Lecture 9

Neural Networks for
Computer Vision

People telling me AI is going to destroy the world

My neural network

Linear regression

Training data

$$
f_{\theta}(x)=\theta_{0}+\theta_{1} x
$$

Linear regression

Training data

$$
f_{\theta}(x)=\theta_{0}+\theta_{1} x
$$

Polynomial regression

Training data

$$
f_{\theta}(x)=\theta_{0}+\theta_{1} x+\theta_{2} x^{2}
$$

$$
f_{\theta}(x)=\sum_{k=0}^{K} \theta_{k} x^{k}
$$

K-th degree polynomial regression

Training data

Training data

Test data

Training objective:

$$
\sum_{i=1}^{N}\left(f_{\theta}\left(x_{\text {train }}^{(i)}\right)-y_{\text {train }}^{(i)}\right)^{2}
$$

Test time evaluation:

$$
\sum_{i=1}^{M}\left(f_{\theta}\left(x_{\text {test }}^{(i)}\right)-y_{\text {test }}^{(i)}\right)^{2}
$$

What happens as we add more basis functions?

Training data

$$
f_{\theta}(x)=\sum_{k=0}^{K} \theta_{k} x^{k}
$$

What happens as we add more basis functions?

$$
K=1
$$

$$
f_{\theta}(x)=\sum_{k=0}^{K} \theta_{k} x^{k}
$$

What happens as we add more basis functions?

$$
\begin{aligned}
& K=2 \\
& \text { (} \\
& f_{\theta}(x)=\sum_{k=0}^{K} \theta_{k} x^{k}
\end{aligned}
$$

What happens as we add more basis functions?

$$
K=3
$$

$$
f_{\theta}(x)=\sum_{k=0}^{K} \theta_{k} x^{k}
$$

What happens as we add more basis functions?

$$
K=4
$$

$$
f_{\theta}(x)=\sum_{k=0}^{K} \theta_{k} x^{k}
$$

What happens as we add more basis functions?

$$
K=5
$$

$$
f_{\theta}(x)=\sum_{k=0}^{K} \theta_{k} x^{k}
$$

What happens as we add more basis functions?

$$
K=6
$$

$$
f_{\theta}(x)=\sum_{k=0}^{K} \theta_{k} x^{k}
$$

What happens as we add more basis functions?

$$
K=7
$$

$$
f_{\theta}(x)=\sum_{k=0}^{K} \theta_{k} x^{k}
$$

What happens as we add more basis functions?

$$
\begin{aligned}
& K=8 \\
& \underbrace{20}_{4} \\
& f_{\theta}(x)=\sum_{k=0}^{K} \theta_{k} x^{k}
\end{aligned}
$$

What happens as we add more basis functions?

$$
K=9
$$

$$
f_{\theta}(x)=\sum_{k=0}^{K} \theta_{k} x^{k}
$$

What happens as we add more basis functions?

$$
f_{\theta}(x)=\sum_{k=0}^{K} \theta_{k} x^{k}
$$

This phenomenon is called overfitting.
It occurs when we have too high capacity a model, e.g., too many free parameters, too few data points to pin these parameters down.
$K=1$

When the model does not have the capacity to capture the true function, we call this underfitting.

An underfit model will have high error on the training points. This error is known as approximation error.

Training data

True data-generating process"
$p_{\text {data }}$

Test data

$$
\begin{aligned}
& \left\{x_{(\text {train })}^{(i)}, y_{(\text {train })}^{(i)}\right\} \stackrel{\text { iid }}{\sim} p_{\text {data }} \\
& \left\{x_{(\text {test })}^{(i)}, y_{(\text {test })}^{(i)}\right\} \stackrel{\text { iid }}{\sim} p_{\text {data }}
\end{aligned}
$$

Training data

This is a huge assumption! Almost never true in practice!

Test data

$$
\begin{aligned}
& \left\{x_{(\text {train })}^{(i)}, y_{(\text {train })}^{(i)}\right\} \stackrel{\text { iid }}{\sim} p_{\text {data }} \\
& \left\{x_{(\text {test })}^{(i)}, y_{(\text {test })}^{(i)}\right\} \stackrel{\text { iid }}{\sim} p_{\text {data }}
\end{aligned}
$$

Training data

Much more commonly, we have

$$
p_{\text {train }} \neq p_{\text {test }}
$$

Test data

$\left\{x_{(\text {train })}^{(i)}, y_{\text {(train) }}^{(i)}\right\} \stackrel{\text { iid }}{\sim} p_{\text {train }}$
$\left\{x_{(\text {test })}^{(i)}, y_{(\text {test })}^{(i)}\right\} \stackrel{\text { iid }}{\sim} p_{\text {test }}$

Artificial Intelligence

$$
\hat{y}=\boldsymbol{w}^{\top} \boldsymbol{x}+b
$$

Parametric Approach

Image

Parametric Approach: Linear Classifier

Image
$f(x, W)=W x$

Array of $32 \times 32 \times 3$ numbers (3072 numbers total)

10 numbers giving class scores

Parametric Approach: Linear Classifier

Array of $32 \times 32 \times 3$ numbers (3072 numbers total)

$f(x, W)=W \boxtimes$

10x1 10x3072

10 numbers giving class scores

Parametric Approach: Linear Classifier

Array of $32 \times 32 \times 3$ numbers (3072 numbers total)

3072x1 $f(x, W)=W \mathbb{X}+D 10 \times 1$
 10×1 10×3072

10 numbers giving class scores

Limitations to linear classifiers

Limitations to linear classifiers

Limitations to linear classifiers

Goal: Non-linear decision boundary

Perceptron

- In 1957 Frank Rosenblatt invented the perceptron
- Computers at the time were too slow to run the perceptron, so Rosenblatt built a special purpose machine with adjustable resistors
- New York Times Reported: "The Navy revealed the embryo of an electronic computer that it expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence"

Minsky and Papert，Perceptrons， 1972

トロロゅ＋

FOR BUYING OPTIONS，START HERE
Select Shipping Destination \star

Paperback｜$\$ 35.00$ Short｜$£ 24.95$｜ ISBN： 9780262631112 ｜ 308 pp．｜ $6 \times$ 8.9 in｜December 1987

Perceptrons，expanded edition

An Introduction to Computational Geometry

By Marvin Minsky and Seymour A．Papert

Overview

Perceptrons－the first systematic study of parallelism in computation－has remained a classical work on threshold automata networks for nearly two decades．It marked a historical turn in artificial intelligence， and it is required reading for anyone who wants to understand the connectionist counterrevolution that is going on today．

Artificial－intelligence research，which for a time concentrated on the programming of ton Neumann computers，is swinging back to the idea that intelligence might emerge from the activity of networks of neuronlike entities．Minsky and Papert＇s book was the first example of a mathematical analysis carried far enough to show the exact limitations of a class of computing machines that could seriously be considered as models of the brain．Now the new developments in mathematical tools，the recent interest of physicists in the theory of disordered matter，the new insights into and psychological models of how the brain works，and the evolution of fast computers that can simulate networks of automata have given Perceptrons new importance．

Witnessing the swing of the intellectual pendulum，Minsky and Papert have added a new chapter in which they discuss the current state of parallel computers，review developments since the appearance of the 1972 edition，and identify new research directions related to connectionism．They note a central theoretical challenge facing connectionism：the challenge to reach a deeper understanding of how ＂objects＂or＂agents＂with individuality can emerge in a network．Progress in this area would link connectionism with what the authors have called＂society theories of mind．＂

Parallel Distributed Processing (PDP), 1986

LeCun convolutional neural networks

PROC. OF THE IEEE, NOVEMBER 1998

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Demos:
 http://yann.lecun.com/exdb/lenet/index.html

ImageNet:
 First (?) large-scale computer vision dataset

- Millions of images; 1000 categories
- PI: Fei-Fei Li
- Then: Prof, Princeton
- Now: Prof, Stanford
- 2019 Longuet-Higgins Prize
- Some argued that Li deserved the 2018 Turing Award along with Hinton, LeCun, Bengio

- Their work could not have been empirically tested without ImageNet!

Krizhevsky, Sutskever, and Hinton, NeurIPS 2012

"AlexNet"

Got all the "pieces" right, e.g.,

- Trained on ImageNet
- 8 layer architecture (for reference: today we have architectures with $100+$ layers)
- Allowed for multi-GP training

Krizhevsky, Sutskever, and Hinton, NeurIPS 2012

Krizhevsky, Sutskever, and Hinton, NeurIPS 2012

Inspiration: Hierarchical Representations

Best to treat as inspiration. The neural nets we'll talk about aren't very biologically plausible.

Pixel 1

Object recognition

Goal: automatically learn a function that maps data from the input space to a feature space, i.e., "feature learning", rather than use hand-crafted features

Computation in a neural net

Let's say we have some 1D input that we want to convert to some new feature space:

Linear layer

Computation in a neural net

Let's say we have some 1D input that we want to convert to some new feature space

Linear layer

Example: Linear Regression

Linear layer

$$
f_{\mathbf{w}, b}(\mathbf{x})=\mathbf{x}^{T} \mathbf{w}+b
$$

Computation in a neural net - Full Layer

Computation in a neural net - Full Layer

 Linear layer

Full layer

$$
\begin{gathered}
y=W x+b \\
{\left[\begin{array}{cccc}
w_{11} & \cdots & w_{\mathrm{j} n} & b_{1} \\
\vdots & \ddots & \vdots & \vdots \\
w_{\mathrm{j} 1} & \cdots & w_{\mathrm{j} n} & b_{\mathrm{j}}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{n} \\
1
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\cdots \\
y_{\mathrm{j}}
\end{array}\right]}
\end{gathered}
$$

Can again simplify notation by appending a 1 to \mathbf{X}

Computation in a neural net - Recap

We can now transform our input representation vector into some output representation vector using a bunch of linear combinations of the input:

We can repeat this as many times as we want!

What is the problem with this idea?

$\left.\mathbf{x}\left|\begin{array}{l}\mathrm{O} \\ \mathrm{O} \\ \mathrm{O} \\ \mathrm{O} \\ \mathrm{O} \\ \mathrm{O} \\ \mathrm{O} \\ \mathrm{O}\end{array} \xrightarrow{\mathbf{w}_{1} \mathbf{x}}\right| \begin{aligned} & \mathrm{O} \\ & \mathrm{O}\end{aligned} \xrightarrow{\mathbf{w}_{2} \mathbf{w}_{1} \mathbf{x}} \right\rvert\, \begin{aligned} & \mathrm{O} \\ & \mathrm{O}\end{aligned} \mathbf{w}_{2} \mathbf{w}_{1} \mathbf{x}$
Can be expressed as single linear layer!

$$
\left(\begin{array}{cc}
\mathrm{G}^{2} & \mathbf{W}_{i} \\
i &
\end{array}\right) \quad \mathbf{x}=\hat{\mathbf{W} \mathbf{x}}
$$

Solution: simple nonlinearity

Linear layer

Output
representation

个 Pointwise
Non-linearity

Example: linear classification with a perceptron

$$
y=\mathbf{x}^{T} \mathbf{w}+b
$$

Example: linear classification with a perceptron

$$
\begin{gathered}
y=\mathbf{x}^{T} \mathbf{w}+b \\
g(y)= \begin{cases}1, & \text { if } y>0 \\
0, & \text { otherwise }\end{cases}
\end{gathered}
$$

Example: linear classification

 with a perceptron

$$
y=\mathbf{x}^{T} \mathbf{w}+b
$$

$$
g(y)= \begin{cases}1, & \text { if } y>0 \\ 0, & \text { otherwise }\end{cases}
$$

"when y is greater than 0 , set all pixel values to 1 (green), otherwise, set all pixel values to 0 (red)"

Example: linear classification with a perceptron

$$
\begin{gathered}
y=\mathbf{x}^{T} \mathbf{w}+b \\
g(y)= \begin{cases}1, & \text { if } y>0 \\
0, & \text { otherwise }\end{cases}
\end{gathered}
$$

"when y is greater than 0 , set all pixel values to 1 (green), otherwise, set all pixel values to 0 (red)"

Computation in a neural net - nonlinearity

Can't use with gradient descent, $\frac{\mathbf{\partial}}{\mathbf{\partial} y} g=0$

Computation in a neural net - nonlinearity

Computation in a neural net - nonlinearity

- Bounded between
[0,1]
- Saturation for large +/- inputs
- Gradients go to zero

Computation in a neural net - nonlinearity

- Unbounded output (on positive side)
- Efficient to implement: $\frac{\partial g}{\partial y}=\left\{\begin{array}{lll}0, & \text { if } & y<0 \\ 1, & \text { if } & y \geq 0\end{array}\right.$
- Also seems to help convergence ($6 x$ speedup vs. tanh in [Krizhevsky et al. 2012])
- Drawback: if strongly in negative region, unit is dead forever (no gradient).
- Default choice: widely used in current models!

Rectified linear unit (ReLU)

$$
g(y)=\max (0, y)
$$

y

Computation in a neural net - nonlinearity

- where a is small (e.g., 0.02)
- Efficient to implement:
- Has non-zero gradients everywhere (unlike ReLU)

$$
\frac{\partial g}{\partial y}=\left\{\begin{array}{lll}
-a, & \text { if } \quad y<0 \\
1, & \text { if } \quad y \geq 0
\end{array}\right.
$$

$$
\begin{aligned}
& \text { Leaky ReLU } \\
& g(y)=\left\{\begin{array}{lll}
\max (0, y), & \text { if } \quad y \geq 0 \\
a \min (0, y), & \text { if } \quad y<0
\end{array}\right.
\end{aligned}
$$

Stacking layers

Connectivity patterns

Fully connected layer

Locally connected layer (Sparse W)

Stacking layers

Stacking layers

Stacking layers

Stacking layers

Stacking
 layers

Stacking layers

Stacking layers - What's actually happening?

Deep nets

Deep nets - Intuition

"has horizontal
edge" "has vertical edge"

"dog"

Deep nets - Intuition

Deep nets - Intuition

Computation has a simple form

- Composition of linear functions with nonlinearities in between
- E.g. matrix multiplications with $\operatorname{ReLU}, \max (0, \mathbf{x})$ afterwards
- Do a matrix multiplication, set all negative values to 0 , repeat

But where do we get the weights from?

Computation has a simple form

But where do we get the weights from?

How would we learn the parameters?

