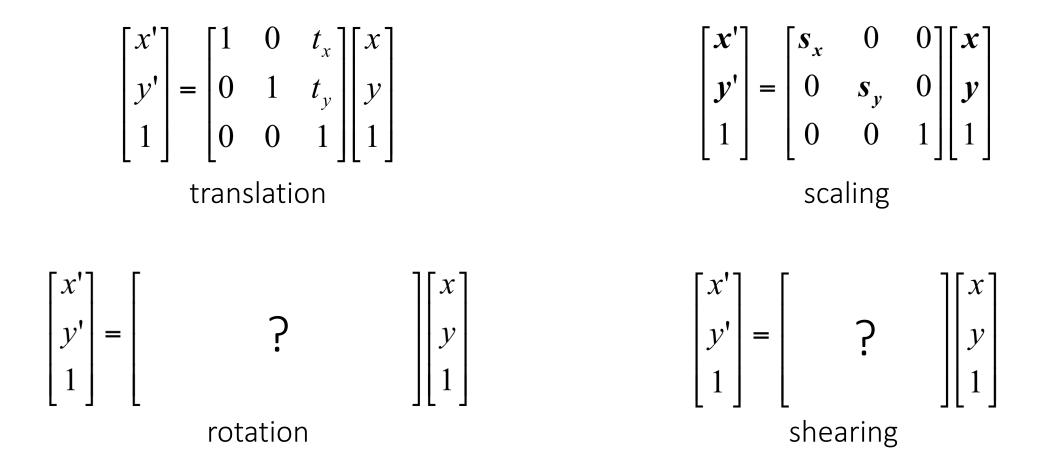
2D transformations in heterogeneous coordinates

Re-write these transformations as 3x3 matrices:



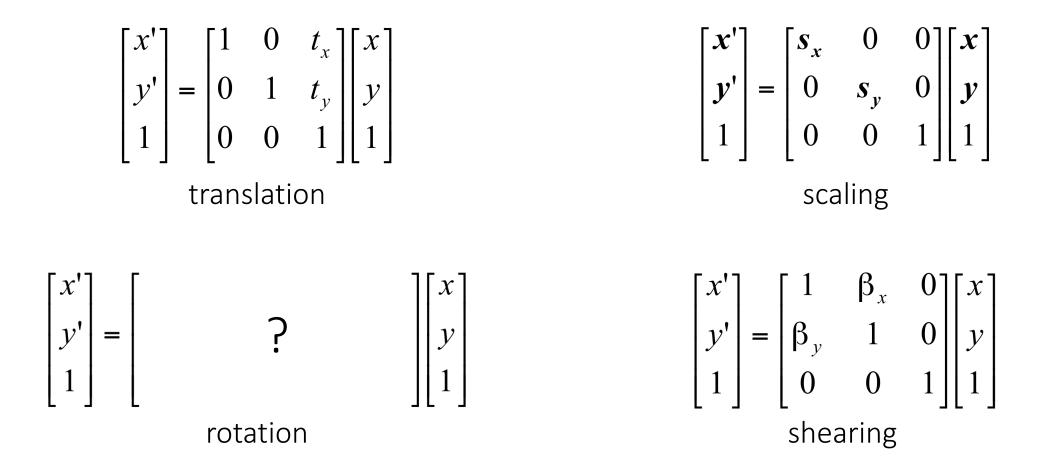
2D transformations in heterogeneous coordinates

Re-write these transformations as 3x3 matrices:



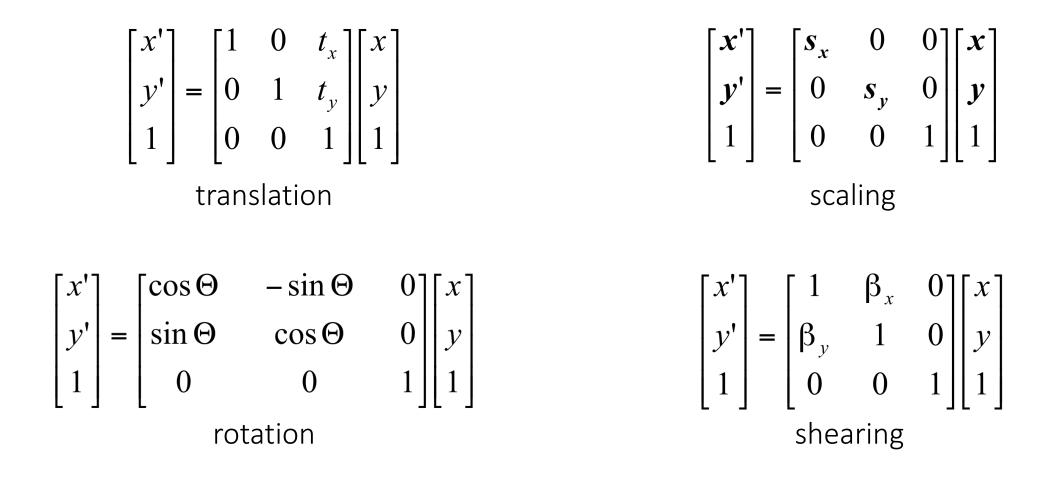
2D transformations in heterogeneous coordinates

Re-write these transformations as 3x3 matrices:



2D transformations in heterogeneous coordinates

Re-write these transformations as 3x3 matrices:



Matrix composition

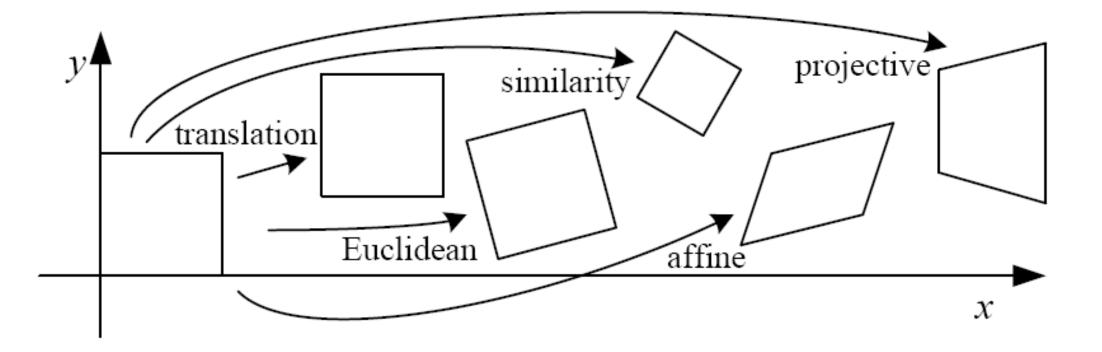
Transformations can be combined by matrix multiplication:

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ w \end{bmatrix}$$
$$p' = ? ? ? P$$

Matrix composition

Transformations can be combined by matrix multiplication:

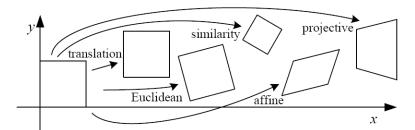
$$\begin{bmatrix} x'\\y'\\w' \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 1 & 0 & tx\\0 & 1 & ty\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\Theta & -\sin\Theta & 0\\\sin\Theta & \cos\Theta & 0\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0\\0 & sy & 0\\0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x\\y\\w \end{bmatrix}$$
$$p' = \text{translation}(t_{x},t_{y}) \qquad \text{rotation}(\theta) \qquad \text{scale}(s,s) \qquad p$$



Name	Matrix	# D.O.F.
translation	$\left[egin{array}{c c} I & t \end{array} ight]$?
rigid (Euclidean)	$\left[egin{array}{c c} R & t \end{array} ight]$?
similarity	$\left[\left. s \boldsymbol{R} \right \boldsymbol{t} \right]$?
affine	$\begin{bmatrix} A \end{bmatrix}$?
projective	$\left[egin{array}{c} ilde{H} \end{array} ight]$?

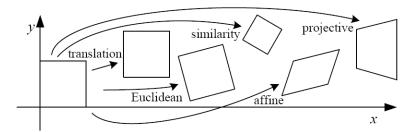
Translation:

 $\left[\begin{array}{rrrr} 1 & 0 & t_1 \\ 0 & 1 & t_2 \\ 0 & 0 & 1 \end{array} \right]$

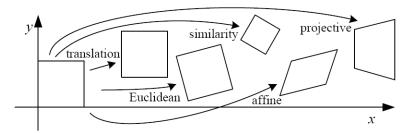


Euclidean (rigid): rotation + translation

$$\left[\begin{array}{rrrr} r_1 & r_2 & r_3 \\ r_4 & r_5 & r_6 \\ 0 & 0 & 1 \end{array}\right]$$

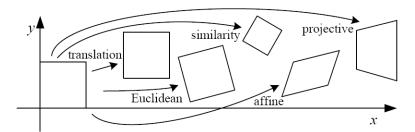


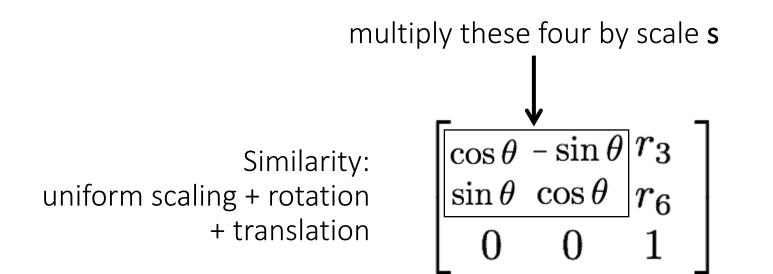
Euclidean (rigid): rotation + translation $\begin{bmatrix} \cos\theta & -\sin\theta & r_3 \\ \sin\theta & \cos\theta & r_6 \\ 0 & 0 & 1 \end{bmatrix}$

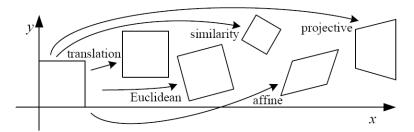


Similarity: uniform scaling + rotation + translation

$$\left[\begin{array}{rrrrr} r_1 & r_2 & r_3 \\ r_4 & r_5 & r_6 \\ 0 & 0 & 1 \end{array}\right]$$



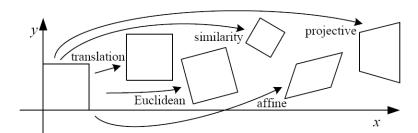




 a_1 a_2 a_3 Affine transform a_4 a_5 a_6 001

$$\begin{split} A &= \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \cos(-\Phi) & -\sin(-\Phi)\\ \sin(-\Phi) & \cos(-\Phi) \end{bmatrix} \\ & \\ \dots \begin{bmatrix} \lambda_1 & 0\\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} \cos\Phi & -\sin\Phi\\ \sin\Phi & \cos\Phi \end{bmatrix} \end{split}$$

Linear part can be decomposed

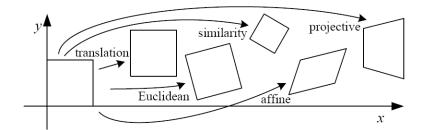


Affine transform
$$\mathbf{x}' = H_A \mathbf{x} = \begin{bmatrix} A & \mathbf{t} \\ \mathbf{0}^T & \mathbf{1} \end{bmatrix} \mathbf{x}$$

$$A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \cos(-\Phi) & -\sin(-\Phi) \\ \sin(-\Phi) & \cos(-\Phi) \end{bmatrix} \dots$$
$$\dots \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} \cos\Phi & -\sin\Phi \\ \sin\Phi & \cos\Phi \end{bmatrix}$$

Linear part can be decomposed

 $A = R(\theta)R(-\Phi)D(\lambda_1,\lambda_2)R(\Phi)$



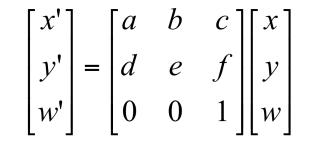
Affine transformations

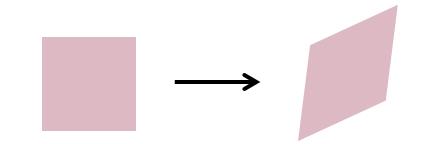
Affine transformations are combinations of

- arbitrary (4-DOF) linear transformations; and
- translations

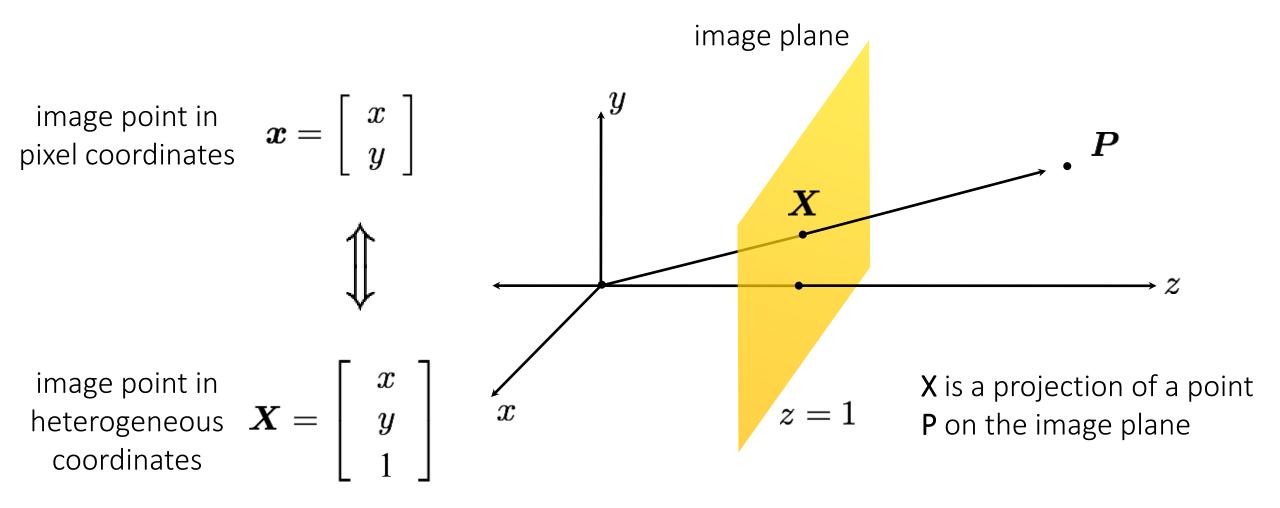
Properties of affine transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines map to parallel lines
- ratios are preserved
- compositions of affine transforms are also affine transforms





Projective transformations



Projective transformations

Projective transformations are combinations of

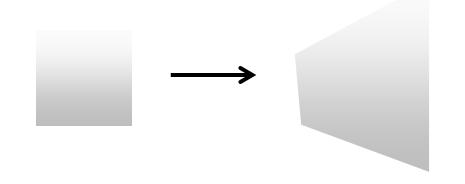
- affine transformations; and
- projective wraps

Properties of projective transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines do not necessarily map to parallel lines
- ratios are not necessarily preserved
- compositions of projective transforms are also projective transforms

$$\begin{bmatrix} x'\\y'\\w'\end{bmatrix} = \begin{bmatrix} a & b & c\\d & e & f\\g & h & i \end{bmatrix} \begin{bmatrix} x\\y\\w\end{bmatrix}$$

How many degrees of freedom?



Projective transforms = 8Dof

$$\begin{aligned} k_{p2} \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} &= \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} k_{p1} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \\ & \downarrow \\ \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} &= \begin{bmatrix} k_{p1} \\ k_{p2} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ y \\ 1 \end{bmatrix} \\ & \downarrow \\ \end{bmatrix} \\ & \downarrow \\ \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} k_{p1} \\ k_{p2} \end{bmatrix} \begin{bmatrix} a_{11}/a_{33} & a_{12}/a_{33} & a_{13}/a_{33} \\ a_{21}/a_{33} & a_{22}/a_{33} & a_{23}/a_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \\ & \downarrow \\ \end{bmatrix}$$

Projective transformations

Projective transformations are combinations of

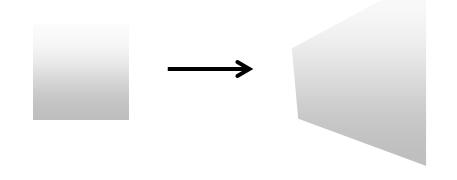
- affine transformations; and
- projective wraps

Properties of projective transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines do not necessarily map to parallel lines
- ratios are not necessarily preserved
- compositions of projective transforms are also projective transforms

$$\begin{bmatrix} x'\\y'\\w'\end{bmatrix} = \begin{bmatrix} a & b & c\\d & e & f\\g & h & i \end{bmatrix} \begin{bmatrix} x\\y\\w\end{bmatrix}$$

8 DOF: vectors (and therefore matrices) are defined up to scale)



Name	Matrix	# D.O.F.
translation	$\left[egin{array}{c c} I & t \end{array} ight]$	2
rigid (Euclidean)	$\left[egin{array}{c c} R & t \end{array} ight]$	3
similarity	$\left[\left. s \boldsymbol{R} \right \boldsymbol{t} \right]$	3
affine	$\begin{bmatrix} A \end{bmatrix}$	6
projective	$\left[egin{array}{c} ilde{H} \end{array} ight]$	8

Properties

Group	Matrix	Distortion	Invariant properties
Projective 8 dof	$\left[\begin{array}{ccc} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{array}\right]$	$\stackrel{\triangleleft}{\bigtriangleup}$	Concurrency, collinearity, order of contact: intersection (1 pt contact); tangency (2 pt con- tact); inflections (3 pt contact with line); tangent discontinuities and cusps. cross ratio (ratio of ratio of lengths).
Affine 6 dof	$\left[\begin{array}{ccc} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Parallelism, ratio of areas, ratio of lengths on collinear or parallel lines (e.g. midpoints), linear combinations of vectors (e.g. centroids). The line at infinity, l_{∞} .
Similarity 4 dof	$\left[\begin{array}{ccc} sr_{11} & sr_{12} & t_x \\ sr_{21} & sr_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Ratio of lengths, angle. The circular points, I, J (see section 2.7.3).
Euclidean 3 dof	$\left[\begin{array}{rrrr} r_{11} & r_{12} & t_x \\ r_{21} & r_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$	\Diamond	Length, area