
Lecture 6

Image Features II

CMSC 491/691

Last Lecture

• What is a feature ?

• Why are features useful ?

• What is a “good” feature ?

• How to detect features (Harris Corner Detector)

Recap: Harris Corner Detector
• Key Idea: Corners are good. Edges are OK. Flat regions are meh.

• Good feature  high error:
• But this is slow to compute

• Use Taylor Approximation:
• Use SVD on H

• Do thresholding in Eigenspace
to select features

Recall …

Corner Detection in Eigenspace

interpreting eigenvalues

‘horizontal’
edge

‘vertical’
edge

flat

corner

λ1

λ2

λ2 >> λ1

λ1 >> λ2

λ1 ~ λ2

Translation/Rotation Covariance

Scaling

How do we handle scale?

After feature detection, how do we match features in multiple
images (feature description and matching)

Harris Corner Detector

Harris Corner Detector

Multi-Scale 2D Blob Detector

Full size 3/4 size

What happens if you apply different Laplacian filters?

2.1 4.2 6.0

9.8 15.5 17.0

peak!

2.1 4.2 6.0

9.8 15.5 17.0

maximum response

cross-scale maximum

local maximum

local maximum

local maximum

4.2

6.0

9.8

Multi-Scale 2D Blob Detector
Implementation

For each level of the Gaussian Pyramid:
• Compute feature response

• If local maximum AND cross-scale

• Save location and scale of feature (𝑥𝑥, 𝑦𝑦, 𝑠𝑠)

We have detected corners and blobs. But what is it useful for?

So that we can match them with related points

But how do we know that one point is similar to another point?
DESCRIPTORS

Features: Main Components
1. DETECTION

Identify “interest points”

2. DESCRIPTION
Extract “feature descriptor” vectors
surrounding each interest point

3. MATCHING
Determine correspondence between
descriptors in two views

],,[)1()1(
11 dxx =x

],,[)2()2(
12 dxx =x

Slide Credit: Kristen Grauman

Feature Description

Challenges with Designing A Feature Descriptor

What is the best descriptor for an image feature?

Idea 1: Image Patches

Idea 2: Image Gradients

Idea 3: Color Histogram

Idea 4: Spatial Histograms

Orientation Normalization

Many more feature detectors

• MOPS (Multi-Scale Oriented Patches)

• Haar-Wavelet filterbank

• GIST features (uses Gabor filterbank)

• Textons

• HOG (Histogram of Oriented Gradients)

• SURF (Speeded-Up Robust Features)

• BRIEF (Binary Robust Independent Elementary Features)

Invariance vs. Discriminability

• Invariance:
• Descriptor shouldn’t change even if image is transformed

• Discriminability:
• Descriptor should be highly unique for each point

Invariant descriptors
• We looked at invariant / equivariant detectors

• Most feature descriptors are also designed to be invariant to:
• Translation, 2D rotation, scale

• They can usually also handle
• Limited 3D rotations (SIFT works up to about 60 degrees)
• Limited affine transforms (some are fully affine invariant)
• Limited illumination/contrast changes

Main (classical) feature used: SIFT

Some history of SIFT

• The SIFT paper by David Lowe was rejected multiple times

• SIFT went on to become the most highly cited paper in all of engineering
sciences in 2005.

Source: http://yann.lecun.com/ex/pamphlets/publishing-models.html

• Take 16x16 square window around detected feature
• Compute edge orientation (angle of the gradient - 90°) for each pixel
• Throw out weak edges (threshold gradient magnitude)
• Create histogram of surviving edge orientations
• Shift the bins so that the biggest one is first

Scale Invariant Feature Transform

0 2π

angle histogram

SIFT descriptor
Full version
• Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
• Compute an orientation histogram for each cell
• 16 cells * 8 orientations = 128 dimensional descriptor

Properties of SIFT
Extraordinarily robust matching technique

• Can handle changes in viewpoint (up to about 60 degree out of plane rotation)
• Can handle significant changes in illumination (sometimes even day vs. night (below))
• Pretty fast—hard to make real-time, but can run in <1s for moderate image sizes
• Lots of code available

SIFT Example

sift

868 SIFT features

Other descriptors
• HOG: Histogram of Gradients (HOG)

• Dalal/Triggs
• Sliding window, pedestrian detection

• FREAK: Fast Retina Keypoint
• Perceptually motivated
• Can run in real-time; used in Visual SLAM on-device

• LIFT: Learned Invariant Feature Transform
• Learned via deep learning – along with many other recent features

https://arxiv.org/abs/1603.09114

https://arxiv.org/abs/1603.09114

Summary

• Keypoint detection: repeatable and
distinctive

• Corners, blobs
• Harris, DoG

• Descriptors: robust and selective
• spatial histograms of orientation
• SIFT and variants are typically good for

stitching and recognition
• But, need not stick to one

Which features match?

Feature matching

Given a feature in I1, how to find the best match in I2?
1. Define distance function that compares two descriptors
2. Test all the features in I2, find the one with min distance

Feature distance
How to define the difference between two features f1, f2?

• Simple approach: L2 distance, || f1 - f2 ||
• can give small distances for ambiguous (incorrect) matches

I1 I2

f1 f2

f1 f2f2'

Feature distance
How to define the difference between two features f1, f2?
• Better approach: ratio distance = || f1 - f2 || / || f1 - f2’ ||

• f2 is the best SSD match to f1 in I2
• f2’ is the 2nd best SSD match to f1 in I2
• gives large values for ambiguous matches

I1 I2

Feature matching example

58 matches (thresholded by ratio score)

Feature matching example

51 matches (thresholded by ratio score)

We’ll deal with
outliers later

Evaluating the results
How can we measure the performance of a feature matcher?

50
75

200

feature distance

True/false positives

The distance threshold affects performance
• True positives = # of detected matches that survive the threshold that are correct
• False positives = # of detected matches that survive the threshold that are incorrect

50
75

200
false match

true match

feature distance

How can we measure the performance of a feature matcher?

True/false positives

Suppose we want to maximize true positives.
How do we set the threshold?
(Note: we keep all matches with distance below the threshold.)

50
75

200
false match

true match

feature distance

How can we measure the performance of a feature matcher?

True/false positives

Suppose we want to minimize false positives.
How do we set the threshold?
(Note: we keep all matches with distance below the threshold.)

50
75

200
false match

true match

feature distance

How can we measure the performance of a feature matcher?

Example

• Suppose our matcher computes 1,000 matches between two
images

• 800 are correct matches, 200 are incorrect (according to an oracle that
gives us ground truth matches)

• A given threshold (e.g., ratio distance = 0.6) gives us 600 correct matches
and 100 incorrect matches that survive the threshold

• True positive rate = 600 / 800 = ¾
• False positive rate = 100 / 200 = ½

0.7

Evaluating the results

0 1

1

false positive rate

true
positive

rate

0.1

How can we measure the performance of a feature matcher?

recall

1 - specificity

true positives surviving threshold
total correct matches (positives)

false positives surviving threshold
total incorrect matches (negatives)

0.7

0 1

1

false positive rate

true
positive

rate
true positives surviving threshold
total correct matches (positives)

0.1
false positives surviving threshold
total incorrect matches (negatives)

ROC curve (“Receiver Operator Characteristic”)

How can we measure the performance of a feature matcher?

recall

1 - specificity

Single number: Area
Under the Curve (AUC)

E.g. AUC = 0.87
1 is the best

Evaluating the results

ROC curves – summary

• By thresholding the match distances at different thresholds, we
can generate sets of matches with different true/false positive
rates

• ROC curve is generated by computing rates at a set of threshold
values swept through the full range of possible threshold

• Area under the ROC curve (AUC) summarizes the performance of
a feature pipeline (higher AUC is better)

Feature Matching is Useful for …

3D Reconstruction

Internet Photos (“Colosseum”) Reconstructed 3D cameras and
points

Augmented Reality

	Lecture 6
	Last Lecture
	Recap: Harris Corner Detector
	Recall …��Corner Detection in Eigenspace
	interpreting eigenvalues
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Harris Corner Detector
	Harris Corner Detector
	Multi-Scale 2D Blob Detector
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Multi-Scale 2D Blob Detector�Implementation
	Slide Number 19
	Features: Main Components
	Feature Description
	Slide Number 22
	Challenges with Designing A Feature Descriptor
	What is the best descriptor for an image feature?
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Invariance vs. Discriminability
	Invariant descriptors
	Slide Number 33
	Slide Number 34
	Some history of SIFT
	Scale Invariant Feature Transform
	SIFT descriptor
	Properties of SIFT
	SIFT Example
	Other descriptors
	Summary
	Which features match?
	Feature matching
	Feature distance
	Slide Number 45
	Feature matching example
	Feature matching example
	Evaluating the results
	True/false positives
	True/false positives
	True/false positives
	Example
	Evaluating the results
	Slide Number 54
	ROC curves – summary
	Feature Matching is Useful for …
	3D Reconstruction
	Augmented Reality

