Lecture 11

Image Transformations

What is an image?

$$
f(\boldsymbol{x})
$$

grayscale image

What is the range of the image function f ? the image function?

$$
\text { domain } \boldsymbol{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

A (grayscale) image is a 2D function.

RECALL

Point Processing and Image Filtering

Point Operation

point processing

Neighborhood Operation

"filtering"

What types of image transformations can we do?

What types of image transformations can we do?

Warping example: feature matching

Warping example: feature matching

Warping example: feature matching

- object recognition
- 3D reconstruction
- augmented reality
- image stitching

How do you compute the transformation?

Warping example: feature matching

Given a set of matched feature points:

and a transformation:

find the best estimate of the parameters

2D transformations

2D transformations

translation

affine

rotation

perspective

aspect

cylindrical

2D planar transformations

2D planar transformations

- Each component multiplied by a scalar
- Uniform scaling - same scalar for each component

2D planar transformations

$$
\begin{aligned}
x^{\prime} & =a x \\
y^{\prime} & =b y
\end{aligned}
$$

Scale

- Each component multiplied by a scalar
- Uniform scaling - same scalar for each component

2D planar transformations

$$
\begin{aligned}
x^{\prime} & =a x \\
y^{\prime} & =b y
\end{aligned}
$$

matrix representation of scaling:
Scale

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]}_{\text {scaling matrix S }}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Each component multiplied by a scalar
- Uniform scaling - same scalar for each component

2D planar transformations

2D planar transformations

$$
\begin{aligned}
x^{\prime} & =x+a \cdot y \\
y^{\prime} & =b \cdot x+y
\end{aligned}
$$

or in matrix form:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & a \\
b & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2D planar transformations

rotation around the origin

$$
\boldsymbol{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2D planar transformations

2D planar transformations

Polar coordinates...

$$
\begin{aligned}
& x=r \cos (\phi) \\
& y=r \sin (\phi) \\
& x^{\prime}=r \cos (\phi+\theta) \\
& y^{\prime}=r \sin (\phi+\theta)
\end{aligned}
$$

Trigonometric Identity...
$x^{\prime}=r \cos (\phi) \cos (\theta)-r \sin (\phi) \sin (\theta)$
$y^{\prime}=r \sin (\phi) \cos (\theta)+r \cos (\phi) \sin (\theta)$

Substitute...
$x^{\prime}=x \cos (\theta)-y \sin (\theta)$
$y^{\prime}=x \sin (\theta)+y \cos (\theta)$

2D planar transformations

2D planar and linear transformations

$$
\begin{aligned}
& x^{\prime}=f(x ; p) \\
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=M\left[\begin{array}{l}
x \\
y
\end{array}\right]_{p} \underbrace{}_{\text {point }} x}
\end{aligned}
$$

2D planar and linear transformations

Scale
$\mathbf{M}=\left[\begin{array}{cc}s_{x} & 0 \\ 0 & s_{y}\end{array}\right]$

Rotate

$$
\mathbf{M}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]
$$

Shear

$$
\mathbf{M}=\left[\begin{array}{cc}
1 & s_{x} \\
s_{y} & 1
\end{array}\right]
$$

2D translation

2D translation

$$
\begin{aligned}
x^{\prime} & =x+t_{x} \\
y^{\prime} & =y+t_{x}
\end{aligned}
$$

What about matrix representation?

$$
\mathbf{M}=\left[\begin{array}{ll}
? & ? \\
? & ?
\end{array}\right]
$$

2D translation

$$
\begin{aligned}
x^{\prime} & =x+t_{x} \\
y^{\prime} & =y+t_{x}
\end{aligned}
$$

What about matrix representation?

Not possible.

Projective geometry 101

Homogeneous coordinates

heterogeneous homogeneous coordinates coordinates

- Represent 2D point with a 3D vector

Homogeneous coordinates

heterogeneous homogeneous
coordinates coordinates

$\left[\begin{array}{l}x \\ y\end{array}\right] \Rightarrow\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]\left[\begin{array}{c}\text { dest } \\ \underline{a x} \\ a y \\ a\end{array}\right]$

- Represent 2D point with a 3D vector
- 3D vectors are only defined up to scale

2D translation

2D translation

y

$$
\begin{aligned}
x^{\prime} & =x+t_{x} \\
y^{\prime} & =y+t_{x}
\end{aligned}
$$

What about matrix representation using homogenous coordinates?

$$
\underbrace{\left[\begin{array}{l}
x \\
y
\end{array}\right] \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \mathbf{M}=\left[\begin{array}{llc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]}
$$

2D translation using homogeneous coordinates

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x+t_{x} \\
y+t_{y} \\
1
\end{array}\right]
$$

Homogeneous coordinates

Conversion:

- heterogeneous \rightarrow homogeneous

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

- homogeneous \rightarrow heterogeneous

$$
\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \Rightarrow\left[\begin{array}{l}
x / w \\
y / w
\end{array}\right]
$$

- point at infinity

Special points:

$$
\left.\begin{array}{lll}
x & y & 0
\end{array}\right]
$$

- undefined

$$
\left.\begin{array}{lll}
0 & 0 & 0
\end{array}\right]
$$

- scale invariance

$$
\left[\begin{array}{lll}
x & y & w
\end{array}\right]^{\top}=\lambda\left[\begin{array}{lll}
x & y & w
\end{array}\right]^{\top}
$$

Projective geometry

What does scaling X correspond to?

Transformations in projective geometry

2D transformations in heterogeneous coordinates

Re-write these transformations as 3×3 matrices:

$$
\begin{gathered}
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=} \\
\text { translation }
\end{gathered}\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\underbrace{\left[\begin{array}{l}
?
\end{array}\right]}_{\text {scaling }}\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ll}
& ?
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ll}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

rotation
shearing

2D transformations in heterogeneous coordinates

Re-write these transformations as 3×3 matrices:

$$
\left.\begin{array}{c}
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=} \\
\\
\text { translation }
\end{array} \begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{c}
{\left[\begin{array}{c}
\boldsymbol{x}^{\prime} \\
\boldsymbol{y}^{\prime} \\
1
\end{array}\right]} \\
\qquad \begin{array}{ccc}
{\left[\begin{array}{ccc}
\boldsymbol{s}_{\boldsymbol{x}} & 0 & 0 \\
0 & \boldsymbol{s}_{\boldsymbol{y}} & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{array}\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{y} \\
1
\end{array}\right] \\
\text { scaling }
\end{array}\right.
$$

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=[
$$

rotation

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{l}
\\
\hline
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

shearing

2D transformations in heterogeneous coordinates

Re-write these transformations as 3×3 matrices:

$$
\begin{gathered}
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=} \\
\\
\text { translation }
\end{gathered} \frac{\left.\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]}{}
$$

$$
\left[\begin{array}{c}
{\left[\begin{array}{c}
x^{\prime} \\
\boldsymbol{y}^{\prime} \\
1
\end{array}\right]} \\
\qquad \begin{array}{ccc}
{\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{array}\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
\text { scaling }
\end{array}\right.
$$

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=[
$$

$$
]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & \beta_{x} & 0 \\
\beta_{y} & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

rotation
shearing

2D transformations in heterogeneous coordinates

Re-write these transformations as 3×3 matrices:

$$
\left.\begin{array}{c}
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=} \\
\\
\text { translation }
\end{array} \begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{c}
{\left[\begin{array}{c}
\boldsymbol{x}^{\prime} \\
\boldsymbol{y}^{\prime} \\
1
\end{array}\right]}
\end{array}=\underset{\text { scaling }}{\left[\begin{array}{ccc}
\boldsymbol{s}_{\boldsymbol{x}} & 0 & 0 \\
0 & \boldsymbol{s}_{\boldsymbol{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{y} \\
1
\end{array}\right]}\right.
$$

$$
\left[\begin{array}{c}
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]} \\
\text { rotation }
\end{array}=\underset{\left.\begin{array}{ccc}
\cos \Theta & -\sin \Theta & 0 \\
\sin \Theta & \cos \Theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]}{\left[\begin{array}{l}
\text { and }
\end{array}\right]}\right.
$$

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\underset{\text { shearing }}{\left[\begin{array}{ccc}
1 & \beta_{x} & 0 \\
\beta_{y} & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]}
$$

Matrix composition

Transformations can be combined by matrix multiplication:

$$
\begin{aligned}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right] } & =\left(\left[\begin{array}{lll}
1 & 0 & t x \\
0 & 1 & t y \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \Theta & -\sin \Theta & 0 \\
\sin \Theta & \cos \Theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
s x & 0 & 0 \\
0 & s y & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \\
\mathrm{p}^{\prime} & =?
\end{aligned}
$$

Matrix composition

Transformations can be combined by matrix multiplication:

$$
\begin{aligned}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right] } & =\left(\left[\begin{array}{lll}
1 & 0 & t x \\
0 & 1 & t y \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \Theta & -\sin \Theta & 0 \\
\sin \Theta & \cos \Theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
s x & 0 & 0 \\
0 & s y & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \\
\mathrm{p}^{\prime} & =\operatorname{translation}\left(\mathrm{t}_{x}, \mathrm{t}_{y}\right) \quad \operatorname{rotation}(\theta)
\end{aligned}
$$

Classification of 2D transformations

Classification of 2D transformations

Classification of 2D transformations

Name	Matrix	\# D.O.F.
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]$	$?$
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]$	$?$
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]$	$?$
affine	$[\boldsymbol{A}]$	$?$
projective	$[\tilde{\boldsymbol{H}}]$	$?$

Classification of 2D transformations

Translation: $\left[\begin{array}{ccc}1 & 0 & t_{1} \\ 0 & 1 & t_{2} \\ 0 & 0 & 1\end{array}\right]$

Classification of 2D transformations

$$
\underset{\text { Euclidean (rigid): }}{\text { rotation + translation }} \quad\left[\begin{array}{ccc}
r_{1} & r_{2} & r_{3} \\
r_{4} & r_{5} & r_{6} \\
0 & 0 & 1
\end{array}\right]
$$

Classification of 2D transformations

$$
\begin{array}{r}
\text { Euclidean (rigid): } \\
\text { ation + translation }
\end{array} \quad\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & r_{3} \\
\sin \theta & \cos \theta & r_{6} \\
0 & 0 & 1
\end{array}\right]
$$

Classification of 2D transformations

Similarity:
uniform scaling + rotation

+ translation $\quad\left[\begin{array}{ccc}r_{1} & r_{2} & r_{3} \\ r_{4} & r_{5} & r_{6} \\ 0 & 0 & 1\end{array}\right]$

Classification of 2D transformations

multiply these four by scale s

Similarity: uniform scaling + rotation

+ translation

$$
\begin{gathered}
\downarrow \\
{\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & r_{3} \\
\sin \theta & \cos \theta & r_{6} \\
\hline 0 & 0 & 1
\end{array}\right]}
\end{gathered}
$$

Classification of 2D transformations

$$
\begin{gathered}
A=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{cc}
\cos (-\Phi) & -\sin (-\Phi) \\
\sin (-\Phi) & \cos (-\Phi)
\end{array}\right] \ldots
\end{gathered} \begin{gathered}
\text { Linear part can be } \\
\ldots .\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]\left[\begin{array}{cc}
\cos \Phi & -\sin \Phi \\
\sin \Phi & \cos \Phi
\end{array}\right]
\end{gathered}
$$

Classification of 2D transformations

$$
\begin{aligned}
& \text { Affine transform } \quad \boldsymbol{x}^{\prime}=H_{A} \boldsymbol{X}=\left[\begin{array}{cc}
A & \boldsymbol{t} \\
\mathbf{0}^{\boldsymbol{T}} & 1
\end{array}\right] \boldsymbol{x} \\
& A=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{cc}
\cos (-\Phi) & -\sin (-\Phi) \\
\sin (-\Phi) & \cos (-\Phi)
\end{array}\right] \ldots \\
& \ldots\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]\left[\begin{array}{cc}
\cos \Phi & -\sin \Phi \\
\sin \Phi & \cos \Phi
\end{array}\right] \\
& A \\
& =R(\theta) R(-\Phi) D\left(\lambda_{1}, \lambda_{2}\right) R(\Phi)
\end{aligned}
$$

Affine transformations

Affine transformations are combinations of

- arbitrary (4-DOF) linear transformations; and
- translations

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

Properties of affine transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines map to parallel lines

- ratios are preserved
- compositions of affine transforms are also affine transforms

Projective transformations

Projective transformations

Projective transformations are combinations of

- affine transformations; and
- projective wraps

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

How many degrees of freedom?
Properties of projective transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines do not necessarily map to parallel lines
- ratios are not necessarily preserved
- compositions of projective transforms are also projective transforms

Projective transforms = 8Dof

$$
\left.\begin{array}{l}
k_{p 2}\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] k_{p 1}\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\frac{k_{p 1}}{k_{p 2}}\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]} \\
x^{\prime} \\
1
\end{array}\right]=k\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] .
$$

Projective transformations

Projective transformations are combinations of

- affine transformations; and
- projective wraps

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

8 DOF: vectors (and therefore
Properties of projective transformations: matrices) are defined up to scale)

- origin does not necessarily map to origin
- lines map to lines
- parallel lines do not necessarily map to parallel lines
- ratios are not necessarily preserved
- compositions of projective transforms are also projective transforms

Classification of 2D transformations

Name	Matrix	\# D.O.F.
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]$	2
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]$	3
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]$	3
affine	$[\boldsymbol{A}]$	6
projective	$[\tilde{\boldsymbol{H}}]$	8

Properties

Group	Matrix	Distortion	Invariant properties
Projective 8 dof	$\left[\begin{array}{lll}h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33}\end{array}\right]$	Concurrency, collinearity, order of contact: intersection (1 pt contact); tangency (2 pt con- tact); inflections (3 pt contact with line); tangent discontinuities and cusps. cross ratio (ratio of ratio of lengths).	
Affine 6 dof	$\left[\begin{array}{ccc}a_{11} & a_{12} & t_{x} \\ a_{21} & a_{22} & t_{y} \\ 0 & 0 & 1\end{array}\right]$	Parallelism, ratio of areas, ratio of lengths on collinear or parallel lines (e.g. midpoints), lin- ear combinations of vectors (e.g. centroids). The line at infinity, l lo	
Similarity 4 dof	$\left[\begin{array}{ccc}s r_{11} & s r_{12} & t_{x} \\ s r_{21} & s r_{22} & t_{y} \\ 0 & 0 & 1\end{array}\right]$	\square	Ratio of lengths, angle. The circular points, \mathbf{I}, \mathbf{J} (see section 2.7.3).
Euclidean 3 dof	$\left[\begin{array}{ccc}r_{11} & r_{12} & t_{x} \\ r_{21} & r_{22} & t_{y} \\ 0 & 0 & 1\end{array}\right]$	\square	Length, area

