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Polynomial regression

Training data
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X K-th degree polynomial regression
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What happens as we add more basis
functions?
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What happens as we add more basis
functions?




Y25-

20 A

15 4

10 A

What happens as we add more basis
functions?

K
fo(x) = Z 0"
k=0

This phenomenon is called overfitting.

It occurs when we have too high capacity
a model, e.g., too many free parameters,
too few data points to pin these parameters
down.
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When the model does
not have the capacity to
capture the true function,
we call this underfitting.

An underfit model will have
high error on the training
points. This error is known
as approximation error.
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This is a huge assumption!
Almost never true in practice!
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Parametric Approach: Linear Classifier

f(x, W) = WXx

Image

- f(x,W) > 10 numbers giving

class scores
Array of 32x32x3 numbers T

(3072 numbers total) W

parameters
or weights



Parametric Approach: Linear Classifier
3072x1
|mage f(X’W) — IVXI

10x1  10x3072 .
- f(x,W) > 10 numbers giving

class scores
Array of 32x32x3 numbers T

(3072 numbers total) W

parameters
or weights




Parametric Approach: Linear Classifier
3072x1

f(x,W)

Image
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Limitations to linear classifiers




Wrong!
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Goal: Non-linear decision boundary




Perceptron

® In 1957 Frank Rosenblatt invented the perceptron

® Computers at the time were too slow to run the perceptron, so Rosenblatt
built a special purpose machine with adjustable resistors

® New York Times Reported: “The Navy revealed the embryo of an electronic
computer that it expects will be able to walk, talk, see, write, reproduce itself
and be conscious of its existence”




Minsky and Papert, Perceptrons, 1972

Marvin L. Minsky
Seyvmour A Papert

FOR BUYING OPTIONS, START HERE

Paperback | $35.00 Short | £24.95 |
ISBN; 9780262631112 | 308 pp. |6 x
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Select Shipping Destination =

Perceptrons, expanded edition

An Introduction to Computational Geometry

By Marvin Minsky and Seymour A. Papert

Overview

Perceptrons - the first systematic study of parallelism in computation - has remained a classical work on
threshold automata networks for nearly two decades. It marked a historical turn in artificial intelligence,
and it is required reading for anvone who wants to understand the connectionist counterrevolution that
is going on today.

Artificial-intelligence research, which for a time concentrated on the programming of ton Neumann
computers, is swinging back to the idea that intelligence might emerge from the activity of networks of
neurcnlike entities. Minsky and Papert's book was the first example of a mathematical analysis carried
far enough to show the exact limitations of a class of computing machines that could seriously be
considered as models of the brain. Now the new developments in mathematical tools, the recent interest
of physicists in the theory of disordered matter, the new insights into and psychological models of how
the brain works, and the evolution of fast computers that ean simulate networks of automata have given
Perceptrons new importance.

Witnessing the swing of the intellectual pendulum, Minsky and Papert have added a new chapter in
which they discuss the current state of parallel computers, review developments since the appearance of
the 1972 edition, and identify new research directions related to connectionism. They note a central
thearetical challenge facing connectionism: the challenge to reach a deeper understanding of how
“objects” or "agents" with individuality can emerge in a network. Progress in this area would link
connectionism with what the authors have called "society theories of mind."
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Parallel Distributed Processing (PDP), 1986

PARALLEL DISTRIBUTED |
'PROCESSING”

Explor !
‘u’r_ Foundations

: ﬁAU!D E.RUMELHART, JAMES L. MoCLELLAND,
< AND THE PDP RESEARCH GROUP

Source: Isola, Torralba, Freeman
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Source: Isola, Torralba, Freeman



LeCun convolutional neural networks

PROC. OF THE IEEE, NOVEMBER 1998

C3:f. maps 16@10x10

INPUT C1: feature maps S4. f. maps 16@5x5
6@28x28
32x32 S2:f. maps C5: layer

N

FuII comkect.on Gaussnan connections
Convolutions Subsampling Convolutions Subsampllng Full connectlan

FB layer OUTPUT

e —

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

Demos:
http://yann.lecun.com/exdb/lenet/index.html

Source: Isola, Torralba, Freeman


http://yann.lecun.com/exdb/lenet/index.html

Yann LeCun

Was at Bell Labs when
this video was recorded

Now
Prof @ NYU
Chief Scientist @ Meta

Turing Award 2018
(shared with Hinton and
Bengio)
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ImageNet:
First (?) large-scale computer vision dataset

 Millions of images; 1000 categories

* Pl: Fei-Fei Li
e Then: Prof Princeton
* Now: Prof Stanford

« 2019 Longuet-Higgins Prize

« Some argued that Li deserved
the 2018 Turing Award along with
Hinton, LeCun, Bengio

 Their work could not have been
empirically tested without ImageNet!




Krizhevsky, Sutskever, and Hinton, NeurIPS 2012
“AlexNet”

\ | \13
I
’ 13

dense dense

1000

Got all the “pieces” right, e.q.,

* Trained on ImageNet
« 8 layer architecture (for reference: today we have architectures with 100+ layers)

« Allowed for multi-GP training



Krlzhevskv, Sutskever, and Hinton, NeurIPS 2012
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Krlzhevsky, Sutskever, and Hinton, NeurIPS 2012
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Source: Isola, Torralba, Freeman
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Inspiration: Hierarchical Representations

7 Best to treat as inspiration.
(L) The neural nets we’'ll talk about
‘ */ \@ aren’t very biologically plausible.
@Jile
Vi/N2 SN
Sleololc) @@@@

Source: Isola, Torralba, Freeman [Serre, 2014]



Object recognition

Pixel 1

Neural Network

- |s dog?

Pixel 2

Pixel 2
_|_
_|_
Paw

Pixel 1 Fur

Goal: automatically learn a function that maps data from the input space to a
feature space, i.e., "feature learning”, rather than use hand-crafted features



Computation in a neural net

Let’'s say we have some 1D input that we want to convert to some new feature space:

Linear layer

Input Output / weights
representation representation

Vi = i WijX;

Adapted from: Isola, Torralba, Freeman



Computation in a neural net
Let's say we have some 1D input that we want to convert to some new feature space
Linear layer
Input Output /weights
representation representation

Vi = ZiWiij- bi

_

bias

Adapted from: Isola, Torralba,



Example: Linear Regression

Linear layer

Input Output
representation representation
°®
o
o
o
‘16 M Dy
3
® 8
= T
C fwp(X) =x"Ww+b
1Q

Adapted from: Isola, Torralba, Freeman



Computation in a neural net — Full Layer

Linear layer y=Wx+Db
Input Output  (fWi1 *** Winyrxa] [b1] v
representation representation || s [ X2 + |b2] = |2

‘ Oyl ¢ y (] (] - e
® Oyz W co e W x b -
C QY3 j1 jn 1l 11 L)
®

X h
0 1Y .0 —
. : parameters of the model: H — {W, b}
®
® b, Y

1 C

Adapted from: Isola, Torralba, Freeman



Computation in a neural

net — Full Layer
Linear layer

Input Output
representation representation
® OV1
o OB
® Qs
< P |y
0 o
®
® | Y
1C |

Adapted from: Isola, Torralba, Freeman

Full layer
y=Wx+b
_ - 'xl'
W oo W
.11 : " b.l X2
Xn
Wit Wi by |

V1

y2

i

Can again simplify notation by

appendinga 1to X




Computation in a neural net — Recap

We can now transform our input representation vector into some output
representation vector using a bunch of linear combinations of the input:

Input Output
representation representation

We can repeat this as
many times as we want!

P
00000000

<
OO0O0O0000O0

N
OO0O0O0000O0

41



What is the problem with this idea?

E
e
S
=
S

=
=

E
»e

OO0O0O0000O0
OO0O0O0000O0
00000000

OO0O00000O0

Can be expressed as single linear layer!

(G Wl) X = WX
i

Limited power: can't solve XOR ®



Solution: simple nonlinearity

Linear layer
1, if y>0
9(y) =

Input Output 0, otherwise
representation representation 1.0
® o—O
o o—O 08
' O—O 06
® O—O
| S s S 9(y) ..
® : : 0.2
° OoO—O
® Oo—0 0.0
bj —4 —2 0 2 4
10 y g)

_ d
Pointwise

Non-linearity



Example: linear classification with a perceptron

L2
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Source: Isola, Torralba, Freeman



Example: linear classification with a perceptron

L2

y=x'w+b

1, if >0
g(y)={ 7

0, otherwise

80

60

40

20




Example: linear classification
with a perceptron

L2

y=x'w+b

80

60

40 0, otherwise

{1, it y>0

“when vy is greater than 0, set all
pixel values to 1 (green),
otherwise, set all pixel valuesto 0
(red)”

20




Example: linear classification with a perceptron
9(y)

L2

80

60

40

20

y=x'w+b

9(y) = 0, otherwise

{1, it y>0

“when y is greater than 0, set all
pixel values to 1 (green), otherwise,
set all pixel values to 0 (red)”



Computation in a neural net - nonlinearity

Linear layer
1, if y>0
9(y) = {

Input Output 0, otherwise
representation representation 1.0
o O—O
® O—O 0.8
® O—O 0e
® O—O
| S s < q(y) ..
® Oo—O 0’
® O—O
® Oo—0 0.0
b B N
10 y g)

d
Can’t use with gradient descent, 9 = 0



Computation in a neural net - nonlinearity

Linear layer Sigmoid
1
Input Output g(y) =o(y) = 1+ eV
representation representation o

- .

® 0.8 1

: 0.6
X ® ‘ g(y) 0.41

® 0.2

®

-~ bj o —4 =2 0 2 4
10 y 9O) Y



Computation in a neural net - nonlinearity

- Bounded between Sigmoid
[0,1] oty — L
» Saturation for large +/- inputs 9(y) =o(y) = 1+ e Y

1.0+
» Gradients go to zero -
0.6

9(Y) ..

0.2

0.0 1




Computation in a neural net — nonlinearity

» Unbounded output (on positive side)

. . : . 0g )0, if y<O
Efficient to implement: By = {1, £ >0
* Also seems to help convergence (6x
speedup vs. tanh in [Krizhevsky et al.

2012])

« Drawback: if strongly in negative
region, unit is dead forever (no gradient).

» Default choice: widely used in current
models!

Rectified linear unit (RelLU)

g9(y) = max(0, y)

9(y)

Source: Isola, Torralba, Freeman



Computation in a neural net — nonlinearity

» where a is small (e.qg.,
0.02)

« Efficient to implement:

« Has non-zero gradients
everywhere (unlike RelLU)

@_ —a, if y<0
Oy |1, if y>0

Leaky RelLU

max(0,y), if y>0
9(y) = . .
amin(0,y), if y <O




Stacking layers

Input Intermediate Output
representation representation representation

ove ®
O—C O
3

X R
O
O
O

h = “hidden units”



Connectivity patterns

Input Output Input Output

representation W representation representation —c representation

O( )O
O————0
Fully connected layer Locally connected layer

(Sparse W)



Stacking layers

Input Intermediate Output
representation representation representation

h=gWlx+bl) y=gW?h+ b?)
relU O = {W1, ..., WL b, ... b1}

Source: Isola, Torralba,



Stacking layers

Input Intermediate Output
representation representation representation

negative

h=g(Wix+b') y=gW?h+b?
relU O = {W1, ..., WL b, ... b1}



Stacking layers

Input Intermediate Output
representation representation representation

negative

h=gWlx+bl) y=gW?h+ b?)
relu O = {W1, ..., WL b, ..., b1}

Source: Isola, Torralba, Freeman



Stacking layers

Input Intermediate Output
representation representation representation

negative

h=gWlx+bl) y=g(W?h+ b?)
relU -~ O = {W1, ..., WL b1, .. b1



Stacking

layers
Input Intermediate Output
representation representation representation

negative

h=gWlx+b!) y=g(W2h+ b?)

/

RelU

o= (Wl .., WLbl .., bh



Stacking layers

Input Intermediate Output
representation representation representation

negative

h=gWlx+b) y=g(W?2h+ b?)

/

RelU

o = (Wl .. WLbl .. bL



Stacking layers - What's actually happening?

Low level features: higher level features: even higher level features:
e.g., edge, texture, ... e.g., shape e.g., “paw”, “fur’

|

OO0O00000O0

OO0O0O0O000O0
00000000

00000000



Source: Isola, Torralba,

Deep nets
R

)
)

| ]]

fx)=f(C.
f3(f2(f1(x)))

()

\l/

“dog”



Deep nets - Intuition

“has horizontal
edge
edge”’

P11

has vertical

)
)

| ]]

Source: Isola, Torralba,

\l/

“dog



Deep nets - Intuition

“has rounded edge”

- - ~~ T ”
I i I/ dog

o | ]]

Source: Isola, Torralba, Freeman



Deep nets - Intuition

“has white
fur’ “has paw”
etc

How do we
make a
classification?

”

1
1
\l/

“dog

=[]

Source: Isola, Torralba, Freeman



Deep nets - Recall:

Intuition “has white fur’
“has paw”
etc

Paw

Fur

1
1
\l/

=[]

Classify

Source: Isola, Torralba, Freeman



Computation has a simple form

« Composition of linear functions with nonlinearities in between

- E.g. matrix multiplications with ReLU, max(0, X) afterwards

* Do a matrix multiplication, set all negative values to O, repeat

But where do we get the weights from?



Computation has a simple form

‘. = ¢ I'\... + b"."*. " w. ‘
X, X,) = b4

u |

But where do we get the weights from?




How would we learn the parameters?

Y1
“dog”

JV

— L(fo(x1),y1)
/ AN

predicted ground truth

Learned —— 04 0, 03 604 05 6O

N
0* = arg min Z L(fo(xi),¥3)

0 1=1
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