
Lecture 9
Neural Networks

for
Computer Vision

CMSC 491/691

Some slides from Owens via Isola, Torralba, Freeman

Linear regression

Linear regression

Polynomial regression

K-th degree polynomial regression

Training objective: Test time evaluation:

What happens as we add more basis
functions?

K = 1

What happens as we add more basis
functions?

K = 2

What happens as we add more basis
functions?

K = 3

What happens as we add more basis
functions?

K = 4

What happens as we add more basis
functions?

K = 5

What happens as we add more basis
functions?

K = 6

What happens as we add more basis
functions?

K = 7

What happens as we add more basis
functions?

K = 8

What happens as we add more basis
functions?

K = 9

What happens as we add more basis
functions?

K = 10

This phenomenon is called overfitting.

It occurs when we have too high capacity
a model, e.g., too many free parameters,
too few data points to pin these parameters
down.

What happens as we add more basis
functions?

K = 1

When the model does
not have the capacity to
capture the true function,
we call this underfitting.

An underfit model will have
high error on the training
points. This error is known
as approximation error.

True data-generating process

This is a huge assumption!
Almost never true in practice!

Much more commonly, we have

Parametric Approach

Image

f(x,W) 10 numbers giving
class scores

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 -

30 April 6, 2023

Array of 32x32x3 numbers
(3072 numbers total) W

parameters
or weights

ParametricApproach: Linear Classifier

Image

W
parameters
or weights

f(x,W) 10 numbers giving
class scores

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 -

31 April 6, 2023

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx

Image

W
parameters
or weights

10 numbers giving
class scores

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx
10x1 10x3072

f(x,W)

ParametricApproach: Linear Classifier
3072x1

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 -

32 April 6, 2023

Image

W
parameters
or weights

10 numbers giving
class scores

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx + b

Parametric Approach: Linear Classifier
3072x1

10x1 10x3072
f(x,W)

10x1

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 -

33 April 6, 2023

0

1

Limitations to linear classifiers

+-

0 1

0 0 1

1 1 0

XOR

+ -

Limitations to linear classifiers
Wrong!

+-

+ -

Wrong!

0

1

0 1

0 0 1

1 1 0

XOR

Limitations to linear classifiers

+-

+ -

Wrong!

Wrong!

0

1

0 1

0 0 1

1 1 0

XOR

Goal: Non-linear decision boundary

+-

+ -

0

1

0 1

0 0 1

1 1 0

XOR

Perceptron

• In 1957 Frank Rosenblatt invented the perceptron
• Computers at the time were too slow to run the perceptron, so Rosenblatt

built a special purpose machine with adjustable resistors
• New York Times Reported: “The Navy revealed the embryo of an electronic

computer that it expects will be able to walk, talk, see, write, reproduce itself
and be conscious of its existence”

Minsky and Papert, Perceptrons, 1972

time

enthusiasm
Perceptrons,
1958

Minsky and Papert,
1972

Parallel Distributed Processing (PDP), 1986

Source: Isola, Torralba, Freeman

time

enthusiasm
Perceptrons,
1958

Minsky and
Papert, 1972

PDP book,
1986

Source: Isola, Torralba, Freeman

LeCun convolutional neural networks

Demos:
http://yann.lecun.com/exdb/lenet/index.html

Source: Isola, Torralba, Freeman

http://yann.lecun.com/exdb/lenet/index.html

Yann LeCun

Was at Bell Labs when
this video was recorded

Now
Prof @ NYU

Chief Scientist @ Meta

Turing Award 2018
(shared with Hinton and

Bengio)

time

enthusiasm
Perceptrons,
1958

Minsky and Papert,
1972

PDP book,
1986

Neural network winter,
2000

ImageNet:
First (?) large-scale computer vision dataset

• Millions of images; 1000 categories

• PI: Fei-Fei Li
• Then: Prof, Princeton
• Now: Prof, Stanford

• 2019 Longuet-Higgins Prize
• Some argued that Li deserved

the 2018 Turing Award along with
Hinton, LeCun, Bengio

• Their work could not have been
empirically tested without ImageNet!

Krizhevsky, Sutskever, and Hinton, NeurIPS 2012

“AlexNet”

Got all the “pieces” right, e.g.,
• Trained on ImageNet
• 8 layer architecture (for reference: today we have architectures with 100+ layers)
• Allowed for multi-GP training

Krizhevsky, Sutskever, and Hinton, NeurIPS 2012

23

Krizhevsky, Sutskever, and Hinton, NeurIPS 2012

time

enthusiasm

Perceptrons,
1958

Minsky and
Papert, 1972

PDP
book,
1986

Neural net winter,
2000

Krizhevsky,
Sutskever,
Hinton, 2012

28 years 28 years

Source: Isola, Torralba, Freeman

time

enthusiasm

Perceptrons,
1958

Minsky and Papert,
1972

PDP book,
1986

Neural net winter,
2000

Krizhevsky,
Sutskever,
Hinton, 2012

28 years 28 years

Source: Isola, Torralba,
Freeman

?
Diffusion Models
Transformers …

VISION + LANGUAGE

[Serre, 2014]

Inspiration: Hierarchical Representations

Source: Isola, Torralba, Freeman

Best to treat as inspiration.
The neural nets we’ll talk about
aren’t very biologically plausible.

Object recognition

Is dog?
Neural Network

Pixel 1

Pixel 2

Dog

Not dog

Pixel 1

Pi
xe

l2

Input Space

Fur

Pa
w

Feature Space

Goal: automatically learn a function that maps data from the input space to a
feature space, i.e., "feature learning”, rather than use hand-crafted features

f(x)

Computation in a neural net
Let’s say we have some 1D input that we want to convert to some new feature space:

Linear layer

Output
representation

𝑤𝑤𝑖𝑖j

𝑦𝑦j

Input
representation

𝑥𝑥𝑖𝑖 𝑦𝑦j = ∑𝑖𝑖 𝑤𝑤𝑖𝑖j𝑥𝑥𝑖𝑖

weights

Ne
uro
n

(a.
k.a
uni
t)

3
5

Adapted from: Isola, Torralba, Freeman

Computation in a neural net
Let's say wehave some 1D input that we want to convert to some new feature space

Linear layer

Output
representation

𝑤𝑤𝑖𝑖j

𝑦𝑦j

Input
representation

𝑥𝑥𝑖𝑖

weights

𝑦𝑦j = ∑𝑖𝑖 𝑤𝑤𝑖𝑖j𝑥𝑥𝑖𝑖+ 𝑏𝑏j

bias

𝑏𝑏j

Ne
uro
n

(a.
k.a
uni
t)

3
6

Adapted from: Isola, Torralba,
Freeman

Example: Linear Regression

Input
representation

Output
representation

Linear layer

𝑥𝑥 𝑤𝑤 𝑦𝑦

𝑏𝑏

Adapted from: Isola, Torralba, Freeman

3
8

Computation in a neural net – Full Layer

Input
representation

Output
representation

Linear layer

𝑥𝑥 𝑤𝑤j

𝑦𝑦j𝑏𝑏j

𝑦𝑦1
𝑦𝑦2
𝑦𝑦3

…

𝑦𝑦 = 𝑊𝑊𝑥𝑥 + 𝑏𝑏

𝑤𝑤11 ⋯ 𝑤𝑤1𝑛𝑛
⋮ ⋱ ⋮
𝑤𝑤j1 ⋯ 𝑤𝑤j𝑛𝑛

𝑦𝑦
parameters of the model:𝜽𝜽 = {𝑾𝑾,𝒃𝒃}

𝑥𝑥1
𝑥𝑥2…
𝑥𝑥𝑛𝑛

𝑏𝑏1

+ 𝑏𝑏2…
𝑏𝑏j

=

𝑦𝑦1

Adapted from: Isola, Torralba, Freeman

3
9

𝑦𝑦2…
𝑦𝑦j

Computation in a neural
net – Full Layer

Input
representation

Output
representation

Linear layer Full layer

𝑥𝑥 𝑤𝑤j

𝑦𝑦j𝑏𝑏j

𝑦𝑦1
𝑦𝑦2
𝑦𝑦3

…

𝑦𝑦 = 𝑊𝑊𝑥𝑥 + 𝑏𝑏
𝑤𝑤11 ⋯
⋮ ⋱ ⋮
𝑤𝑤j1 ⋯

𝑤𝑤j𝑛𝑛 𝑏𝑏1
⋮

𝑤𝑤j𝑛𝑛 𝑏𝑏j

𝑦𝑦

𝑥𝑥1
𝑥𝑥…2
𝑥𝑥𝑛𝑛
1

=

𝑦𝑦

Adapted from: Isola, Torralba, Freeman

4
0

1
𝑦𝑦2…
𝑦𝑦j

Can again simplify notation by
appending a 1 to 𝐱𝐱

Computation in a neural net – Recap

41

Input
representation

Output
representation

𝑥𝑥 𝑦𝑦

We can now transform our input representation vector into some output
representation vector using a bunch of linear combinations of the input:

𝑧𝑧 We can repeat this as
many times as we want!

What is the problem with this idea?

𝐖𝐖1𝐱𝐱 𝐖𝐖2𝐖𝐖1𝐱𝐱 𝐖𝐖3𝐖𝐖2𝐖𝐖1𝐱𝐱𝐱𝐱

Can be expressed as single linear layer!

𝖦𝖦 𝐖𝐖𝑖𝑖
𝑖𝑖

̂
𝐱𝐱 = 𝐖𝐖𝐱𝐱

Limited power: can’t solve XOR 

Pointwise
Non-linearity

Solution: simple nonlinearity

Input
representation

Output
representation

Linear layer

𝑥𝑥 𝑤𝑤j

𝑏𝑏j 𝑦𝑦 𝑔𝑔(𝑦𝑦)

Example: linear classification with a perceptron

Source: Isola, Torralba, Freeman

4
4

Example: linear classification with a perceptron

4
5

Example: linear classification
with a perceptron

“when y is greater than 0, set all
pixel values to 1 (green),
otherwise, set all pixel values to 0
(red)”

4
6

Example: linear classification with a perceptron

“when y is greater than 0, set all
pixel values to 1 (green), otherwise,
set all pixel values to 0 (red)”

4
7

Computation in a neural net - nonlinearity

Input
representation

Linear layer

𝑥𝑥 𝑤𝑤j

𝑏𝑏j 𝑦𝑦 𝑔𝑔(𝑦𝑦)

𝛛𝛛
Can’t use with gradient descent, 𝛛𝛛𝑦𝑦 𝑔𝑔 = 0

Output
representation

Computation in a neural net - nonlinearity

Input
representation

Linear layer

𝑥𝑥 𝑤𝑤j

𝑏𝑏j 𝑦𝑦 𝑔𝑔(𝑦𝑦)

Sigmoid

Output
representation

Sigmoid• Bounded between
[0,1]

• Saturation for large +/- inputs

• Gradients go to zero

Computation in a neural net - nonlinearity

Rectified linear unit (ReLU)• Unbounded output (on positive side)

• Efficient to implement:

• Also seems to help convergence (6x
speedup vs. tanh in [Krizhevsky et al.
2012])

• Drawback: if strongly in negative
region, unit is dead forever (no gradient).

• Default choice: widely used in current
models!

Computation in a neural net — nonlinearity

Source: Isola, Torralba, Freeman

Leaky ReLU• where α is small (e.g.,
0.02)

• Efficient to implement:

• Has non-zero gradients
everywhere (unlike ReLU)

Computation in a neural net — nonlinearity

Output
representation

Intermediate
representation

Input
representation

Stacking layers

𝐡𝐡 = “hidden units”

Input
representation

Output
representation

Connectivity patterns

Fully connected layer Locally connected layer
(Sparse W)

Input
representation

Output
representation

Input
representation

Stacking layers

Output
representation

𝑾𝑾2

𝜃𝜃 = {𝑾𝑾1, … ,𝑾𝑾𝐿𝐿, 𝒃𝒃1, … ,𝒃𝒃𝐿𝐿}
Source: Isola, Torralba,
Freeman

ReLU

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)

Intermediate
representation

𝒉𝒉

𝒙𝒙

𝑾𝑾1

𝒚𝒚

Input
representation

Stacking layers

Output
representation

𝑾𝑾2

𝜃𝜃 = {𝑾𝑾1, … ,𝑾𝑾𝐿𝐿, 𝒃𝒃1, … ,𝒃𝒃𝐿𝐿}ReLU

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)

Intermediate
representation

𝒉𝒉

𝒙𝒙

𝑾𝑾1

𝒚𝒚 positive

negative

Input
representation

Stacking layers

Output
representation

𝑾𝑾2

positive

negative

𝜃𝜃 = {𝑾𝑾1, … , 𝑾𝑾𝐿𝐿, 𝒃𝒃1, … , 𝒃𝒃𝐿𝐿}
Source: Isola, Torralba, Freeman

ReLU

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)

Intermediate
representation

𝒉𝒉

𝒙𝒙

𝑾𝑾1

𝒚𝒚

Input
representation

Stacking layers

Output
representation

𝑾𝑾2

positive

negative

ReLU

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)

Intermediate
representation

𝒉𝒉

𝜃𝜃 = {𝑾𝑾1, … ,𝑾𝑾𝐿𝐿, 𝒃𝒃1, … ,𝒃𝒃𝐿𝐿}

𝒙𝒙

𝑾𝑾1

𝒚𝒚

Input
representation

Stacking
layers

Output
representation

𝑾𝑾2

Intermediate
representation

𝒉𝒉
positive

negative
𝒙𝒙

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)
𝜃𝜃 = {𝑾𝑾1, … , 𝑾𝑾𝐿𝐿, 𝒃𝒃1, … , 𝒃𝒃𝐿𝐿}ReLU

𝑾𝑾1

𝒚𝒚

Input
representation

Stacking layers

Output
representation

𝑾𝑾2

Intermediate
representation

𝒉𝒉
positive

negative
𝒙𝒙

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)
ReLU

𝑾𝑾1

𝒚𝒚

𝜃𝜃 = {𝑾𝑾1, … ,𝑾𝑾𝐿𝐿, 𝒃𝒃1, … ,𝒃𝒃𝐿𝐿}

Stacking layers - What’s actually happening?

Low level features:
e.g., edge, texture, …

higher level features:
e.g., shape

even higher level features:
e.g., “paw”, “fur”

“dog”…

Deep nets

= 𝑓𝑓𝐿𝐿(…
𝑓𝑓3(𝑓𝑓2(𝑓𝑓1(𝑥𝑥)))

𝑓𝑓 𝑥𝑥
Source: Isola, Torralba,
Freeman

6
5

“dog”…

Deep nets - Intuition

“has horizontal
edge” “has vertical
edge”

Source: Isola, Torralba,
Freeman

6
6

“dog”…

Deep nets - Intuition

“has rounded edge”

Source: Isola, Torralba, Freeman

6
7

…

Deep nets - Intuition
“has white

fur” “has paw”
etc

How do we
make a

classification?

“dog”

Source: Isola, Torralba, Freeman

6
8

“dog”…

Deep nets -
Intuition “has white fur”

“has paw”
etc

Classify

Fur

Source: Isola, Torralba, Freeman

6
9

Pa
w

Recall:
Feature Space

Computation has a simple form

• Composition of linear functions with nonlinearities in between

• E.g. matrix multiplications with ReLU, 𝑚𝑚𝑎𝑎𝑥𝑥(0, 𝐱𝐱) afterwards

• Do a matrix multiplication, set all negative values to 0, repeat

But where do we get the weights from?

Computation has a simple form

• Composition of linear functions with nonlinearities in between

• E.g. matrix multiplications with ReLU, 𝑚𝑚𝑎𝑎𝑥𝑥(0, 𝐱𝐱) afterwards

• Do a matrix multiplication, set all negative values to 0, repeat

But where do we get the weights from?

“dog”

Learned

How would we learn the parameters?

predicted ground truth

	Lecture 9
	Linear regression
	Linear regression
	Polynomial regression
	Slide Number 12
	Slide Number 13
	What happens as we add more basis functions?
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	f(x,W) = Wx
	Slide Number 32
	Slide Number 33
	Limitations to linear classifiers
	Limitations to linear classifiers
Wrong!
	Limitations to linear classifiers
	Goal: Non-linear decision boundary
	Perceptron
	Minsky and Papert, Perceptrons, 1972
	Perceptrons, 1958
	Parallel Distributed Processing (PDP), 1986
	Perceptrons, 1958
	LeCun convolutional neural networks
	Slide Number 44
	Perceptrons, 1958
	ImageNet: �First (?) large-scale computer vision dataset
	Krizhevsky, Sutskever, and Hinton, NeurIPS 2012 “AlexNet”
	Krizhevsky, Sutskever, and Hinton, NeurIPS 2012
	Krizhevsky, Sutskever, and Hinton, NeurIPS 2012
	28 years
	28 years
	Inspiration: Hierarchical Representations
	Object recognition
	Computation in a neural net
	Computation in a neural net
	Example: Linear Regression
	𝑦 = 𝑊𝑥 + 𝑏
	Computation in a neural net – Full Layer
	Computation in a neural net – Recap
	What is the problem with this idea?
	Solution: simple nonlinearity
	Example: linear classification with a perceptron
	Example: linear classification with a perceptron
	Example: linear classification with a perceptron
	Example: linear classification with a perceptron
	Computation in a neural net - nonlinearity
	Computation in a neural net - nonlinearity
	Computation in a neural net - nonlinearity
	Computation in a neural net — nonlinearity
	Computation in a neural net — nonlinearity
	Stacking layers
	Connectivity patterns
	Stacking layers
	Stacking layers
	Stacking layers
	Stacking layers
	Stacking layers
	Stacking layers
	Stacking layers - What’s actually happening?
	Deep nets
	Deep nets - Intuition
	Deep nets - Intuition
	Deep nets - Intuition
	Deep nets - Intuition
	Computation has a simple form
	Computation has a simple form
	How would we learn the parameters?

