CMSC 491/691

Lecture 5
 Image Features

Announcements

HW1 has been released

- Start early. Due on Feb 23.
- TA is an expert in Python and OpenCV
- Seek help early!
- Submit on Blackboard
-What to submit?
- See instructions in PDF
- We want answers, code snippets, results, .. in the PDF

Announcements

Start looking for teammates for the group project:

- proposals will be due soon

$\leftarrow \mathrm{C}$ @ https://redirect.cs.umbc.edu/courses/graduate/691cv/

Projects

The class has a mix of PhD, MS, and BS students. Projects will be judged on the basis of relative growth (from where you start to where you end).

- BS or MS (coursework) students: Pick one of the suggested topics. If you want to work on a cool idea of your own, come see Tejas and we can create a concrete structure and gameplan. I recommend working in groups of 4 students.
- PhD or MS (thesis) students: Consult with Tejas during Office Hours and discuss your existing research agenda. We will integrate the course project into that agenda if possible. Group sizes (or individual projects) will be decided on a case-by-case basis.
- Proposal: Clearly state the following:
- Problem you wish to tackle (and why)
- Proposed approach and methods
- Timeline
- What each student in the group will do.
- Expected Outcome and Worst-Case Outcome

CMSC 491/691

Lecture 5
 Image Features

Are these images related?

Are these images related?

Yes! They share common features.

Are these images related?

NASA Mars Rover images with SIFT feature matches

What makes a good feature?

Properties of "Good Features"

- Image regions that are "important"
- Image regions that are "unusual"
- Uniqueness

How to define "unusual", "important" ?

Why are we interested in features?

Motivation I:

Object Search

Why are we interested in features?

Motivation II:

Image Stitching

Step 1: extract features
Step 2: match features
Step 3: align images

Why are we interested in features?

Motivation III:

Object Detection
Object Counting
Pattern Recognition

Features are used for ...

- Image alignment, panoramas, mosaics ...
-3D reconstruction
- Motion tracking (e.g. for augmented reality)
- Object recognition
- Image retrieval
- Autonomous navigation
- ...

Invariant Local Features

Main Idea: Find features that are invariant to transformations

- Geometric invariance (rotation, translation, scaling, ...)
- Photometric invariance (brightness, exposure, shadows, ...)

Local Features: Main Components

1. DETECTION

Identify "interest points"

2. DESCRIPTION

Extract "feature descriptor" vectors surrounding each interest point

3. MATCHING

Determine correspondence between descriptors in two views

What makes a good feature?

Properties of "Good Features"

- Image regions that are "important"
- Image regions that are "unusual"
- Image regions that are "unique"

define "unusual", "important" ...

Harris Corner Detector [1988]

Suppose we only consider a small window of pixels
-What defines whether a feature is a good or bad candidate?

Harris Corner Detector: Intuition

Suppose we only consider a small window of pixels

- What defines whether a feature is a good or bad candidate?

"flat" region:
no change in all directions

"edge":
no change along
the edge direction

"corner":
significant change in all directions

Harris Corner Detector: Intuition

- Consider a window operating over an image
- Shift the window by (u, v)
- How do pixels in W change?

- Measure the change as the sum of squared differences (SSD)

$$
E(u, v)=\sum_{(x, y) \in W}[I(x+u, y+v)-I(x, y)]^{2}
$$

- Good feature \Leftarrow High error !!!
- We are happy if error is high
- We are very happy if error is high for all shifts (u, v)
- Slow to compute error exactly for each pixel and each offset (u, v)

Small motion assumption

- We have: $\quad E(u, v)=\sum_{(x, y) \in W}[I(x+u, y+v)-I(x, y)]^{2}$
- Taylor series expansion of I :
$I(x+u, y+v)=I(x, y)+\frac{\partial I}{\partial x} u+\frac{\partial I}{\partial y} v+$ higher order terms
Taylorseries

Small motion assumption

- We have: $E(u, v)=\sum_{(x, y) \in W}[I(x+u, y+v)-I(x, y)]^{2}$
- Taylor series expansion of $I: I(x+u, y+v)=I(x, y)+\frac{\partial I}{\partial x} u+\frac{\partial I}{\partial y} v+$ higher order terms
- If motion (u, v) is small ... use first order approximation

$$
I(x+u, y+v) \approx I(x, y)+\frac{\partial I}{\partial x} u+\frac{\partial I}{\partial y} v \approx I(x, y)+\left[\begin{array}{ll}
I_{x} & I_{y}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

- Plugging this in:
shorthand: $I_{x}=\frac{\partial I}{\partial x}$

$$
E(u, v)=\sum_{(x, y) \in W}[I(x+u, y+v)-I(x, y)]^{2} \approx \sum_{(x, y) \in W}\left[I_{x} u+I_{y} v\right]^{2}
$$

$$
\left.\begin{array}{rl}
E(u, v) & \approx \sum_{(x, y) \in W}\left[I_{x} u+I_{y} v\right]^{2} \\
E(u, v) & \approx A u^{2}+2 B u v+C v^{2} \\
& \approx[u \quad v
\end{array}\right][\underbrace{\left[\begin{array}{ll}
A & B \\
B & C
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]}_{H}
$$

$$
\begin{aligned}
& A=\sum_{(x, y) \in W} I_{x}^{2} \\
& B=\sum_{(x, y) \in W} I_{x} I_{y} \\
& C=\sum_{(x, y) \in W} I_{y}^{2}
\end{aligned}
$$

$$
\begin{gathered}
E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] \underbrace{\left[\begin{array}{ll}
A & B \\
B & C
\end{array}\right]}_{H}\left[\begin{array}{l}
u \\
v
\end{array}\right] \\
A=\sum_{(x, y) \in W} I_{x}^{2} \\
B=\sum_{(x, y) \in W} I_{x} I_{y} \\
C=\sum_{(x, y) \in W} I_{y}^{2} \\
\text { Horizontal edge: } I_{x}=0 \\
\hline
\end{gathered}
$$

$$
\begin{gathered}
E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] \underbrace{\left[\begin{array}{ll}
A & B \\
B & C
\end{array}\right]}_{H}\left[\begin{array}{l}
u \\
v
\end{array}\right] \\
A=\sum_{(x, y) \in W} I_{x}^{2} \\
B=\sum_{(x, y) \in W} I_{x} I_{y} \\
C=\sum_{(x, y) \in W} I_{y}^{2} \\
\\
\text { Vertical edge: } I_{y}=0
\end{gathered} \quad H=\left[\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right]
$$

Quick Aside: Visualizing quadratics

Equation of a circle

$$
1=x^{2}+y^{2}
$$

Equation of a 'bowl' (paraboloid)

$$
f(x, y)=x^{2}+y^{2}
$$

If you slice the bowl at

$$
f(x, y)=1
$$

what do you get?

Equation of a circle

$$
1=x^{2}+y^{2}
$$

Equation of a 'bowl' (paraboloid)

$$
f(x, y)=x^{2}+y^{2}
$$

If you slice the bowl at

$$
f(x, y)=1
$$

what do you get?

$$
f(x, y)=x^{2}+y^{2}
$$

can be written in matrix form like this...

$$
f(x, y)=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

$$
f(x, y)=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

'sliced at 1'

$$
f(x, y)=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \text { sliced at } 1 \text { ' }
$$

What happens if you increase
coefficient on \boldsymbol{x} ?

$$
f(x, y)=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

and slice at 1
decrease width in \mathbf{x} !

What happens if you increase

 coefficient on \boldsymbol{x} ?$$
f(x, y)=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$ and slice at 1

What happens if you increase
coefficient on \boldsymbol{y} ?

$$
f(x, y)=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

and slice at 1

What happens if you increase
coefficient on \boldsymbol{y} ?
$f(x, y)=\left[\begin{array}{ll}x & y\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
and slice at 1

$$
f(x, y)=x^{2}+y^{2}
$$

can be written in matrix form like this...

$$
f(x, y)=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

What's the shape?
What are the eigenvectors?
What are the eigenvalues?

$$
f(x, y)=x^{2}+y^{2}
$$

can be written in matrix form like this...

$$
f(x, y)=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Result of Singular Value Decomposition (SVD)

$$
\begin{aligned}
& \text { eigenvectors } \\
& \text { eigenvalues } \\
& \text { along diagonal } \\
& \left.\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 \\
0
\end{array}\right] \begin{array}{l}
0 \\
1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]^{\top} \\
& \text { axis of the } \\
& \text { 'ellipse slice } \\
& \text { Inverse sqr of } \\
& \text { length of the } \\
& \text { quadratic along } \\
& \text { the axis }
\end{aligned}
$$

Eigenvectors Eigenvalues

Recall:

$$
\bigcirc f(x, y)=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

you can smash this bowl in the \mathbf{y} direction

$$
\int f(x, y)=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

you can smash this bowl in the \mathbf{x} direction

$$
\bigcirc f(x, y)=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

$$
\mathbf{A}=\left[\begin{array}{ll}
3.25 & 1.30 \\
1.30 & 1.75
\end{array}\right]=\left[\begin{array}{cc}
0.50 & -0.87 \\
-0.87 & -0.50
\end{array}\right]\left[\begin{array}{ll}
\text { Eigenvectors }
\end{array}\right]\left[\begin{array}{ccc}
0.50 & -0.87 \\
0 & 4
\end{array}\right]\left[\begin{array}{cc}
T \\
-0.87 & -0.50
\end{array}\right]^{T}
$$

$$
\mathbf{A}=\left[\begin{array}{ll}
7.75 & 3.90 \\
3.90 & 3.25
\end{array}\right]=\left[\begin{array}{cc}
0.50 & -0.87 \\
-0.87 & -0.50
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & 10
\end{array}\right]\left[\begin{array}{cc}
0.50 & -0.87 \\
-0.87 & -0.50
\end{array}\right]_{\text {Eigenvenvectors }}^{T}
$$

Error function for Harris Corners

The surface $E(u, v)$ is locally approximated by a quadratic form

$$
\begin{aligned}
& E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] M\left[\begin{array}{l}
u \\
v
\end{array}\right] \\
& M=\sum\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right]
\end{aligned}
$$

Which error surface indicates a good image feature?

What kind of image patch do these surfaces represent?

Which error surface indicates a good image feature?

Which error surface indicates a good image feature?

Which error surface indicates a good image feature?

1.Compute image gradients over small region
2. Subtract mean from each image

$$
I_{x}=\frac{\partial I}{\partial x} \quad I_{y}=\frac{\partial I}{\partial y}
$$ gradient

3. Compute the covariance matrix
4. Compute eigenvectors and eigenvalues

$$
\left[\begin{array}{cc}
\sum_{p \in P} I_{x} I_{x} & \sum_{p \in P} I_{x} I_{y} \\
\sum_{p \in P} I_{y} I_{x} & \sum_{p \in P} I_{y} I_{y}
\end{array}\right]
$$

5. Use threshold on eigenvalues to detect corners

Harris Corner Recipe

1.Compute image gradients over small region
2. Subtract mean from each image

$$
I_{x}=\frac{\partial I}{\partial x}
$$

$$
I_{y}=\frac{\partial I}{\partial y}
$$ gradient

3.Compute the covariance matrix

```
4.Compute eigenvectors and eigenvalues
```

$$
\left[\begin{array}{cc}
\sum_{p \in P} I_{x} I_{x} & \sum_{p \in P} I_{x} I_{y} \\
\sum_{p \in P} I_{y} I_{x} & \sum_{p \in P} I_{y} I_{y}
\end{array}\right]
$$

5.Use threshold on eigenvalues to detect corners
4. Compute eigenvalues and eigenvectors
4. Compute eigenvalues and eigenvectors

$$
\begin{aligned}
& \quad \text { eigenvalue } \\
& M \underset{\substack{\text { }}}{\downarrow}=\lambda \boldsymbol{e} \\
& \text { eigenvector }
\end{aligned} \quad(M-\lambda I) \boldsymbol{e}=0
$$

4. Compute eigenvalues and eigenvectors

5. Compute the determinant of
$M-\lambda I$
(returns a polynomial)
6. Compute eigenvalues and eigenvectors

7. Compute the determinant of $\quad M-\lambda I$
(returns a polynomial)
8. Find the roots of polynomial $\operatorname{creturns~eqgenvauses)~} \operatorname{det}(M-\lambda I)=0$
9. Compute eigenvalues and eigenvectors

10. Compute the determinant of $\quad M-\lambda I$
(returns a polynomial)
11. Find the roots of polynomial $\underset{\substack{\text { reeuruss eigenvauses) }}}{\operatorname{det}}(M-\lambda I)=0$
12. For each eigenvalue, solve $\underset{\text { (returns igenvectors) }}{\substack{\text { en }}}(M-\lambda I) \boldsymbol{e}=0$

Harris Corner Recipe

1.Compute image gradients over small region
2. Subtract mean from each image

$$
I_{x}=\frac{\partial I}{\partial x} \quad I_{y}=\frac{\partial I}{\partial y}
$$ gradient

3. Compute the covariance matrix
4. Compute eigenvectors and eigenvalues

$$
\left[\begin{array}{cc}
\sum_{p \in P} I_{x} I_{x} & \sum_{p \in P} I_{x} I_{y} \\
\sum_{p \in P} I_{y} I_{x} & \sum_{p \in P} I_{y} I_{y}
\end{array}\right]
$$

5. Use threshold on eigenvalues to detect corners

interpreting eigenvalues

interpreting eigenvalues

interpreting eigenvalues

Harris Corner Recipe

1.Compute image gradients over small region
2. Subtract mean from each image

$$
I_{x}=\frac{\partial I}{\partial x} \quad I_{y}=\frac{\partial I}{\partial y}
$$ gradient

3. Compute the covariance matrix
4. Compute eigenvectors and eigenvalues

$$
\left[\begin{array}{cc}
\sum_{p \in P} I_{x} I_{x} & \sum_{p \in P} I_{x} I_{y} \\
\sum_{p \in P} I_{y} I_{x} & \sum_{p \in P} I_{y} I_{y}
\end{array}\right]
$$

5. Use threshold on eigenvalues to detect corners
6. Use threshold on eigenvalues to detect corners

Think of a function to score 'cornerness'
5. Use threshold on eigenvalues to detect corners

5. Use threshold on eigenvalues to detect corners (a function of)

Harris \& Stephens (1988)

$$
R=\operatorname{det}(M)-\kappa \operatorname{trace}^{2}(M)
$$

Kanade \& Tomasi (1994)

$$
R=\min \left(\lambda_{1}, \lambda_{2}\right)
$$

Nobel (1998)

$$
R=\frac{\operatorname{det}(M)}{\operatorname{trace}(M)+\epsilon}
$$

1.Compute image gradients over small region
2. Subtract mean from each image

$$
I_{x}=\frac{\partial I}{\partial x} \quad I_{y}=\frac{\partial I}{\partial y}
$$ gradient

3. Compute the covariance matrix
4. Compute eigenvectors and eigenvalues

$$
\left[\begin{array}{cc}
\sum_{p \in P} I_{x} I_{x} & \sum_{p \in P} I_{x} I_{y} \\
\sum_{p \in P} I_{y} I_{x} & \sum_{p \in P} I_{y} I_{y}
\end{array}\right]
$$

5. Use threshold on eigenvalues to detect corners

Corner response

Thresholded corner response

Properties of Harris Corners

Invariance and covariance

- We want corner locations to be invariant to photometric transformations and covariant to geometric transformations
- Invariance: image is transformed and corner locations do not change
- Covariance: if we have two transformed versions of the same image, features should be detected in corresponding locations

Affine intensity change

$$
\square \leadsto \square \quad I \rightarrow a I+b
$$

- Only derivatives are used $=>$
invariance to intensity shift $I \rightarrow I+b$
- Intensity scaling: $I \rightarrow a I$

Partially invariant to affine intensity change

Translation/Rotation Covariance

Image translation

- Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation

Image rotation

Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same

Scaling

Corner location is not covariant to scaling!

How do we handle scale?
After feature detection, how do we match features in multiple images (feature description and matching)

How do we handle scale?
After feature detection, how do we match features in multiple images (feature description and matching)

Harris Corner Detector

Rotation invariant?

Scale invariant?

r

Harris Corner Detector

Rotation invariant?

Scale invariant?
edge!
corner!
r

Two Questions

1. How can we make a feature detector scale invariant ?
2. How can we automatically select the scale?

Multi-Scale Methods

1. Multi-Scale Detection
2. Scale-Space Normalization

Multi-Scale 2D Blob Detector

Laplacian Filter !!!

Laplacian filter

Original signal

Highest response when the signal has the same characteristic scale as the filter
characteristic scale - the scale that produces peak filter response

characteristic scale

What happens if you apply different Laplacian filters?

sigma=2.1

sigma $=4.2$

sigma=6

sigma $=9.8$

9.8

15.5

9.8

15.5

optimal scale

Full size image

optimal scale

Full size image

Multi-Scale 2D Blob Detector Implementation

For each level of the Gaussian Pyramid:

- Compute feature response
- If local maximum AND cross-scale
- Save location and scale of feature (x, y, s)

