CMSC 491/691

Lecture 5

Image Features

Some slides from Kitani, Jayasuriya, Snavely



Announcements

HW1 has been released

e Start early. Due on Feb 23. ““MEW““K ““MEW“BK

* TAis an expert in Python and OpenCV G"

. Seek help early! 1 % 8 A
e Submit on Blackboard '
e \What to submit?

* See instructionsin PDF
* We want answers, code snippets, results, ..

in the PDF HOMEWORKEVERYWHERE




Announcements

Start looking for teammates for the group project:

* proposals will be due soon

redirect.cs.umbc.edu

Projects
The class has a mix of PhD, MS, and BS students. Projects will be judged on the basis of relative growth (from where you start to where you end).

o BSor MS (coursework) students: Pick one of the suggested topics. If you want to work on a cool idea of your own, come see Tejas and we can create a concrete
structure and gameplan. I recommend working in groups of 4 students.

e PhD or MS (thesis) students: Consult with Tejas during Oftfice Hours and discuss your existing research agenda. We will integrate the course project into that
agenda if possible. Group sizes (or individual projects) will be decided on a case-by-case basis.

e Proposal: Clearly state the following:

o Problem you wish to tackle (and why)
Proposed approach and methods
Timeline
What each student in the group will do.
Expected Outcome and Worst-Case Outcome

o o o ©
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Are these images related?




Are these images related?

Yes! They share common features.




these images related?




NASA Mars Rover images
with SIFT feature matches
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Properties of “Good Features”

 Image regions that are “important”
 Image regions that are “unusual”

* Uniqueness

How to define “unusual’, “important” ?



Why are we interested in features?

Motivation I:

. Multiple View
Object Search Geometry

N EOmEL e wisinn




Why are we interested in features?

Motivation Il:

Image Stitching

Step 1: extract features
Step 2: match features
Step 3: align images




Why are we interested in features?

Motivation Ill:

Object Detection
Object Counting

Pattern Recognition




Features are used for ...

* Image alignment, panoramas, mosaics ...

* 3D reconstruction

« Motion tracking (e.g. for augmented reality)
* Object recognition

* Image retrieval

* Autonomous navigation



Invariant Local Features

Main ldea: Find features that are invariant to transformations

« Geometric invariance (rotation, translation, scaling, ...)
« Photometric invariance (brightness, exposure, shadows, ...)




Local Features: Main Components

1. DETECTION
|dentify “interest points”

2. DESCRIPTION
Extract “feature descriptor” vectors
surrounding each interest point

3. MATCHING
Determine correspondence between
descriptors in two views

Slide Credit: Kristen Grauman
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Properties of “Good Features”

* Image regions that are
* Image regions that are “unusual”

* Image regions that are “unique”

define “unusual”, “important” ...



Harris Corner Detector [1988]

Suppose we only consider a small window of pixels
« What defines whether a feature is a good or bad candidate?

~_

~_

N

Credit; S. Seitz, D. Frolova, D. Simakov



Harris Corner Detector: Intuition

Suppose we only consider a small window of pixels
« What defines whether a feature is a good or bad candidate?

. ™~

“flat” region: ‘edge”: ‘corner”:
no change in all no change along significant change in
directions the edge direction all directions

Credit; S. Seitz, D. Frolova, D. Simakov



Harris Corner Detector: Intuition

Consider a window operating over an image

Shift the window by (u, v) u,

How do pixels in W change?

* Measure the change as the sum of squared differences (SSD)

Bwov)= 3 [+uy+v)—I(zy)
(x,y)eW

Good feature & High error !l

« We are happy if error is high
« We are very happy if error is high for all shifts (u, v)

Slow to compute error exactly for each pixel and each offset (u, v)



Small motion assumption

e We have:  B(u,v)= Y [I(z+u,y+v) — I(z,y)’
(x,y)eW

Taylor series

* Taylor series expansion of I:

I[(z4u, y+v) = I(z, y)—l—%u+g—£v+higher order terms




Small motion assumption s&5"%4

« We have:  E(w,v)= > [I(z+u,y+v)—I(z,y)]
(x,y)eW

o Tay|or series expansion of ' I(z+u,y+v) = I(zc,y)—l—%u—l—g—év—l—higher order terms

e [f motion (u, v) is small ... use first order approximation

shorthand: I, = %

* Plugging this in:

B = Y Uetuyto Iy ~ Y [LutLof
(x,y)eW (z,y)eW
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(z,y)eW
B= > LI,
(z,y)eW
- 2
C= Z Iy
(z,y)eEW

Vertical edge: Iy =0




Quick Aside: Visualizing
guadratics



Equation of a circle
Q 1 =2"+y°

Equation of a ‘bowl’ (paraboloid)

flz,y) =2 +y°

If you slice the bowl! at
flz,y) =1

what do you get?



Equation of a circle
Q 1 =2"+y°

Equation of a ‘bowl’ (paraboloid)

flz,y) =2 +y°

If you slice the bowl! at
f(z,y) =1 Q

what do you get?



flz,y) =z*+y°

can be written in matrix form like this...

fle,y)=[z y |

= O
| |

| |
o




tan=T= vllo §]]7)

‘sliced at 1’



fan =Tz 1|, |

‘sliced at 1’

157

I17] ——=

18T

1.5

Py



What happens if you increase
coefficient on x?

tan=1= vl|o V||7]

and slice at 1

decrease width in x!



What happens if you increase

coefficient on x?

fan=1= v]|o |

and slice at 1

I

x
Y

15T

:| 5 -2 -1i5 -

decrease width in x!

15T

n Y



What happens if you increase
coefficient on y?

fan=1= vl|g o ||7]

and slice at 1



What happens if you increase

coefficient on y?

fan=1= v]|g 3

and slice at 1

I

x
Y

57T

decrease width iny

05T

| .

15T

[ 4



flz,y) =2 +y°

can be written in matrix form like this...

en=t= 0]} [

Y

What’s the shape?
What are the eigenvectors?
What are the eigenvalues?



flz,y) =2 +y°

can be written in matrix form like this...

en=t= 0]} [

Y

Result of Singular Value Decomposition (SVD)

| eigenvalues
eigenvectors along diagonal

59 1-E P86 8]

Inverse sqr of
axis of the length of the
‘ellipse slice’ quadratic along

the axis



Eigenvectors Eigenvalues

o

Eigenvector

sJ0108AUBBIT

Eigenvector




Recall:

() sew=t= 1[5 ][

you can smash this bowl in the y direction
1 0 T
O sen-1= v1[} 9][2

you can smash this bowl! in the x direction

() sem-t= 1[4 ][
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Error function for Harris Corners

The surface E(u,v) is locally approximated by a quadratic form

Eu,v) = lu vl M y
.

1D I,

M= X x2y
_]x[y ]y _




- 8 5 8 8 B

Which error surface indicates a good image feature?

- 8 5 8 8 B
- 8 5 8 8 B

What kind of image patch do these surfaces represent?



- 8 5 8 8 B

Which error surface indicates a good image feature?

- 8 5 8 8 B
- 8 5 8 8 B




- 8 5 8 8 B

Which error surface indicates a good image feature?

- 8 5 8 8 B
- 8 5 8 8 B




- 8 5 8 8 B

Which error surface indicates a good image feature?

- 8 5 8 8 B
- 8 5 8 8 B

corner
‘dot’




Harris Corner Recipe

1.Compute 1mage gradients over
small region

2.Subtract mean from each 1mage

gradient
3.Compute the covariance matrix -
> LI, ) LI,
peP peP
4 .Compute eilgenvectors and Z IIIIE Z Iny
- . peP pcP
elgenvalues

5.Use threshold on eligenvalues to
detect corners



Harris Corner Recipe

1.Compute 1mage gradients over
small region

2.Subtract mean from each 1mage

gradient
3.Compute the covariance matrix -
> LI, ) LI,
peP peP
4 .Compute eilgenvectors and Z IIIIE Z Iny
- . peP pcP
elgenvalues

5.Use threshold on eligenvalues to
detect corners



4. Compute eigenvalues and eigenvectors



4. Compute eigenvalues and eigenvectors

eigenvalue

Me = \e (M — A)e =0

&\‘\ '/"

eigenvector



4. Compute eigenvalues and eigenvectors

eigenvalue

|
Me = e (M — X)e =0
N /7

eigenvector




4. Compute eigenvalues and eigenvectors

eigenvalue

|
Me = e (M — Al)e =0
N/

eigenvector



4. Compute eigenvalues and eigenvectors

eigenvalue

|
Me = e (M — Al)e =0
N/

eigenvector




Harris Corner Recipe

1.Compute 1mage gradients over
small region

2.Subtract mean from each 1mage

gradient
3.Compute the covariance matrix -
> LI, ) LI,
peP peP
4 .Compute eilgenvectors and Z IIIIE Z Iny
- . peP pcP
elgenvalues

5.Use threshold on eligenvalues to
detect corners



Interpreting eigenvalues

Ay >> 0y

What kind of image patch
does each region represent?




Interpreting eigenvalues

B ‘horizontal’ corner
{ I cdge B
}\,2 >> }\,l

}\,1"‘}\.2

A >> N,

‘vertical’
3 edge




Interpreting eigenvalues

‘horizontal’ corner

1 H

}\,1"‘}\.2

A >> N,

‘vertical’
f edge




Harris Corner Recipe

1.Compute 1mage gradients over
small region

2.Subtract mean from each 1mage

gradient
3.Compute the covariance matrix -
> LI, ) LI,
peP peP
4 .Compute eilgenvectors and Z IIIIE Z Iny
- . peP pcP
elgenvalues

5.Use threshold on eligenvalues to
detect corners



5. Use threshold on eigenvalues to detect corners

Think of a function to
score ‘cornerness’



5. Use threshold on eigenvalues to detect corners

strong corner

Think of a function to
score ‘cornerness’



5. Use threshold onﬂeigenvalues to detect corners
(a fumction of )

corner

Use the smallest eigenvalue
as the response function

R = min(/\h )\2)



5. Use threshold onheigenvalues to detect corners
(a function of )

corner

Eigenvalues need to be
bigger than one.

R = Ao — H;(Al + )\2)2

Can compute this more efficiently. ..



5. Use threshold onheigenvalues to detect corners
(a fumction of )

corner

R<0 R>0
det M =\,

trace M =\, + A,

R=det(M) — strace? (M) | s ([t )<




Harris & Stephens (1988)

Kanade & Tomasi (1994)

Nobel (1998)




Harris Corner Recipe

1.Compute 1mage gradients over
small region

2.Subtract mean from each 1mage

gradient
3.Compute the covariance matrix -
> LI, ) LI,
peP peP
4 .Compute eilgenvectors and Z IIIIE Z Iny
- . peP pcP
elgenvalues

5.Use threshold on eligenvalues to
detect corners
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Non-maximal suppression







Properties of Harris Corners

Invariance and covariance

 We want corner locations to be invariant to photometric
transformations and covariant to geometric transformations
» Invariance: image is transformed and corner locations do not change

« Covariance: if we have two transformed versions of the same image,
features should be detected in corresponding locations




Intensity Invariance

Affine intensity change

= [ I—al+b

* Only derivatives are used =>
invariance to intensity shift / — I+ b

* Intensity scaling: I —al o
|III Illlll
R R ,f\ | .
/.\ ."III\\\ 22 |III ' Illl'n Y 'II
threshold /<7 7\ 7N
X (image coordinate) X (image coordinate)

Partially invariant to affine intensity change




Translation/Rotation Covariance

Image translation Image rotation

>

Second moment ellipse rotates but its shape (i.e.
eigenvalues) remains the same

* Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation Corner location is covariant w.r.t. rotation




Scaling

A Iy

Corner l

All points will be
classified as edges

Corner location is not covariant to scaling!




How do we handle scale?

After feature detection, how do we match features in multiple
iImages (feature description and matching)



How do we handle scale?

After feature detection, how do we match features in multiple
images (feature description and matching



Harris Corner Detector

Rotation invariant?

NoA S

Scale invariant?



Harris Corner Detector

Rotation invariant? @

Scale invariant? &)

edge!
corner!

C



Two Questions

1. How can we make a feature detector scale invariant ?

2. How can we automatically select the scale ?



Multi-Scale Methods

1. Multi-Scale Detection

2. Scale-Space Normalization



Multi-Scale 2D Blob Detector






Laplacian Filter !!!

Laplacian filter

|
|
i}
|
| ||

Highest response when the signal has the
same characteristic scale as the filter




characteristic scale - the scale that
produces peak filter response

2000

| 1500

1000

characteristic scale
we need to search over characteristic scales



What happens if you apply different Laplacian filters?

sigma=2.1 sigma=4.2 sigma=6 sigma=9.8 sigma=15.5 sigma=17




sigma=2.1

0.01

-0.01
-0.02
-0.03

-0.04

-0.05

-0.06

007
100~




sigma=4.2
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sigma=9.8




sigma=15.5




sigma=17
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2.1 4.2 6.0




2.1 4.2 6.0
9.8 15.5 17.0

maximum response




optimal scale

4.2 6.0 9.8 15.5

Full size image

4.2 6.0 9.8 15.5

3/4 size image

17.0

17.0




optimal scale

4.2 6.0 . 155
' maximum
response
' N
Full size image
9.8 15.5
maximum
response

3/4 size image

17.0

6.0

17.0




local maximum

cross-scale maximum local maximum

local maximum




Multi-Scale 2D Blob Detector

For each level of the Gaussian Pyramid:

* Compute feature response

e Tf Jocal maximum AND cross-scale

* Save location and scale of feature (x,V,5)
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