CMSC 491/691

People telling me Al is going

Le Ct u re 9 to destroy the world My neural network

Neural Networks
:OI’
Computer Vision

| Inear regression

Training data

fQ(ZIZ‘) — 6’0 —+ 9133

| Inear regression

Training data

f@(ZIZ‘) — 6’0 —+ 9133

Polynomial regression

Training data

fQ(CE) — (9() + (91$ + 922['2

K
fo(x) = Z 6, "
| {x(“l,y(“}li\il k=0

X K-th degree polynomial regression

20 A

15 A

10 A

Training data

=1

{2, y@DyN

Training data Test data,

Y 2s5- Y 251

207 201 ,

15 A 15 A // /

.//
10 A 10 A /
5 5 .
/"//
o] TE——" (i) (4) 0 o -0 ¢
{z (;L:raln)7 y(zraln) Y {x (test) y(test) j
4 5 6 7 8 9 10 x 4 5 6 7 8 9 10 ¥
Training objective: Test time evaluation:
N M

> " (fo (25 nin) — Ysrnin)’ S (folwihee) — yihe)?

1=1 1=1

What happens as we add more basis
functions?

Training data

K
fo(x) = Z 6, "
k=0

What happens as we add more basis
functions?

K
fo(x) = Z 6, "
k=0

What happens as we add more basis
functions?

What happens as we add more basis
functions?

What happens as we add more basis
functions?

What happens as we add more basis
functions?

K
fo(x) = Z 6, "
k=0

What happens as we add more basis
functions?

K
fo(x) = Z 6, "
k=0

What happens as we add more basis
functions?

{z,y O},

What happens as we add more basis

functions?

{z,y O},

What happens as we add more basis
functions?

Y25-

20 A

15 4

10 A

What happens as we add more basis
functions?

K
fo(x) = Z 0"
k=0

This phenomenon is called overfitting.

It occurs when we have too high capacity
a model, e.g., too many free parameters,
too few data points to pin these parameters
down.

Y25-

20 A

15 -

10 -

When the model does
not have the capacity to
capture the true function,
we call this underfitting.

An underfit model will have
high error on the training
points. This error is known
as approximation error.

Training data Test data,

Y 254 Y 251
20 - 20 - ,
15 A 15 A // /
‘///
10 A 10 A ,
5 5 -)
z"x
O - (7) (2) 0 - -0 ¢
{z (train)’ Y(train) Y {x (test) y(test) j
' : : éll !IS é 7 8 9 10
4 5 6 7 8 9 10 X X
i True data-generating process, {CU (train)’ y(tram) } ~ Pdata

Pdata (2)

iid
{m(teSt)’y(test)} ~ Pdata

Training data Test data,

Y 2s- Y 251
20 - 20 ,,/
15 A 15 A '/
’//

101 10 1

5 T 5 7 R

z’.,
0] e (i) (4) 04 e 3
{x(traln) ’ y(traln) }z 1 {x(test) ’ y(test) }z 1
4 5 6 7 8 9 10 4 5 6 7 8 9 10
X X

This is a huge assumption!
Almost never true in practice!

Training data Test data,

Y 25 A Y 25 A

20 N * 20 -

15 - ° 15 A

o
10 A 10 A
[
5 - . 5 |
. [J [J o
o1 () () 0 ® o o i i
{% (ratn)> Y(orasm Hi {olese) Y(eesr) Ho
lll é é 7 8 9 10 4 é 6 % 8 9 0
X X

iid

{ (traln)7y(tra1n)} ~ ptrain

Much more commonly, we have p

ptrain 7é ptest

iid
{x(tes'ﬁ)’y(test)} ~ Ptest

Artificial
Intelligence

Parametric Approach

Image
10 numbers givin
> f(x,W) - 9ving
class scores
Array of 32x32x3 numbers T
(3072 numbers total) W
parameters

or weights

Parametric Approach: Linear Classifier

f(x, W) = WXx

Image

- f(x,W) > 10 numbers giving

class scores
Array of 32x32x3 numbers T

(3072 numbers total) W

parameters
or weights

Parametric Approach: Linear Classifier
3072x1
|mage f(X’W) — IVXI

10x1 10x3072 .
- f(x,W) > 10 numbers giving

class scores
Array of 32x32x3 numbers T

(3072 numbers total) W

parameters
or weights

Parametric Approach: Linear Classifier
3072x1

f(x,W)

Image

10x1

Array of 32x32x3 numbers
(3072 numbers total)

WX +

10x3072

T

> f(X,W)

W

parameters
or weights

b

>

10x1

10 numbers giving
class scores

Limitations to linear classifiers

Wrong!

N\

Limitations to linear classifiers

rong!

Limitations to linear classifiers

Wrong!

Goal: Non-linear decision boundary

Perceptron

® In 1957 Frank Rosenblatt invented the perceptron

® Computers at the time were too slow to run the perceptron, so Rosenblatt
built a special purpose machine with adjustable resistors

® New York Times Reported: “The Navy revealed the embryo of an electronic
computer that it expects will be able to walk, talk, see, write, reproduce itself
and be conscious of its existence”

Minsky and Papert, Perceptrons, 1972

Marvin L. Minsky
Seyvmour A Papert

FOR BUYING OPTIONS, START HERE

Paperback | $35.00 Short | £24.95 |
ISBN; 9780262631112 | 308 pp. |6 x
8.9in | December 1987

Select Shipping Destination =

Perceptrons, expanded edition

An Introduction to Computational Geometry

By Marvin Minsky and Seymour A. Papert

Overview

Perceptrons - the first systematic study of parallelism in computation - has remained a classical work on
threshold automata networks for nearly two decades. It marked a historical turn in artificial intelligence,
and it is required reading for anvone who wants to understand the connectionist counterrevolution that
is going on today.

Artificial-intelligence research, which for a time concentrated on the programming of ton Neumann
computers, is swinging back to the idea that intelligence might emerge from the activity of networks of
neurcnlike entities. Minsky and Papert's book was the first example of a mathematical analysis carried
far enough to show the exact limitations of a class of computing machines that could seriously be
considered as models of the brain. Now the new developments in mathematical tools, the recent interest
of physicists in the theory of disordered matter, the new insights into and psychological models of how
the brain works, and the evolution of fast computers that ean simulate networks of automata have given
Perceptrons new importance.

Witnessing the swing of the intellectual pendulum, Minsky and Papert have added a new chapter in
which they discuss the current state of parallel computers, review developments since the appearance of
the 1972 edition, and identify new research directions related to connectionism. They note a central
thearetical challenge facing connectionism: the challenge to reach a deeper understanding of how
“objects” or "agents" with individuality can emerge in a network. Progress in this area would link
connectionism with what the authors have called "society theories of mind."

Perceptrons,
1958

enthusiasm

Minsky and Papert,

1972

time

Parallel Distributed Processing (PDP), 1986

PARALLEL DISTRIBUTED |
'PROCESSING”

Explor !
‘u’r_ Foundations

: ﬁAU!D E.RUMELHART, JAMES L. MoCLELLAND,
< AND THE PDP RESEARCH GROUP

Source: Isola, Torralba, Freeman

Perceptrons, PDP book,

. 1958 1986
enthusiasm

Minsky and
_ Papert, 1972 .

time

Source: Isola, Torralba, Freeman

LeCun convolutional neural networks

PROC. OF THE IEEE, NOVEMBER 1998

C3:f. maps 16@10x10

INPUT C1: feature maps S4. f. maps 16@5x5
6@28x28
32x32 S2:f. maps C5: layer

N

FuII comkect.on Gaussnan connections
Convolutions Subsampling Convolutions Subsampllng Full connectlan

FB layer OUTPUT

e —

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

Demos:
http://yann.lecun.com/exdb/lenet/index.html

Source: Isola, Torralba, Freeman

http://yann.lecun.com/exdb/lenet/index.html

Yann LeCun

Was at Bell Labs when
this video was recorded

Now
Prof @ NYU
Chief Scientist @ Meta

Turing Award 2018
(shared with Hinton and
Bengio)

Perceptrons, PDP book,
1958 1986

enthusiasm

Minsky and Papert, Neural network winter,
1972 2000

time

ImageNet:
First (?) large-scale computer vision dataset

 Millions of images; 1000 categories

* Pl: Fei-Fei Li
e Then: Prof Princeton
* Now: Prof Stanford

« 2019 Longuet-Higgins Prize

« Some argued that Li deserved
the 2018 Turing Award along with
Hinton, LeCun, Bengio

 Their work could not have been
empirically tested without ImageNet!

Krizhevsky, Sutskever, and Hinton, NeurIPS 2012
“AlexNet”

\ | \13
I
’ 13

dense dense

1000

Got all the “pieces” right, e.q.,

* Trained on ImageNet
« 8 layer architecture (for reference: today we have architectures with 100+ layers)

« Allowed for multi-GP training

Krlzhevskv, Sutskever, and Hinton, NeurIPS 2012

miie cuntamea [+] motor scooter

mite container ship mater scooter | leapard
black widow | | lifeboat go-kart | jaguar
cockraach amphibian migped chaatah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat

& %

F e - § o
R
-

grille mushroom cherry ladagascar cat
- convertible | | agaric dalmatian | squinrel monkey

miushrooam grape | spider monkey
pelly fungus elderberry | titi
gill fungus |Mordshire bullterrier | imdri

fire engine || dead-man's-fingers currant | howler monkey

Krlzhevsky, Sutskever, and Hinton, NeurIPS 2012

container ship

motor scooter

mite container ship moator scooter | leapard
black widow | | lifeboat go-kart | jaguar
cockroach amphibian meped ‘]_I cheatah
tick fireboat bumper car snow leopard

drilling platform golfcart

F

J ."...

| oty

.

RS
-
L45. a)

i B L

agascar cat

Ll s firoom
jelly fungus

_dalmatian |

squirrel monkey

grape |
elderberry |
gill fungus |Mfordshire bullterrier

fire engine || dead-man's-fingers currant |

spider monkey
Liti

indri

howler monkey

28 years 28 years

< >

Krizhevsky,

Perceptrons, PDP Sutskever,
_ 4 1958 book, Hinton, 2012
enthusiasm 6
Minsky and Neural net winter,
e — e 2006 >

time

Source: Isola, Torralba, Freeman

28 years 28 years

< >

Krizhevsky, ?

Sutskever, n
Hinton, 2012

Perceptrons, PDP book,

4 1958 1986 -
Diffusion Models

Transformers ...

enthusiasm

VISION + LANGUAGE

Minsky and Papert, Neural net winter,

1070 INNN >
ot 1 = (4R VAV AWV j

time

Source: Isola, Torralba,

Froaman

Inspiration: Hierarchical Representations

7 Best to treat as inspiration.
(L) The neural nets we’'ll talk about
‘ */ \@ aren’t very biologically plausible.
@Jile
Vi/N2 SN
Sleololc) @@@@

Source: Isola, Torralba, Freeman [Serre, 2014]

Object recognition

Pixel 1

Neural Network

- |s dog?

Pixel 2

Pixel 2
|
|
Paw

Pixel 1 Fur

Goal: automatically learn a function that maps data from the input space to a
feature space, i.e., "feature learning”, rather than use hand-crafted features

Computation in a neural net

Let’'s say we have some 1D input that we want to convert to some new feature space:

Linear layer

Input Output / weights
representation representation

Vi = i WijX;

Adapted from: Isola, Torralba, Freeman

Computation in a neural net
Let's say we have some 1D input that we want to convert to some new feature space
Linear layer
Input Output /weights
representation representation

Vi = ZiWiij- bi

_

bias

Adapted from: Isola, Torralba,

Example: Linear Regression

Linear layer

Input Output
representation representation
°®
o
o
o
‘16 M Dy
3
® 8
= T
C fwp(X) =x"Ww+b
1Q

Adapted from: Isola, Torralba, Freeman

Computation in a neural net — Full Layer

Linear layer y=Wx+Db
Input Output (fWi1 *** Winyrxa] [b1] v
representation representation || s [X2 + |b2] = |2

‘ Oyl ¢ y (] (] - e
® Oyz W co e W x b -
C QY3 j1 jn 1l 11 L)
®

X h
0 1Y .0 —
. : parameters of the model: H — {W, b}
®
® b, Y

1 C

Adapted from: Isola, Torralba, Freeman

Computation in a neural

net — Full Layer
Linear layer

Input Output
representation representation
® OV1
o OB
® Qs
< P |y
0 o
®
® | Y
1C |

Adapted from: Isola, Torralba, Freeman

Full layer
y=Wx+b
_ - 'xl'
W oo W
.11 : " b.l X2
Xn
Wit Wi by |

V1

y2

i

Can again simplify notation by

appendinga 1to X

Computation in a neural net — Recap

We can now transform our input representation vector into some output
representation vector using a bunch of linear combinations of the input:

Input Output
representation representation

We can repeat this as
many times as we want!

P
00000000

<
OO0O0O0000O0

N
OO0O0O0000O0

41

What is the problem with this idea?

E
e
S
=
S

=
=

E
»e

OO0O0O0000O0
OO0O0O0000O0
00000000

OO0O00000O0

Can be expressed as single linear layer!

(G Wl) X = WX
i

Limited power: can't solve XOR ®

Solution: simple nonlinearity

Linear layer
1, if y>0
9(y) =

Input Output 0, otherwise
representation representation 1.0
® o—O
o o—O 08
' O—O 06
® O—O
| S s S 9(y) ..
® : : 0.2
° OoO—O
® Oo—0 0.0
bj —4 —2 0 2 4
10 y g)

_ d
Pointwise

Non-linearity

Example: linear classification with a perceptron

L2

80

60

40

20

Source: Isola, Torralba, Freeman

Example: linear classification with a perceptron

L2

y=x'w+b

1, if >0
g(y)={ 7

0, otherwise

80

60

40

20

Example: linear classification
with a perceptron

L2

y=x'w+b

80

60

40 0, otherwise

{1, it y>0

“when vy is greater than 0, set all
pixel values to 1 (green),
otherwise, set all pixel valuesto 0
(red)”

20

Example: linear classification with a perceptron
9(y)

L2

80

60

40

20

y=x'w+b

9(y) = 0, otherwise

{1, it y>0

“when y is greater than 0, set all
pixel values to 1 (green), otherwise,
set all pixel values to 0 (red)”

Computation in a neural net - nonlinearity

Linear layer
1, if y>0
9(y) = {

Input Output 0, otherwise
representation representation 1.0
o O—O
® O—O 0.8
® O—O 0e
® O—O
| S s < q(y) ..
® Oo—O 0’
® O—O
® Oo—0 0.0
b B N
10 y g)

d
Can’t use with gradient descent, 9 = 0

Computation in a neural net - nonlinearity

Linear layer Sigmoid
1
Input Output g(y) =o(y) = 1+ eV
representation representation o

- .

® 0.8 1

: 0.6
X ® ‘ g(y) 0.41

® 0.2

®

-~ bj o —4 =2 0 2 4
10 y 9O) Y

Computation in a neural net - nonlinearity

- Bounded between Sigmoid
[0,1] oty — L
» Saturation for large +/- inputs 9(y) =o(y) = 1+ e Y

1.0+
» Gradients go to zero -
0.6

9(Y) ..

0.2

0.0 1

Computation in a neural net — nonlinearity

» Unbounded output (on positive side)

. . : . 0g)0, if y<O
Efficient to implement: By = {1, £ >0
* Also seems to help convergence (6x
speedup vs. tanh in [Krizhevsky et al.

2012])

« Drawback: if strongly in negative
region, unit is dead forever (no gradient).

» Default choice: widely used in current
models!

Rectified linear unit (RelLU)

g9(y) = max(0, y)

9(y)

Source: Isola, Torralba, Freeman

Computation in a neural net — nonlinearity

» where a is small (e.qg.,
0.02)

« Efficient to implement:

« Has non-zero gradients
everywhere (unlike RelLU)

@_ —a, if y<0
Oy |1, if y>0

Leaky RelLU

max(0,y), if y>0
9(y) = . .
amin(0,y), if y <O

Stacking layers

Input Intermediate Output
representation representation representation

ove ®
O—C O
3

X R
O
O
O

h = “hidden units”

Connectivity patterns

Input Output Input Output

representation W representation representation —c representation

O()O
O————0
Fully connected layer Locally connected layer

(Sparse W)

Stacking layers

Input Intermediate Output
representation representation representation

h=gWlx+bl) y=gW?h+ b?)
relU O = {W1, ..., WL b, ... b1}

Source: Isola, Torralba,

Stacking layers

Input Intermediate Output
representation representation representation

negative

h=g(Wix+b') y=gW?h+b?
relU O = {W1, ..., WL b, ... b1}

Stacking layers

Input Intermediate Output
representation representation representation

negative

h=gWlx+bl) y=gW?h+ b?)
relu O = {W1, ..., WL b, ..., b1}

Source: Isola, Torralba, Freeman

Stacking layers

Input Intermediate Output
representation representation representation

negative

h=gWlx+bl) y=g(W?h+ b?)
relU -~ O = {W1, ..., WL b1, .. b1

Stacking

layers
Input Intermediate Output
representation representation representation

negative

h=gWlx+b!) y=g(W2h+ b?)

/

RelU

o= (Wl .., WLbl .., bh

Stacking layers

Input Intermediate Output
representation representation representation

negative

h=gWlx+b) y=g(W?2h+ b?)

/

RelU

o = (Wl .. WLbl .. bL

Stacking layers - What's actually happening?

Low level features: higher level features: even higher level features:
e.g., edge, texture, ... e.g., shape e.g., “paw”, “fur’

|

OO0O00000O0

OO0O0O0O000O0
00000000

00000000

Source: Isola, Torralba,

Deep nets
R

)
)

|]]

fx)=f(C.
f3(f2(f1(x)))

()

\l/

“dog”

Deep nets - Intuition

“has horizontal
edge
edge”’

P11

has vertical

)
)

|]]

Source: Isola, Torralba,

\l/

“dog

Deep nets - Intuition

“has rounded edge”

- - ~~ T ”
I i I/ dog

o |]]

Source: Isola, Torralba, Freeman

Deep nets - Intuition

“has white
fur’ “has paw”
etc

How do we
make a
classification?

”

1
1
\l/

“dog

=[]

Source: Isola, Torralba, Freeman

Deep nets - Recall:

Intuition “has white fur’
“has paw”
etc

Paw

Fur

1
1
\l/

=[]

Classify

Source: Isola, Torralba, Freeman

Computation has a simple form

« Composition of linear functions with nonlinearities in between

- E.g. matrix multiplications with ReLU, max(0, X) afterwards

* Do a matrix multiplication, set all negative values to O, repeat

But where do we get the weights from?

Computation has a simple form

‘. = ¢ I'\... + b"."*. " w. ‘
X, X,) = b4

u |

But where do we get the weights from?

How would we learn the parameters?

Y1
“dog”

JV

— L(fo(x1),y1)
/ AN

predicted ground truth

Learned —— 04 0, 03 604 05 6O

N
0* = arg min Z L(fo(xi),¥3)

0 1=1

	Lecture 9
	Linear regression
	Linear regression
	Polynomial regression
	Slide Number 12
	Slide Number 13
	What happens as we add more basis functions?
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	f(x,W) = Wx
	Slide Number 32
	Slide Number 33
	Limitations to linear classifiers
	Limitations to linear classifiers
Wrong!
	Limitations to linear classifiers
	Goal: Non-linear decision boundary
	Perceptron
	Minsky and Papert, Perceptrons, 1972
	Perceptrons, 1958
	Parallel Distributed Processing (PDP), 1986
	Perceptrons, 1958
	LeCun convolutional neural networks
	Slide Number 44
	Perceptrons, 1958
	ImageNet: �First (?) large-scale computer vision dataset
	Krizhevsky, Sutskever, and Hinton, NeurIPS 2012 “AlexNet”
	Krizhevsky, Sutskever, and Hinton, NeurIPS 2012
	Krizhevsky, Sutskever, and Hinton, NeurIPS 2012
	28 years
	28 years
	Inspiration: Hierarchical Representations
	Object recognition
	Computation in a neural net
	Computation in a neural net
	Example: Linear Regression
	𝑦 = 𝑊𝑥 + 𝑏
	Computation in a neural net – Full Layer
	Computation in a neural net – Recap
	What is the problem with this idea?
	Solution: simple nonlinearity
	Example: linear classification with a perceptron
	Example: linear classification with a perceptron
	Example: linear classification with a perceptron
	Example: linear classification with a perceptron
	Computation in a neural net - nonlinearity
	Computation in a neural net - nonlinearity
	Computation in a neural net - nonlinearity
	Computation in a neural net — nonlinearity
	Computation in a neural net — nonlinearity
	Stacking layers
	Connectivity patterns
	Stacking layers
	Stacking layers
	Stacking layers
	Stacking layers
	Stacking layers
	Stacking layers
	Stacking layers - What’s actually happening?
	Deep nets
	Deep nets - Intuition
	Deep nets - Intuition
	Deep nets - Intuition
	Deep nets - Intuition
	Computation has a simple form
	Computation has a simple form
	How would we learn the parameters?

