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Computation in a neural net – Full Layer
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“dog”

Learned

How do we learn the parameters?

predicted ground truth



Computation has a simple form

• Composition of linear functions with nonlinearities in between

• E.g. matrix multiplications with ReLU, 𝑚𝑚𝑎𝑎𝑥𝑥(0, 𝐱𝐱) afterwards

• Do a matrix multiplication, set all negative values to 0, repeat

But where do we get the weights from?



Training neural networks



Let’s start easy



world’s smallest neural network!
(a “perceptron”)

(a.k.a. line equation, linear regression)



Given a set of samples and a Perceptron

Estimate the parameter of the Perceptron

Training a Neural Network



What do you think the weight parameter is?

1 1.1

2 1.9

3.5 3.4

10 10.1

Given training data:



What do you think the weight parameter is?

1 1.1

2 1.9

3.5 3.4

10 10.1

Given training data:

not so obvious as the network gets more complicated so we use …



Given several examples 

An Incremental Learning Strategy
(gradient descent)

and a perceptron
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and a perceptron
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output
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An Incremental Learning Strategy
(gradient descent)





L1 Loss L2 Loss

Zero-One Loss Hinge Loss



Gradient descent:

update rule:



Backpropagation



Backpropagation



…is the rate at which this will change…

… per unit change of this

the loss function

the weight parameter

Let’s compute the derivative…



Compute the derivative

That means the weight update for gradient descent is:

move in direction of negative gradient



Gradient Descent (world’s smallest perceptron)

For each sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update



multi-layer perceptron

function of FOUR parameters and FOUR layers!
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Entire network can be written out as one long equation

What is known? What is unknown?
We need to train the network:
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Entire network can be written out as a long equation

What is known? What is unknown?

unknown

We need to train the network:

activation function 
sometimes has 

parameters



Given a set of samples and a MLP

Estimate the parameters of the MLP

Learning an MLP



Gradient Descent

For each random sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update
vector of parameter update equations

vector of parameter partial derivatives



So we need to compute the partial derivatives



Partial derivative describes…

(loss layer)

Remember,



rest of the network

Intuitively, the effect of weight on loss function :

depends on

depends on
depends on

According to the chain rule…



rest of the network

Chain Rule!



rest of the network

Just the partial 
derivative of L2 loss



rest of the network

Let’s use a Sigmoid function



rest of the network





already computed.
re-use (propagate)!



The chain rule says…
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Gradient Descent

For each example sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update



vector of parameter update equations

vector of parameter partial derivatives

Gradient Descent

For each example sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update





Step size: learning rate
Too big: will miss the minimum
Too small: slow convergence

-

Learning rates



Learning rate scheduling
• Use different learning rate at each iteration.
• Most common choice: 

η𝑡𝑡 =
η0
𝑡𝑡

Need to select initial learning rate η0
More modern choice: Adaptive learning rates.

η𝑡𝑡 = 𝐺𝐺
𝜕𝜕𝜕𝜕
𝜕𝜕θ 𝑖𝑖=0

𝑡𝑡

Many choices for G (Adam, Adagrad, Adadelta).



-

Δθ ← 𝑤𝑤
𝜕𝜕𝜕𝜕
𝜕𝜕θ

+ 1 − 𝑤𝑤 Δθ Take direction history 
into account!



- No consensus on Adam etc.: Seem to give faster 
performance to worse local minima.





Convolutional Neural 
Networks





Motivation







[Krizhevsky, Sutskever, Hinton. NIPS 2012]

“AlexNet” — Won the ILSVRC2012 Challenge

CNNs in 2012: “SuperVision”  
(aka “AlexNet”)

Major breakthrough: 15.3% Top-5 error on ILSVRC2012  
(Next best: 25.7%)



Recap: Before Deep Learning

Input  
Pixels

Extract  
Features

Figure: Karpathy 2016

Concatenate into  
a vector x

SVM

Linear  
Classifier

Ans



The last layer of (most) CNNs are 
linear classifiers

Input  
Pixels

Ans

Perform everything with a big neural  
network, trained end-to-end

This piece is just a linear classifier

Key: perform enough processing so that by the time you get  
to the end of the network, the classes are linearly separable

(GoogLeNet)











ConvNets
They’re just neural networks with  

3D activations and weight sharing


























































	Lecture 9
	Lecture 9
	CMSC 491/691
	Slide Number 4
	Stacking layers
	Stacking layers
	𝑦 = 𝑊𝑥 + 𝑏
	How do we learn the parameters?
	Computation has a simple form
	Training neural networks
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Backpropagation
	Backpropagation
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Learning rates
	Learning rate scheduling
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Convolutional Neural Networks
	Slide Number 65
	Motivation
	Slide Number 67
	Slide Number 68
	CNNs in 2012: “SuperVision”  (aka “AlexNet”)
	Recap: Before Deep Learning
	The last layer of (most) CNNs are linear classifiers
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104

