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Linear regression



Linear regression



Polynomial regression

K-th degree polynomial regression





Training objective: Test time evaluation:



What happens as we add more basis 
functions?
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What happens as we add more basis 
functions?
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What happens as we add more basis 
functions?
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functions?
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functions?
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What happens as we add more basis 
functions?
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What happens as we add more basis 
functions?
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What happens as we add more basis 
functions?



K = 9

What happens as we add more basis 
functions?



K = 10

This phenomenon is called overfitting.

It occurs when we have too high capacity 
a model, e.g., too many free parameters, 
too few data points to pin these parameters 
down.

What happens as we add more basis 
functions?



K = 1

When the model does 
not have the capacity to 
capture the true function, 
we call this underfitting.

An underfit model will have 
high error on the training 
points. This error is known 
as approximation error.



True data-generating process



This is a huge assumption! 
Almost never true in practice!



Much more commonly, we have





Parametric Approach
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Goal: Non-linear decision boundary
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Perceptron

• In 1957 Frank Rosenblatt invented the perceptron
• Computers at the time were too slow to run the perceptron, so Rosenblatt 

built a special purpose machine with adjustable resistors
• New York Times Reported: “The Navy revealed the embryo of an electronic

computer that it expects will be able to walk, talk, see, write, reproduce itself 
and be conscious of its existence”



Minsky and Papert, Perceptrons, 1972
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Parallel Distributed Processing (PDP), 1986

Source: Isola, Torralba, Freeman
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LeCun convolutional neural networks

Demos: 
http://yann.lecun.com/exdb/lenet/index.html

Source: Isola, Torralba, Freeman

http://yann.lecun.com/exdb/lenet/index.html


Yann LeCun

Was at Bell Labs when 
this video was recorded

Now 
Prof @ NYU

Chief Scientist @ Meta

Turing Award 2018
(shared with Hinton and 

Bengio)
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Neural network winter, 
2000



ImageNet: 
First (?) large-scale computer vision dataset

• Millions of images; 1000 categories

• PI: Fei-Fei Li
• Then: Prof, Princeton
• Now: Prof, Stanford

• 2019 Longuet-Higgins Prize
• Some argued that Li deserved 

the 2018 Turing Award along with 
Hinton, LeCun, Bengio

• Their work could not have been 
empirically tested without ImageNet!



Krizhevsky, Sutskever, and Hinton, NeurIPS 2012 

“AlexNet”

Got all the “pieces” right, e.g.,
• Trained on ImageNet
• 8 layer architecture (for reference: today we have architectures with 100+ layers)
• Allowed for multi-GP training



Krizhevsky, Sutskever, and Hinton, NeurIPS 2012
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Krizhevsky, Sutskever, and Hinton, NeurIPS 2012
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?
Diffusion Models
Transformers …

VISION + LANGUAGE



[Serre, 2014]

Inspiration: Hierarchical Representations

Source: Isola, Torralba, Freeman

Best to treat as inspiration.
The neural nets we’ll talk about
aren’t very biologically plausible.



Object recognition

Is dog?
Neural Network

Pixel 1

Pixel 2

Dog

Not dog

Pixel 1

Pi
xe

l2

Input Space

Fur

Pa
w

Feature Space

Goal: automatically learn a function that maps data from the input space to a 
feature space, i.e., "feature learning”, rather than use hand-crafted features

f(x)



Computation in a neural net
Let’s say we have some 1D input that we want to convert to some new feature space:

Linear layer

Output 
representation

𝑤𝑤𝑖𝑖j

𝑦𝑦j

Input 
representation

𝑥𝑥𝑖𝑖 𝑦𝑦j  = ∑𝑖𝑖 𝑤𝑤𝑖𝑖j𝑥𝑥𝑖𝑖 
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Adapted from: Isola, Torralba, Freeman



Computation in a neural net
Let's say wehave some 1D input that we want to convert to some new feature space

Linear layer

Output 
representation

𝑤𝑤𝑖𝑖j

𝑦𝑦j

Input 
representation

𝑥𝑥𝑖𝑖

weights

𝑦𝑦j  = ∑𝑖𝑖 𝑤𝑤𝑖𝑖j𝑥𝑥𝑖𝑖+ 𝑏𝑏j

bias

𝑏𝑏j

Ne
uro
n

(a.
k.a
uni
t)

3
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Adapted from: Isola, Torralba,
Freeman



Example: Linear Regression

Input 
representation

Output 
representation

Linear layer

𝑥𝑥 𝑤𝑤 𝑦𝑦

𝑏𝑏

Adapted from: Isola, Torralba, Freeman

3
8



Computation in a neural net – Full Layer

Input 
representation

Output 
representation

Linear layer

𝑥𝑥 𝑤𝑤j

𝑦𝑦j𝑏𝑏j

𝑦𝑦1
𝑦𝑦2
𝑦𝑦3

…

𝑦𝑦 = 𝑊𝑊𝑥𝑥 + 𝑏𝑏

𝑤𝑤11 ⋯ 𝑤𝑤1𝑛𝑛
⋮ ⋱ ⋮
𝑤𝑤j1 ⋯ 𝑤𝑤j𝑛𝑛

𝑦𝑦
parameters of the model:𝜽𝜽 = {𝑾𝑾,𝒃𝒃}

𝑥𝑥1
𝑥𝑥2…
𝑥𝑥𝑛𝑛

𝑏𝑏1

+ 𝑏𝑏2…
𝑏𝑏j

=

𝑦𝑦1

Adapted from: Isola, Torralba, Freeman
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𝑦𝑦2…
𝑦𝑦j



Computation in a neural
net – Full Layer

Input 
representation

Output 
representation

Linear layer Full layer

𝑥𝑥 𝑤𝑤j

𝑦𝑦j𝑏𝑏j

𝑦𝑦1
𝑦𝑦2
𝑦𝑦3

…

𝑦𝑦 = 𝑊𝑊𝑥𝑥 + 𝑏𝑏
𝑤𝑤11 ⋯
⋮ ⋱ ⋮
𝑤𝑤j1 ⋯

𝑤𝑤j𝑛𝑛 𝑏𝑏1
⋮

𝑤𝑤j𝑛𝑛 𝑏𝑏j

𝑦𝑦

𝑥𝑥1
𝑥𝑥…2
𝑥𝑥𝑛𝑛
1

=

𝑦𝑦

Adapted from: Isola, Torralba, Freeman

4
0

1
𝑦𝑦2…
𝑦𝑦j

Can again simplify notation by 
appending a 1 to 𝐱𝐱



Computation in a neural net – Recap

41

Input 
representation

Output 
representation

𝑥𝑥 𝑦𝑦

We can now transform our input representation vector into some output 
representation vector using a bunch of linear combinations of the input:

𝑧𝑧 We can repeat this as 
many times as we want!



What is the problem with this idea?

𝐖𝐖1𝐱𝐱 𝐖𝐖2𝐖𝐖1𝐱𝐱 𝐖𝐖3𝐖𝐖2𝐖𝐖1𝐱𝐱𝐱𝐱

Can be expressed as single linear layer!

𝖦𝖦 𝐖𝐖𝑖𝑖
𝑖𝑖

̂
𝐱𝐱 = 𝐖𝐖𝐱𝐱

Limited power: can’t solve XOR  



Pointwise 
Non-linearity

Solution: simple nonlinearity

Input 
representation

Output 
representation

Linear layer

𝑥𝑥 𝑤𝑤j

𝑏𝑏j 𝑦𝑦 𝑔𝑔(𝑦𝑦)



Example: linear classification with a perceptron

Source: Isola, Torralba, Freeman
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Example: linear classification with a perceptron

4
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Example: linear classification
with a perceptron

“when y is greater than 0, set all 
pixel values to 1 (green), 
otherwise, set all pixel values to 0 
(red)”

4
6



Example: linear classification with a perceptron

“when y is greater than 0, set all 
pixel values to 1 (green), otherwise,
set all pixel values to 0 (red)”

4
7



Computation in a neural net - nonlinearity

Input 
representation

Linear layer

𝑥𝑥 𝑤𝑤j

𝑏𝑏j 𝑦𝑦 𝑔𝑔(𝑦𝑦)

𝛛𝛛
Can’t use with gradient descent, 𝛛𝛛𝑦𝑦 𝑔𝑔 = 0

Output 
representation



Computation in a neural net - nonlinearity

Input 
representation

Linear layer

𝑥𝑥 𝑤𝑤j

𝑏𝑏j 𝑦𝑦 𝑔𝑔(𝑦𝑦)

Sigmoid

Output 
representation



Sigmoid• Bounded between
[0,1]

• Saturation for large +/- inputs

• Gradients go to zero

Computation in a neural net - nonlinearity



Rectified linear unit (ReLU)• Unbounded output (on positive side)

• Efficient to implement:

• Also seems to help convergence (6x 
speedup vs. tanh in [Krizhevsky et al. 
2012])

• Drawback: if strongly in negative 
region, unit is dead forever (no gradient).

• Default choice: widely used in current 
models!

Computation in a neural net — nonlinearity

Source: Isola, Torralba, Freeman



Leaky ReLU• where α is small (e.g.,
0.02)

• Efficient to implement:

• Has non-zero gradients
everywhere (unlike ReLU)

Computation in a neural net — nonlinearity



Output 
representation

Intermediate 
representation

Input 
representation

Stacking layers

𝐡𝐡 = “hidden units”



Input 
representation

Output 
representation

Connectivity patterns

Fully connected layer Locally connected layer 
(Sparse W)

Input 
representation

Output 
representation



Input 
representation

Stacking layers

Output 
representation

𝑾𝑾2

𝜃𝜃 = {𝑾𝑾1, … ,𝑾𝑾𝐿𝐿, 𝒃𝒃1, … ,𝒃𝒃𝐿𝐿}
Source: Isola, Torralba,
Freeman

ReLU

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)

Intermediate 
representation

𝒉𝒉

𝒙𝒙

𝑾𝑾1

𝒚𝒚



Input 
representation

Stacking layers

Output 
representation

𝑾𝑾2

𝜃𝜃 = {𝑾𝑾1, … ,𝑾𝑾𝐿𝐿, 𝒃𝒃1, … ,𝒃𝒃𝐿𝐿}ReLU

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)

Intermediate 
representation

𝒉𝒉

𝒙𝒙

𝑾𝑾1

𝒚𝒚 positive

negative



Input 
representation

Stacking layers

Output 
representation

𝑾𝑾2

positive

negative

𝜃𝜃 = {𝑾𝑾1, … , 𝑾𝑾𝐿𝐿, 𝒃𝒃1, … , 𝒃𝒃𝐿𝐿}
Source: Isola, Torralba, Freeman

ReLU

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)

Intermediate 
representation

𝒉𝒉

𝒙𝒙

𝑾𝑾1

𝒚𝒚



Input 
representation

Stacking layers

Output 
representation

𝑾𝑾2

positive

negative

ReLU

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)

Intermediate 
representation

𝒉𝒉

𝜃𝜃 = {𝑾𝑾1, … ,𝑾𝑾𝐿𝐿, 𝒃𝒃1, … ,𝒃𝒃𝐿𝐿}

𝒙𝒙

𝑾𝑾1

𝒚𝒚



Input 
representation

Stacking
layers

Output 
representation

𝑾𝑾2

Intermediate 
representation

𝒉𝒉
positive

negative
𝒙𝒙

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)
𝜃𝜃 = {𝑾𝑾1, … , 𝑾𝑾𝐿𝐿, 𝒃𝒃1, … , 𝒃𝒃𝐿𝐿}ReLU

𝑾𝑾1

𝒚𝒚



Input 
representation

Stacking layers

Output 
representation

𝑾𝑾2

Intermediate 
representation

𝒉𝒉
positive

negative
𝒙𝒙

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)
ReLU

𝑾𝑾1

𝒚𝒚

𝜃𝜃 = {𝑾𝑾1, … ,𝑾𝑾𝐿𝐿, 𝒃𝒃1, … ,𝒃𝒃𝐿𝐿}



Stacking layers - What’s actually happening?

Low level features: 
e.g., edge, texture, …

higher level features: 
e.g., shape

even higher level features: 
e.g., “paw”, “fur”



“dog”…

Deep nets

= 𝑓𝑓𝐿𝐿( …
𝑓𝑓3(𝑓𝑓2(𝑓𝑓1(𝑥𝑥)))

𝑓𝑓 𝑥𝑥
Source: Isola, Torralba,
Freeman

6
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“dog”…

Deep nets - Intuition

“has horizontal
edge” “has vertical
edge”

Source: Isola, Torralba,
Freeman
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“dog”…

Deep nets - Intuition

“has rounded edge”

Source: Isola, Torralba, Freeman

6
7



…

Deep nets - Intuition
“has white

fur” “has paw”
etc

How do we 
make a 

classification?

“dog”

Source: Isola, Torralba, Freeman
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“dog”…

Deep nets -
Intuition “has white fur” 

“has paw”
etc

Classify

Fur

Source: Isola, Torralba, Freeman

6
9

Pa
w

Recall:
Feature Space



Computation has a simple form

• Composition of linear functions with nonlinearities in between

• E.g. matrix multiplications with ReLU, 𝑚𝑚𝑎𝑎𝑥𝑥(0, 𝐱𝐱) afterwards

• Do a matrix multiplication, set all negative values to 0, repeat

But where do we get the weights from?



Computation has a simple form

• Composition of linear functions with nonlinearities in between

• E.g. matrix multiplications with ReLU, 𝑚𝑚𝑎𝑎𝑥𝑥(0, 𝐱𝐱) afterwards

• Do a matrix multiplication, set all negative values to 0, repeat

But where do we get the weights from?



“dog”

Learned

How would we learn the parameters?

predicted ground truth
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