
Lecture 9

Neural Network
Optimization

CMSC 491/691

Some slides from Owens, Jayasuriya, Karpathy

Neural
Network

Lecture 9

Neural Network
Optimization

CMSC 491/691

Some slides from Owens, Jayasuriya, Karpathy

CMSC 491/691

Output
representation

Intermediate
representation

Input
representation

Stacking layers

𝐡𝐡 = “hidden units”

Stacking layers
Output

representation
Intermediate

representation
Input

representation

𝐡𝐡 = “hidden units”

Computation in a neural net – Full Layer

Input
representation

Output
representation

Linear layer

𝑥𝑥 𝑤𝑤j

𝑦𝑦j𝑏𝑏j

𝑦𝑦1
𝑦𝑦2
𝑦𝑦3

…

𝑦𝑦 = 𝑊𝑊𝑥𝑥 + 𝑏𝑏

𝑤𝑤11 ⋯ 𝑤𝑤1𝑛𝑛
⋮ ⋱ ⋮
𝑤𝑤j1 ⋯ 𝑤𝑤j𝑛𝑛

𝑦𝑦
parameters of the model:𝜽𝜽 = {𝑾𝑾,𝒃𝒃}

𝑥𝑥1
𝑥𝑥2…
𝑥𝑥𝑛𝑛

𝑏𝑏1

+ 𝑏𝑏2…
𝑏𝑏j

=

𝑦𝑦1

3
9

𝑦𝑦2…
𝑦𝑦j

“dog”

Learned

How do we learn the parameters?

predicted ground truth

Computation has a simple form

• Composition of linear functions with nonlinearities in between

• E.g. matrix multiplications with ReLU, 𝑚𝑚𝑎𝑎𝑥𝑥(0, 𝐱𝐱) afterwards

• Do a matrix multiplication, set all negative values to 0, repeat

But where do we get the weights from?

Training neural networks

Let’s start easy

world’s smallest neural network!
(a “perceptron”)

(a.k.a. line equation, linear regression)

Given a set of samples and a Perceptron

Estimate the parameter of the Perceptron

Training a Neural Network

What do you think the weight parameter is?

1 1.1

2 1.9

3.5 3.4

10 10.1

Given training data:

What do you think the weight parameter is?

1 1.1

2 1.9

3.5 3.4

10 10.1

Given training data:

not so obvious as the network gets more complicated so we use …

Given several examples

An Incremental Learning Strategy
(gradient descent)

and a perceptron

Given several examples

Modify weight such that gets ‘closer’ to

and a perceptron

An Incremental Learning Strategy
(gradient descent)

Given several examples

Modify weight such that gets ‘closer’ to

and a perceptron

perceptron
output

true
label

perceptron
parameter

An Incremental Learning Strategy
(gradient descent)

L1 Loss L2 Loss

Zero-One Loss Hinge Loss

Gradient descent:

update rule:

Backpropagation

Backpropagation

…is the rate at which this will change…

… per unit change of this

the loss function

the weight parameter

Let’s compute the derivative…

Compute the derivative

That means the weight update for gradient descent is:

move in direction of negative gradient

Gradient Descent (world’s smallest perceptron)

For each sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update

multi-layer perceptron

function of FOUR parameters and FOUR layers!

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

Entire network can be written out as one long equation

What is known? What is unknown?
We need to train the network:

Entire network can be written out as a long equation

What is known? What is unknown?

known

We need to train the network:

Entire network can be written out as a long equation

What is known? What is unknown?

unknown

We need to train the network:

activation function
sometimes has

parameters

Given a set of samples and a MLP

Estimate the parameters of the MLP

Learning an MLP

Gradient Descent

For each random sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update
vector of parameter update equations

vector of parameter partial derivatives

So we need to compute the partial derivatives

Partial derivative describes…

(loss layer)

Remember,

rest of the network

Intuitively, the effect of weight on loss function :

depends on

depends on
depends on

According to the chain rule…

rest of the network

Chain Rule!

rest of the network

Just the partial
derivative of L2 loss

rest of the network

Let’s use a Sigmoid function

rest of the network

already computed.
re-use (propagate)!

The chain rule says…

depends ondepends on
depends on

depends ondepends on

depends on

depends on

The chain rule says…

depends ondepends on
depends on

depends ondepends on

depends on

depends on

already computed.
re-use (propagate)!

depends ondepends on
depends on

depends ondepends on

depends on

depends on

depends ondepends on
depends on

depends ondepends on

depends on

depends on

depends ondepends on
depends on

depends ondepends on

depends on

depends on

Gradient Descent

For each example sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update

vector of parameter update equations

vector of parameter partial derivatives

Gradient Descent

For each example sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update

Step size: learning rate
Too big: will miss the minimum
Too small: slow convergence

-

Learning rates

Learning rate scheduling
• Use different learning rate at each iteration.
• Most common choice:

η𝑡𝑡 =
η0
𝑡𝑡

Need to select initial learning rate η0
More modern choice: Adaptive learning rates.

η𝑡𝑡 = 𝐺𝐺
𝜕𝜕𝜕𝜕
𝜕𝜕θ 𝑖𝑖=0

𝑡𝑡

Many choices for G (Adam, Adagrad, Adadelta).

-

Δθ ← 𝑤𝑤
𝜕𝜕𝜕𝜕
𝜕𝜕θ

+ 1 − 𝑤𝑤 Δθ Take direction history
into account!

- No consensus on Adam etc.: Seem to give faster
performance to worse local minima.

Convolutional Neural
Networks

Motivation

[Krizhevsky, Sutskever, Hinton. NIPS 2012]

“AlexNet” — Won the ILSVRC2012 Challenge

CNNs in 2012: “SuperVision”
(aka “AlexNet”)

Major breakthrough: 15.3% Top-5 error on ILSVRC2012
(Next best: 25.7%)

Recap: Before Deep Learning

Input
Pixels

Extract
Features

Figure: Karpathy 2016

Concatenate into
a vector x

SVM

Linear
Classifier

Ans

The last layer of (most) CNNs are
linear classifiers

Input
Pixels

Ans

Perform everything with a big neural
network, trained end-to-end

This piece is just a linear classifier

Key: perform enough processing so that by the time you get
to the end of the network, the classes are linearly separable

(GoogLeNet)

ConvNets
They’re just neural networks with

3D activations and weight sharing

	Lecture 9
	Lecture 9
	CMSC 491/691
	Slide Number 4
	Stacking layers
	Stacking layers
	𝑦 = 𝑊𝑥 + 𝑏
	How do we learn the parameters?
	Computation has a simple form
	Training neural networks
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Backpropagation
	Backpropagation
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Learning rates
	Learning rate scheduling
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Convolutional Neural Networks
	Slide Number 65
	Motivation
	Slide Number 67
	Slide Number 68
	CNNs in 2012: “SuperVision” (aka “AlexNet”)
	Recap: Before Deep Learning
	The last layer of (most) CNNs are linear classifiers
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104

