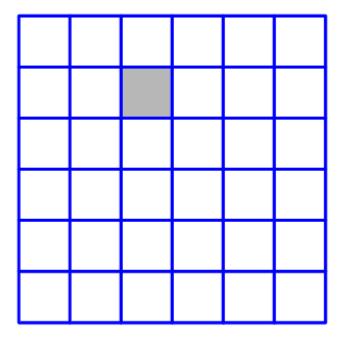


Lecture 4

Image Filtering II

An image is a matrix of pixels

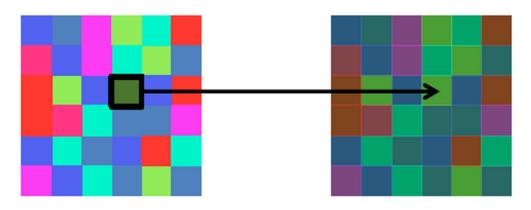


F[x,y] An array of numbers ("pixels") x,y are integer column/row indices

Recap

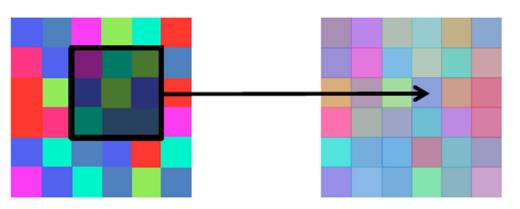
Point Processing vs Image Filtering

Point Operation



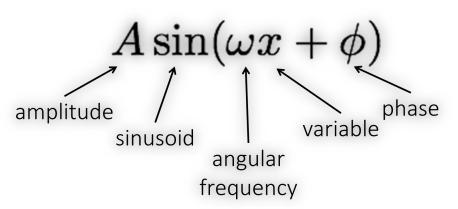
point processing

Neighborhood Operation



"filtering"

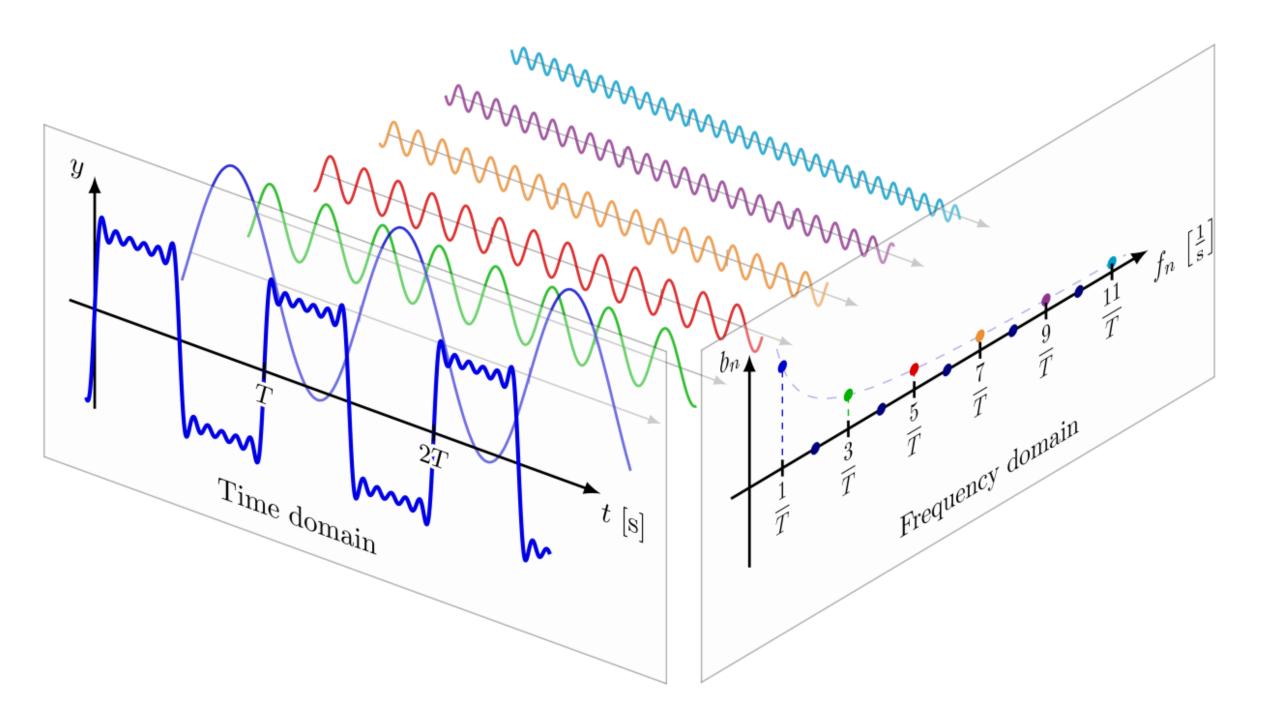
Fourier Series



Fourier's claim: Add enough of these to get <u>any</u> periodic signal you want!

I'M NOT SAVING IT'S ALL SINE WAVES

BUT IT'S ALL SINE WAVES

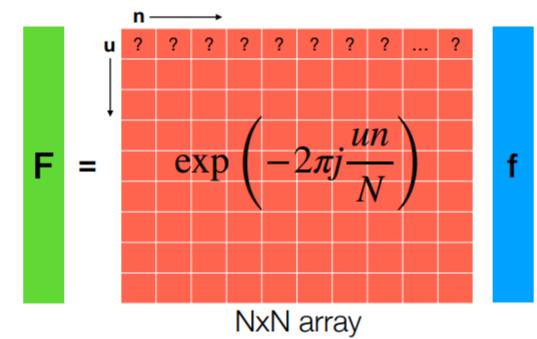


The Discrete Fourier transform

Discrete Fourier Transform (DFT) transforms a signal *f[n]* into *F[u]* as:

$$F[u] = \sum_{n=0}^{N-1} f[n] \exp\left(-2\pi j \frac{un}{N}\right) \qquad e^{ix} = \cos x + i \sin x$$

Discrete Fourier Transform (DFT) is a linear operator. Therefore, we can write:



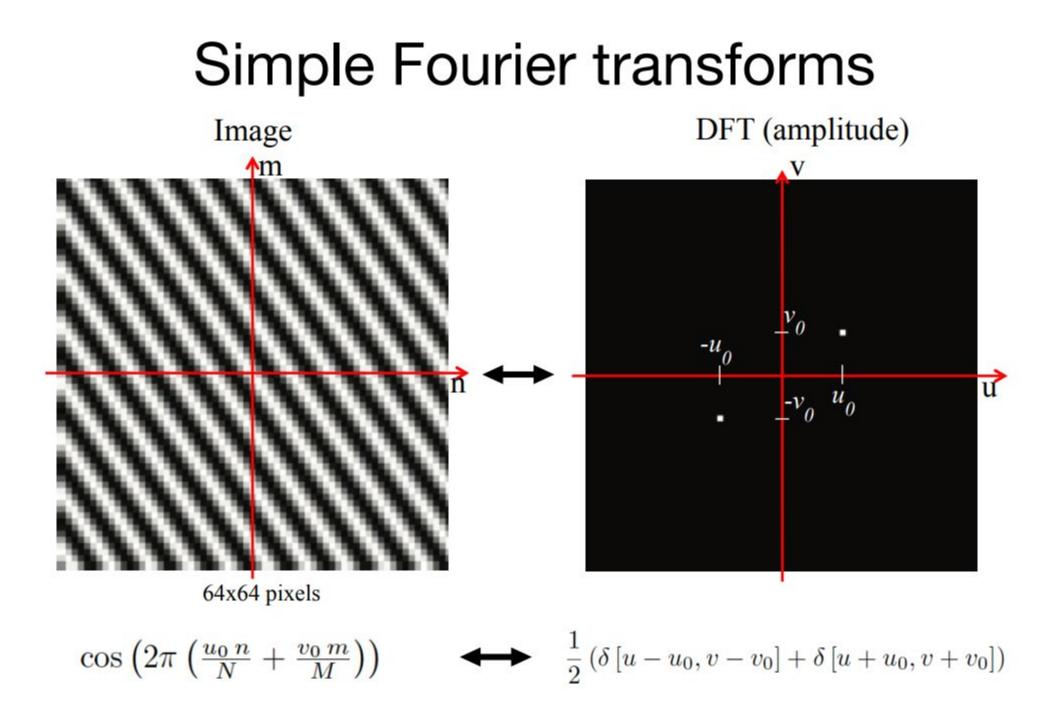
For images, the 2D DFT

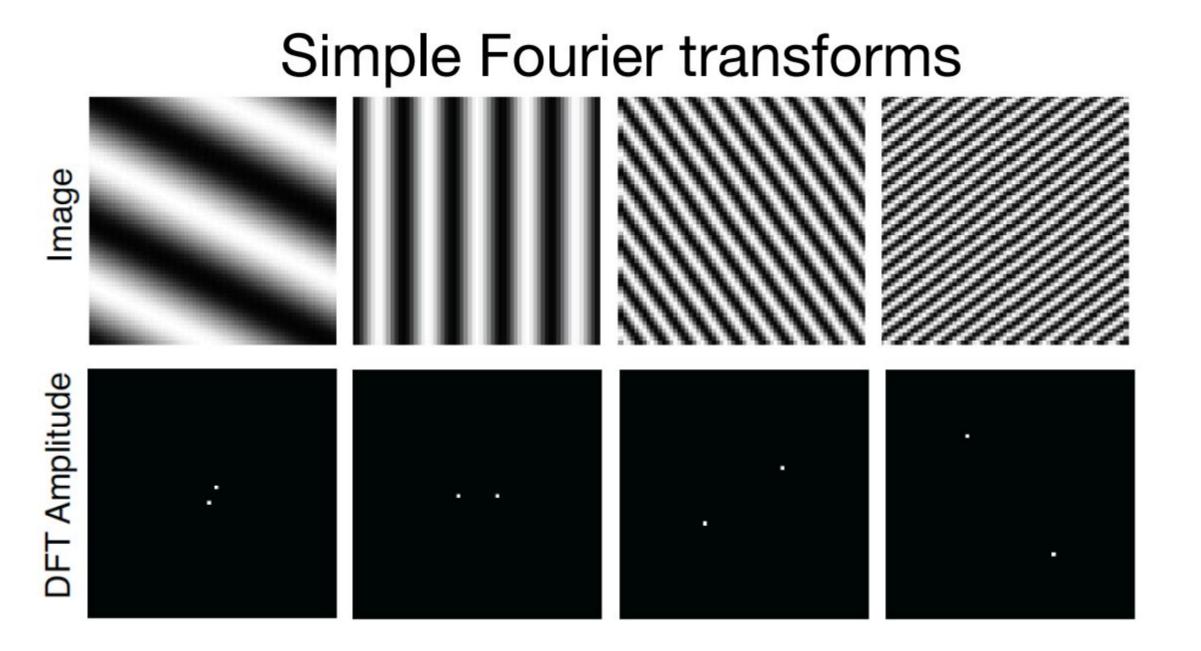
1D Discrete Fourier Transform (DFT) transforms a signal f [n] into F [u] as:

$$F[u] = \sum_{n=0}^{N-1} f[n] \exp\left(-2\pi j \frac{un}{N}\right)$$

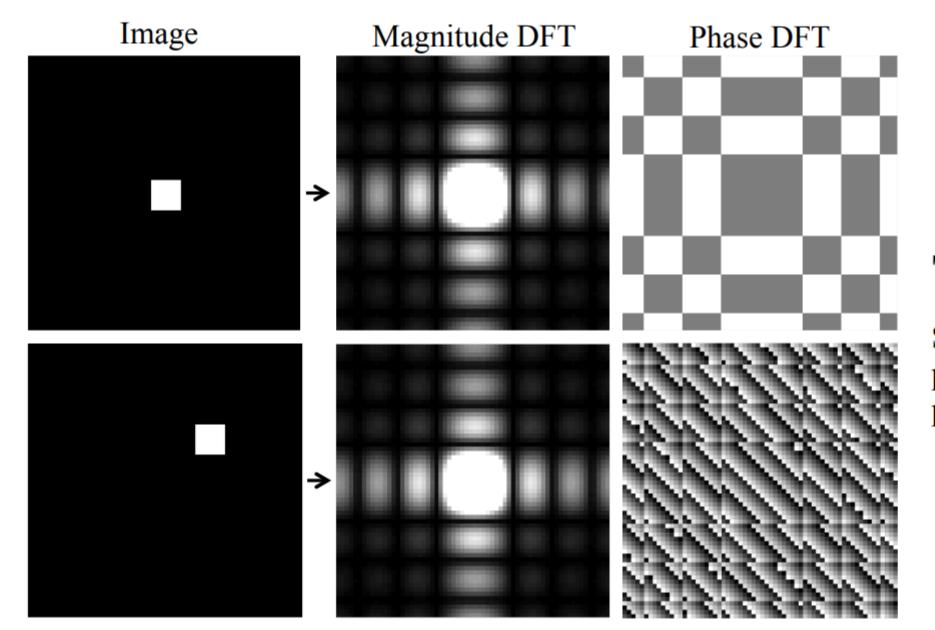
2D Discrete Fourier Transform (DFT) transforms an image f [n,m] into F [u,v] as:

$$\boldsymbol{F[u,v]} = \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} \boldsymbol{f[n,m]} \exp\left(-2\pi j\left(\frac{un}{N} + \frac{vm}{M}\right)\right)$$





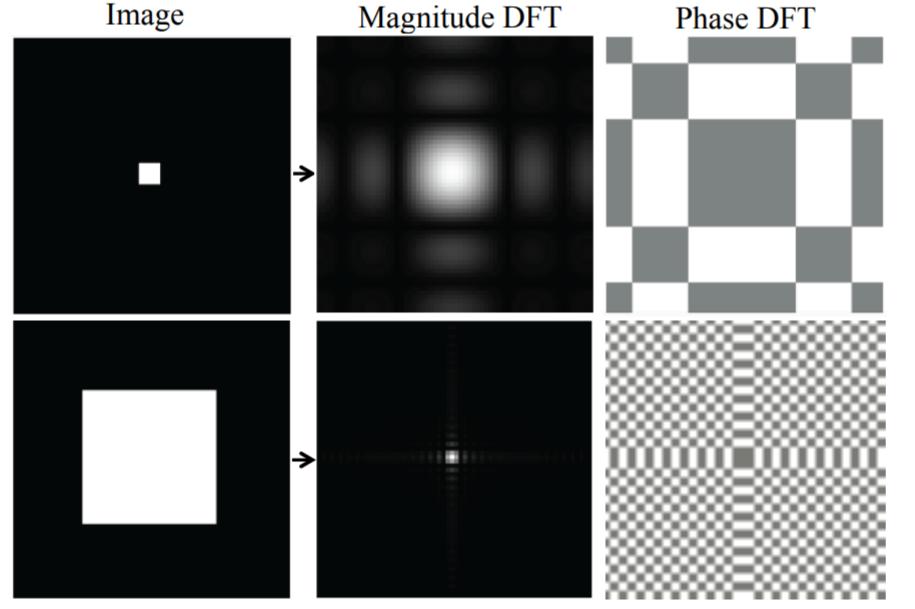
Some important Fourier transforms



Translation

Shifts of an image only produce changes on the phase of the DFT.

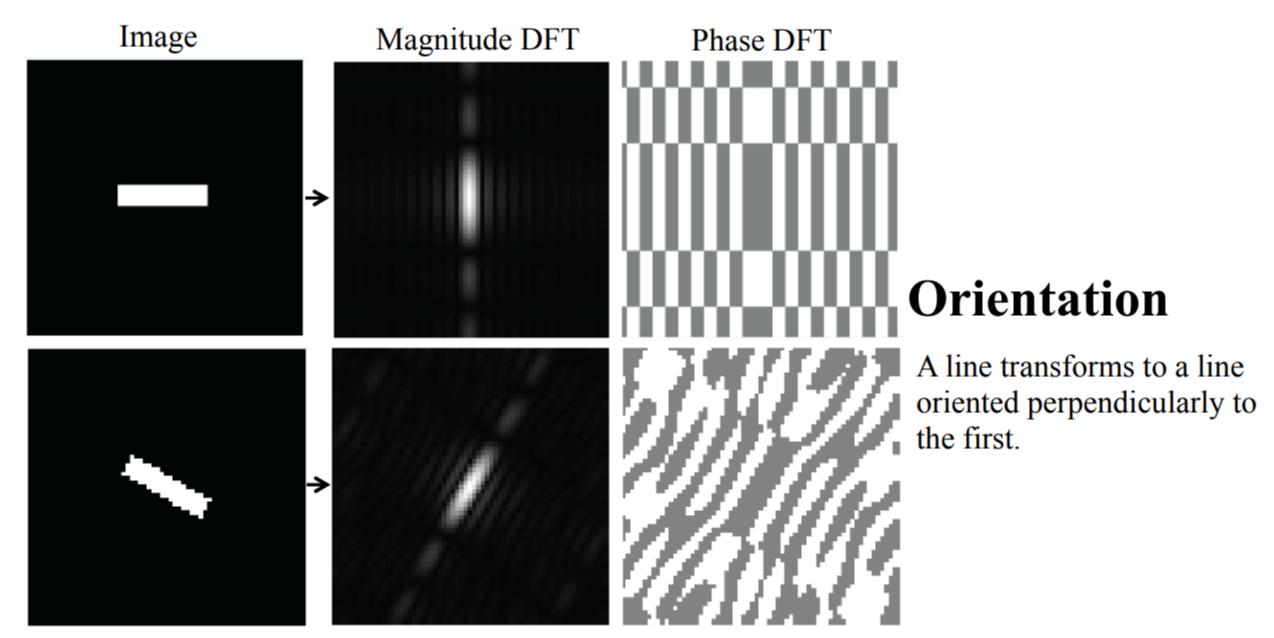
Some important Fourier transforms



Scale

Small image details produce content in high spatial frequencies

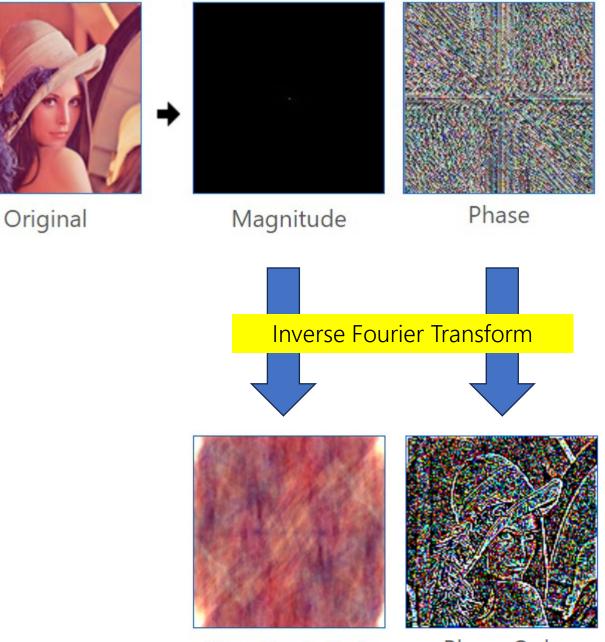
Some important Fourier transforms



Magnitude & Phase

Magnitude encodes most of the color (intensity) information

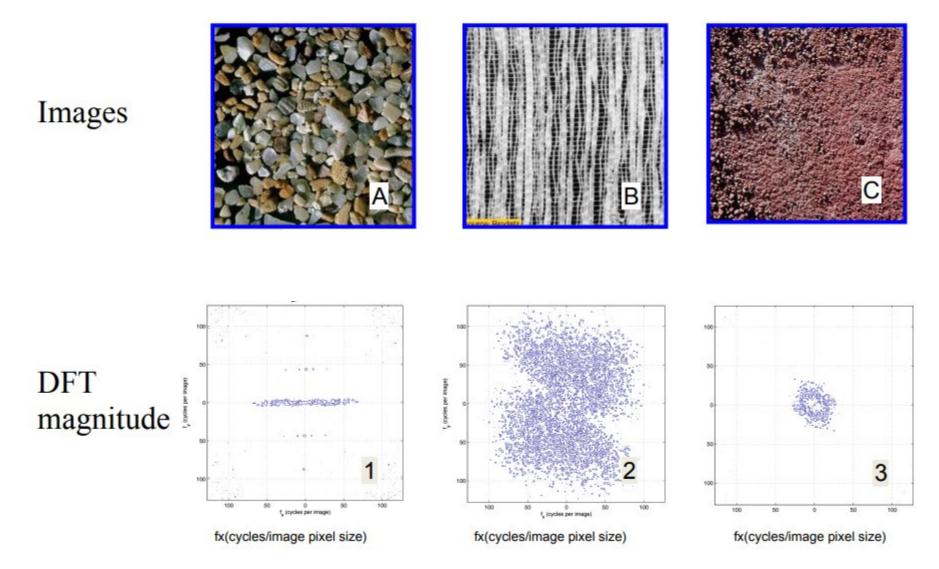
Phase encodes most of the "location" information



Magnitude Only

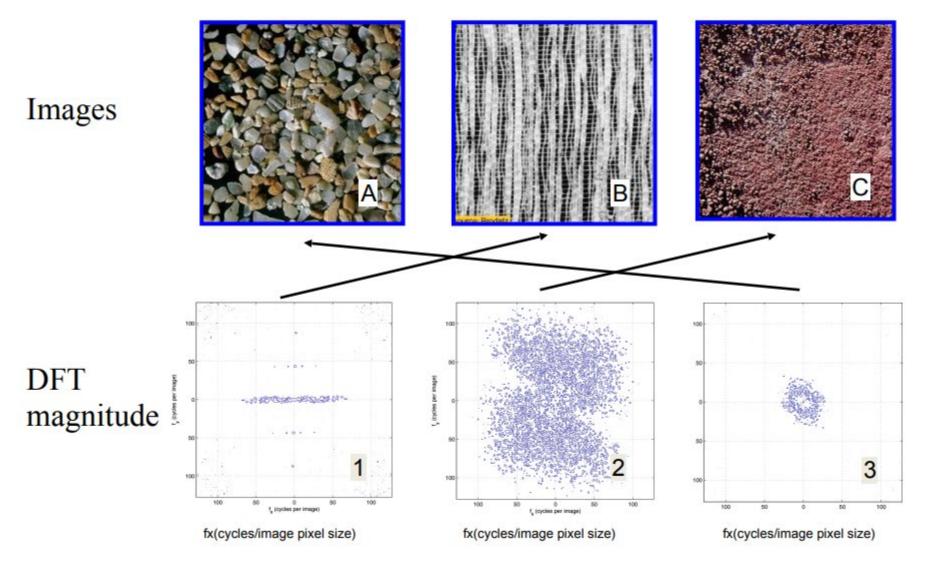
Phase Only

The DFT Game: find the right pairs



Game credits: Andrew Owens

The DFT Game: find the right pairs



Game credits: Andrew Owens

Useful Property of Fourier Transform Convolution Theorem

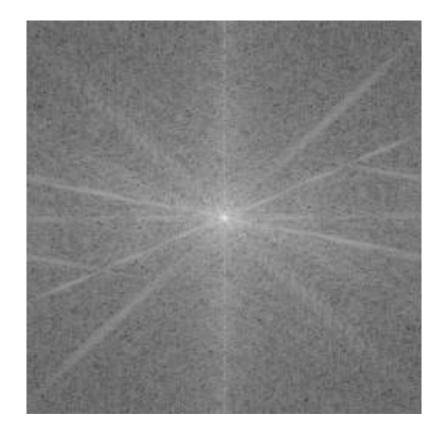
Convolution in the spatial domain = multiplication in the Fourier domain

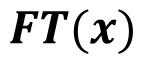
$$FT[h * f] = FT[h] FT[f]$$

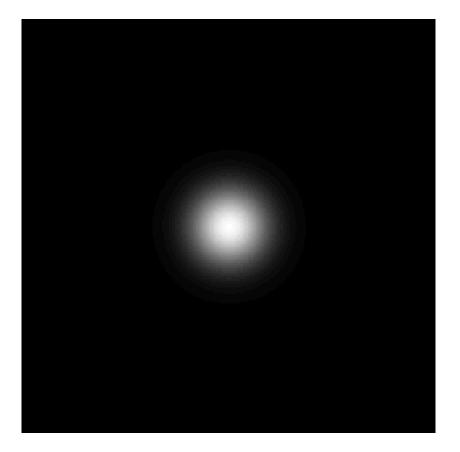
• Works for inverse Fourier transforms too:

$$FT^{-1}[hf] = FT^{-1}[h] * FT^{-1}[f]$$

- Can be much faster for big filters because speed is independent of filter size
- For convolution: speed is proportional to filter size!





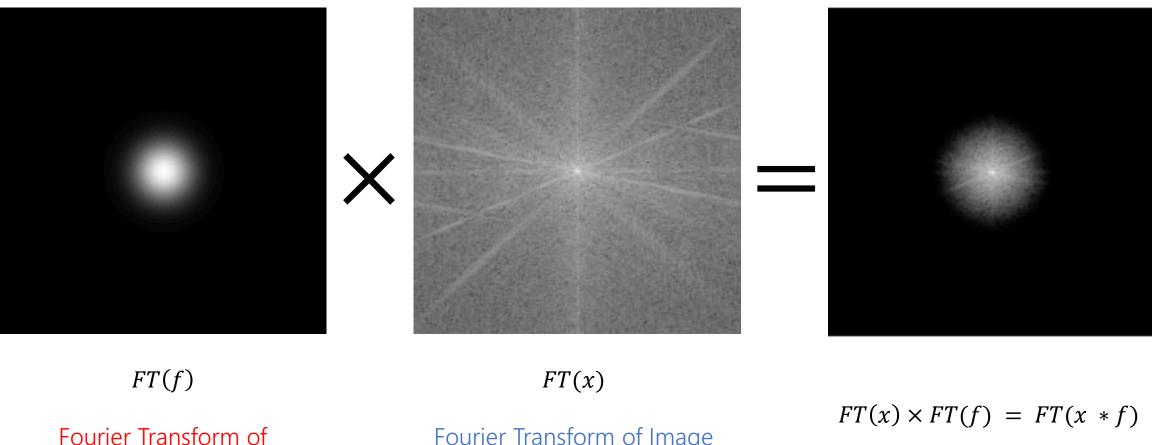


This is a low-pass filter in Fourier Domain

Look how it is centered around (0, 0) – it allows low frequencies and rejects high frequencies.

How can we apply this to the image?

Use the Convolution Theorem

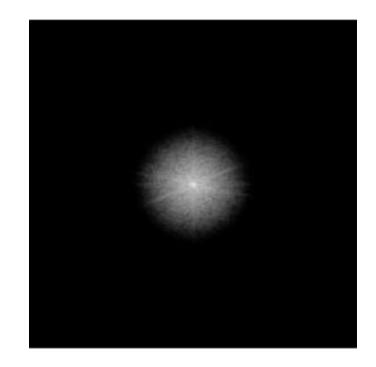


Low-Pass Filter

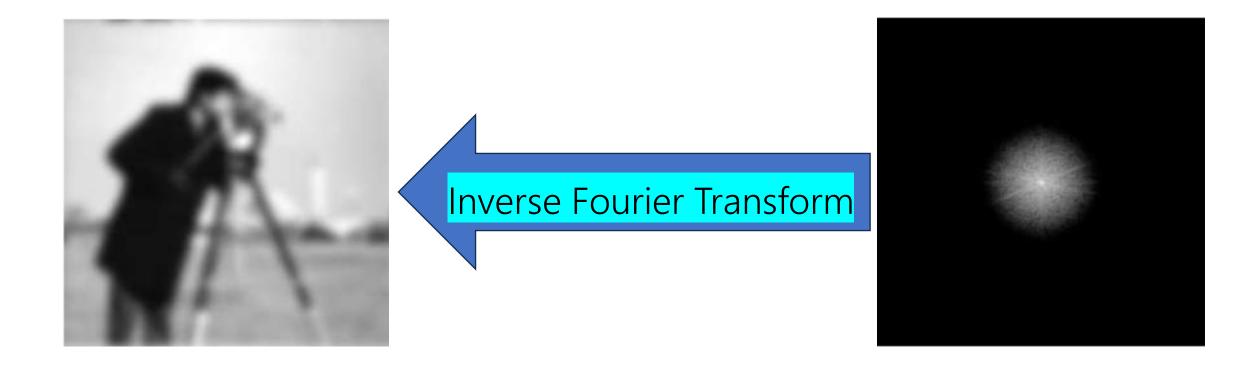
Fourier Transform of Image

Convolution

Multiplication



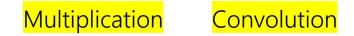
 $FT(x) \times FT(f) = FT(x * f)$

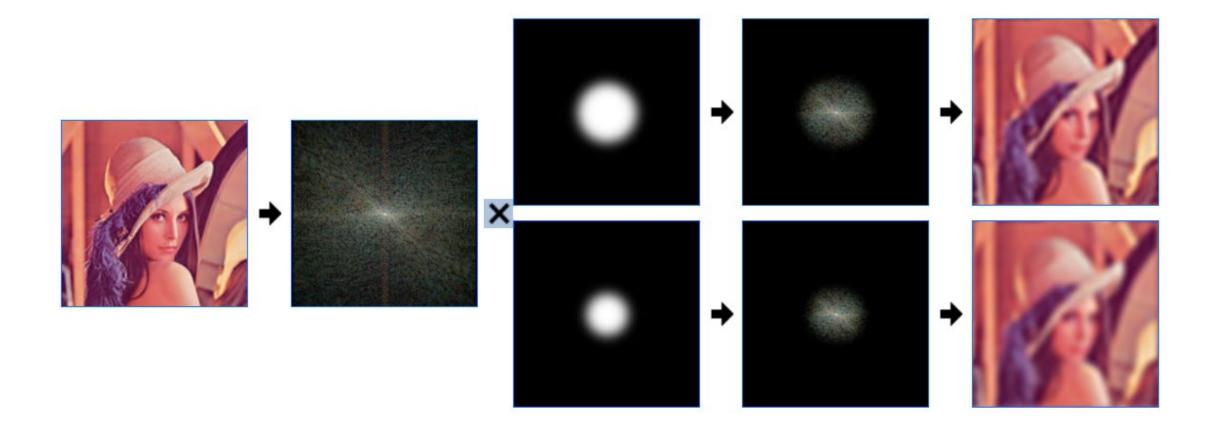


 $FT^{-1}[FT(x) \times FT(f)]$

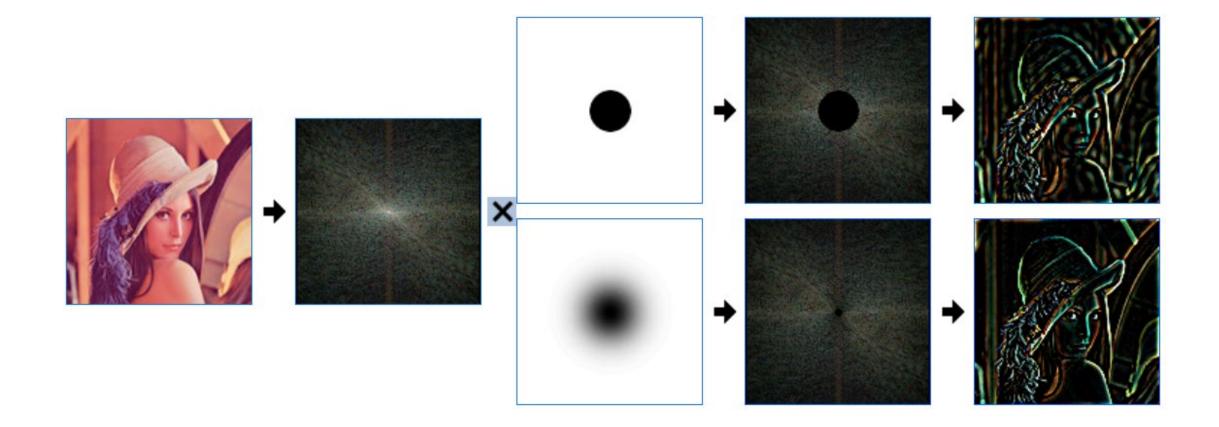
Low-Pass Filtered Image

 $FT(x) \times FT(f) = FT(x * f)$



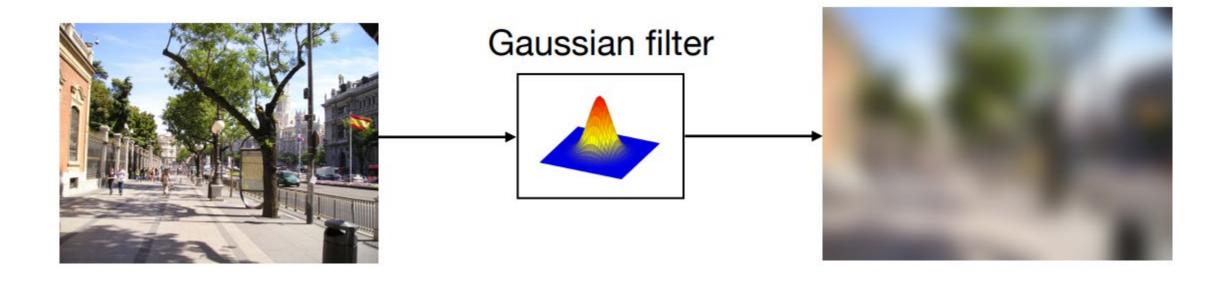


Source: Fred Weinhaus

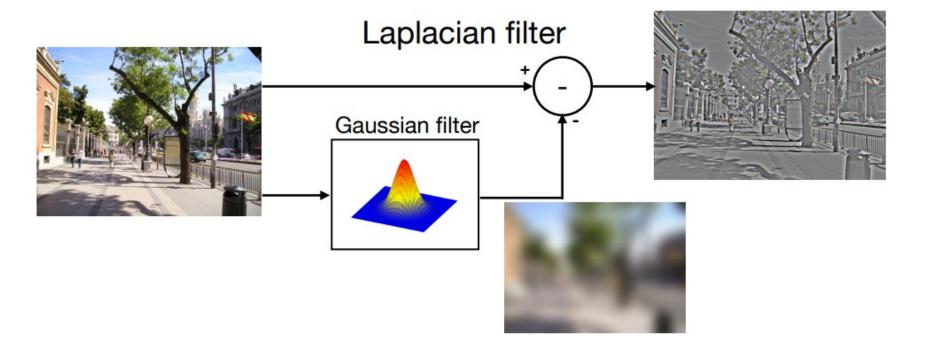


Source: Fred Weinhaus

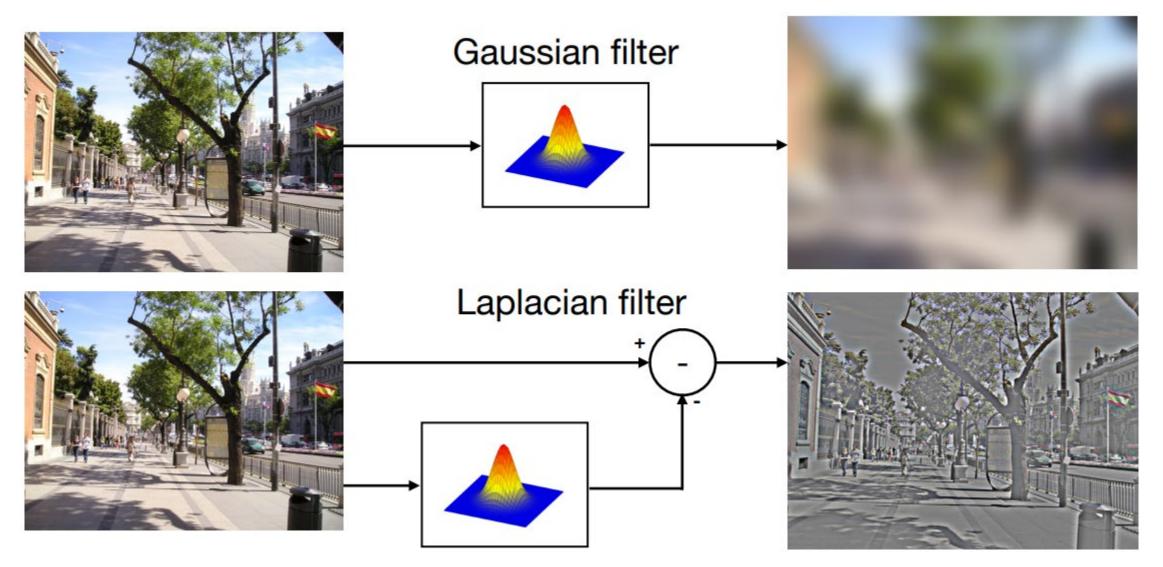
Blurring / Smoothing



Opposite of Blurring: Sharpening

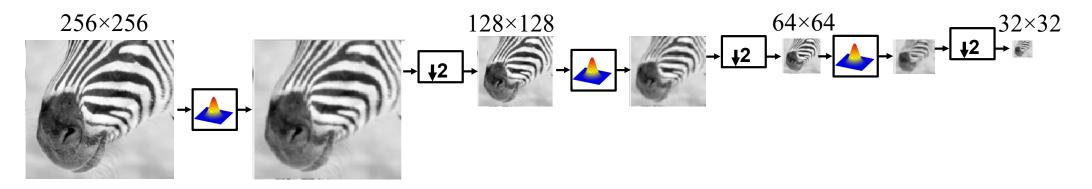


Gaussian Filter vs Laplacian Filter



For each level

- 1. Blur input image with a Gaussian filter
- 2. Downsample image



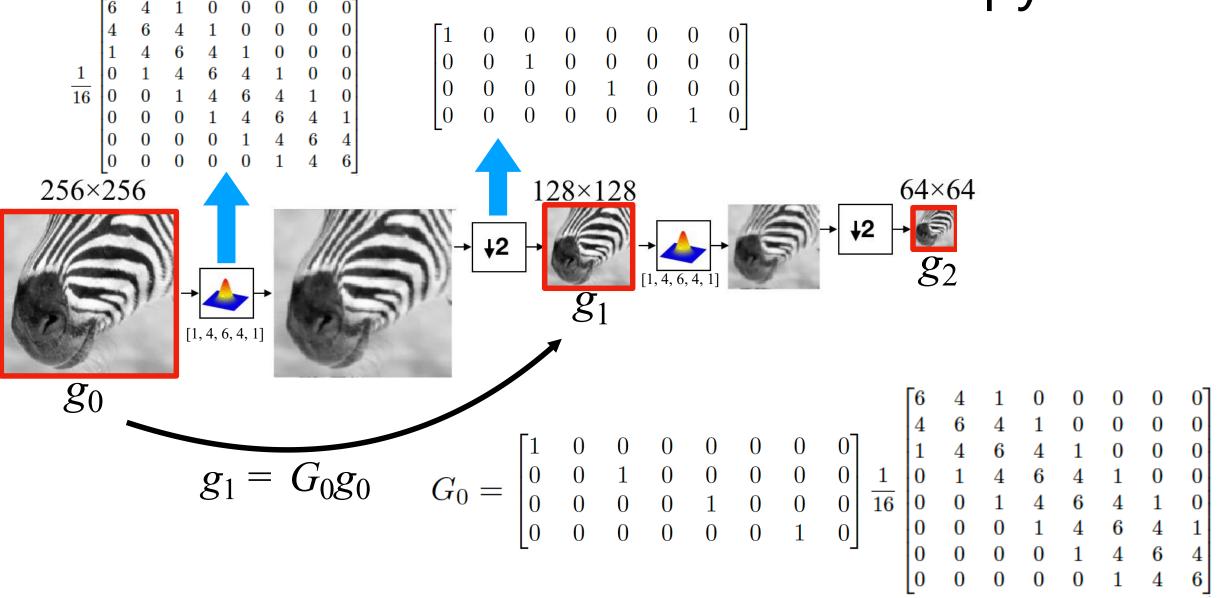
512×512

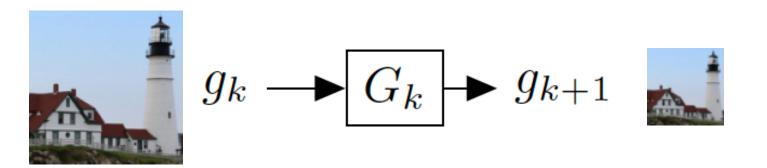
256×256

128×128 64×64 32×32

(original image)

Source: Torralba, Freeman, Isola



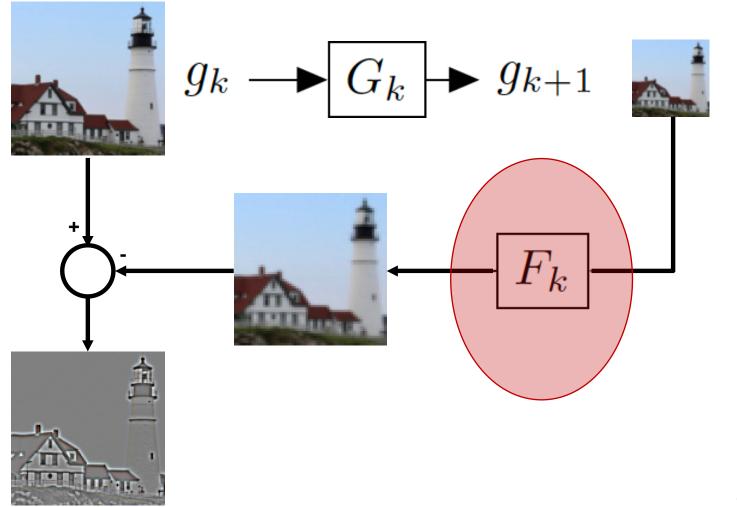


For each level

- 1. Blur input image with a Gaussian filter
- 2. Downsample image

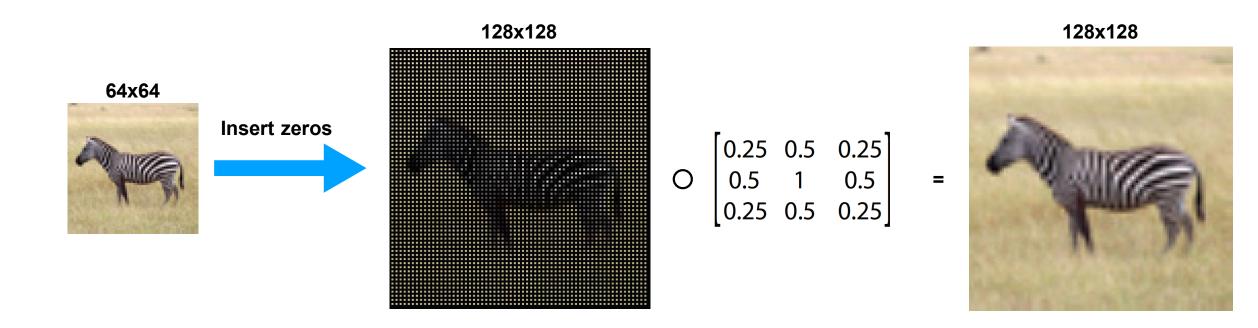
The Laplacian Pyramid

Compute the difference between **upsampled** Gaussian pyramid level k+1 and Gaussian pyramid level k. Recall that this approximates the blurred Laplacian.

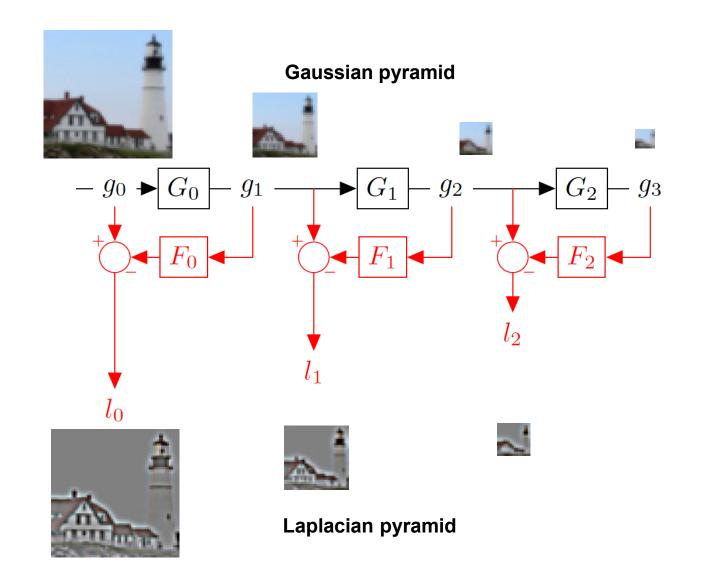


Source: Torralba, Freeman, Isola

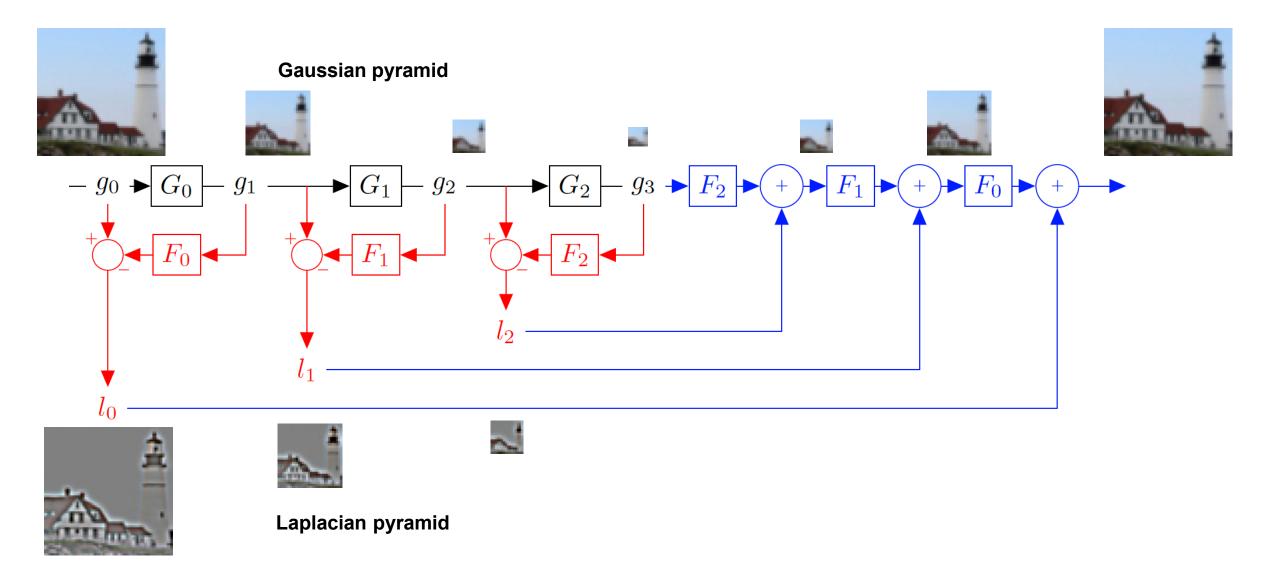
Upsampling



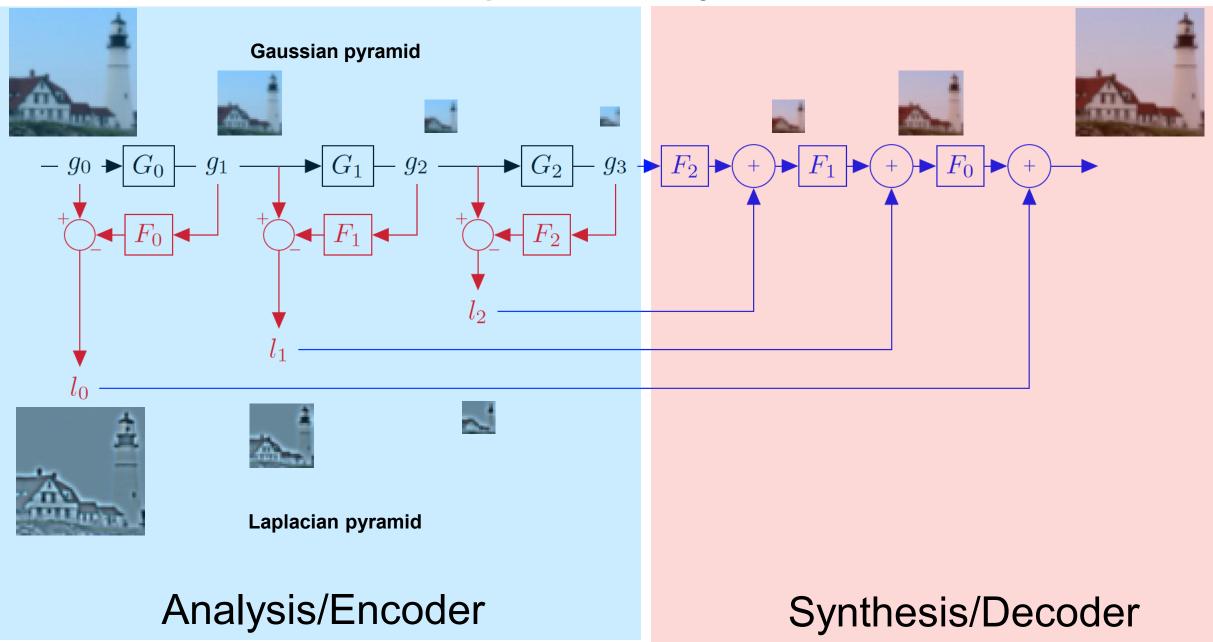
The Laplacian Pyramid



Inverting the Laplacian Pyramid



The Laplacian Pyramid



Applications of Laplacian Pyramid

- Image Blending
- Image Compression
- Noise Removal
- IMAGE FEATURES → IMAGE CLASSIFICATION ...

Application 1: Image Blending

Image Blending

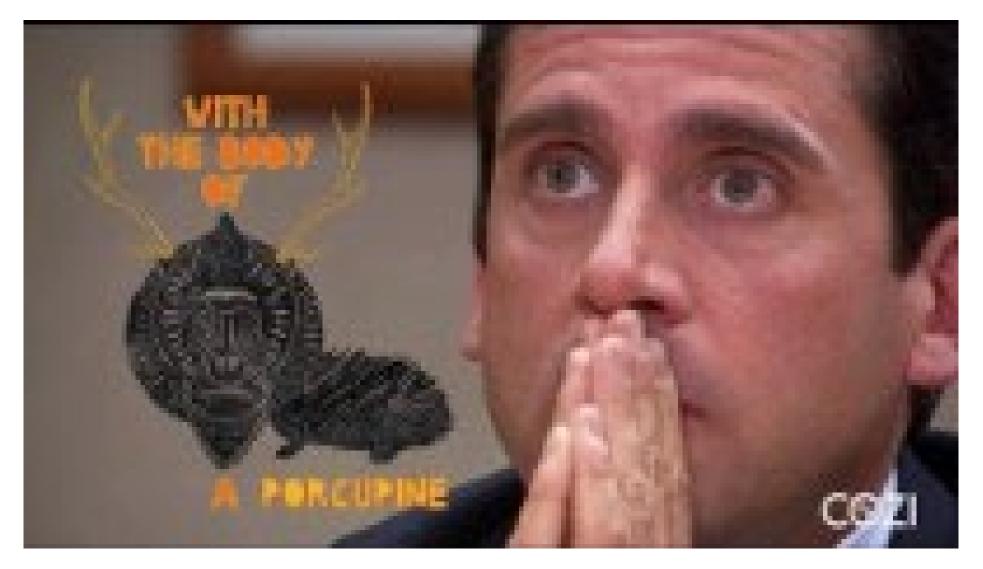
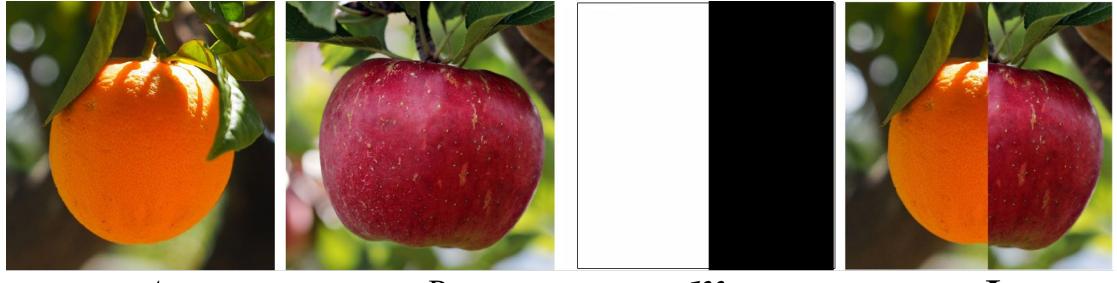


Image Blending

Simplest (but far from the best) Solution

- How would you do this?
- Give me an equation

Simplest (but far from the best) Solution



 I^A

JB

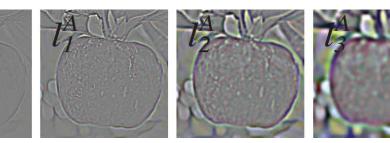
Т

 $I = m * I^{A} + (1 - m) * I^{B}$

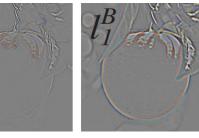
Image Blending with the Laplacian Pyramid

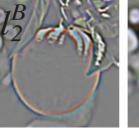
 l_0^A

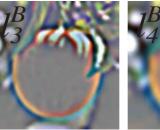
 l_0^B



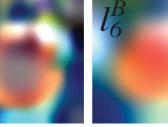
 m_7

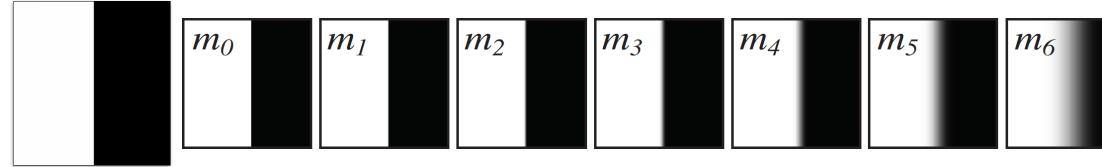








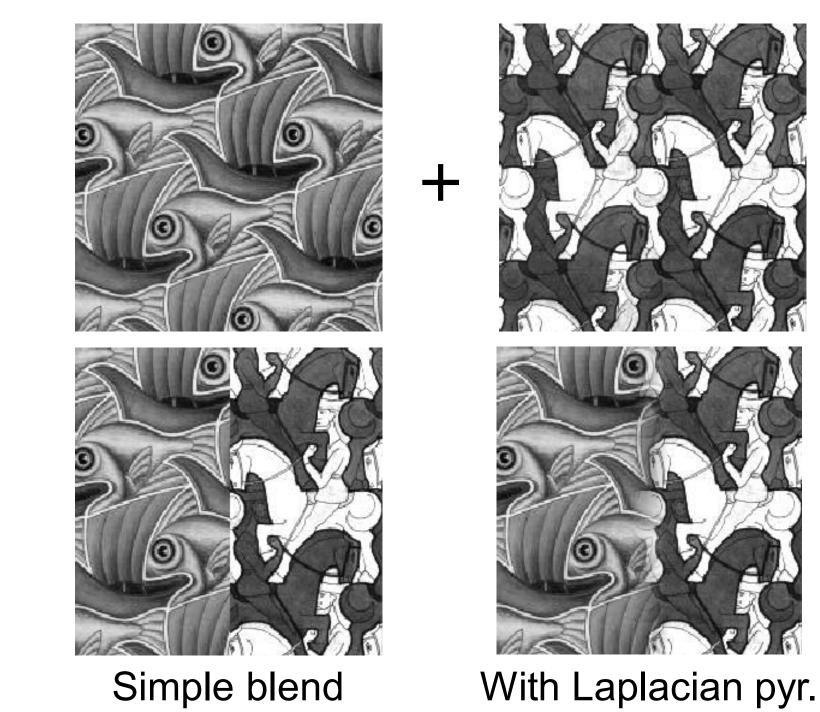




$$l_k = l_k^A * m_k + l_i^B * (1 - m_k)$$

Source: Torralba, Freeman, Isola

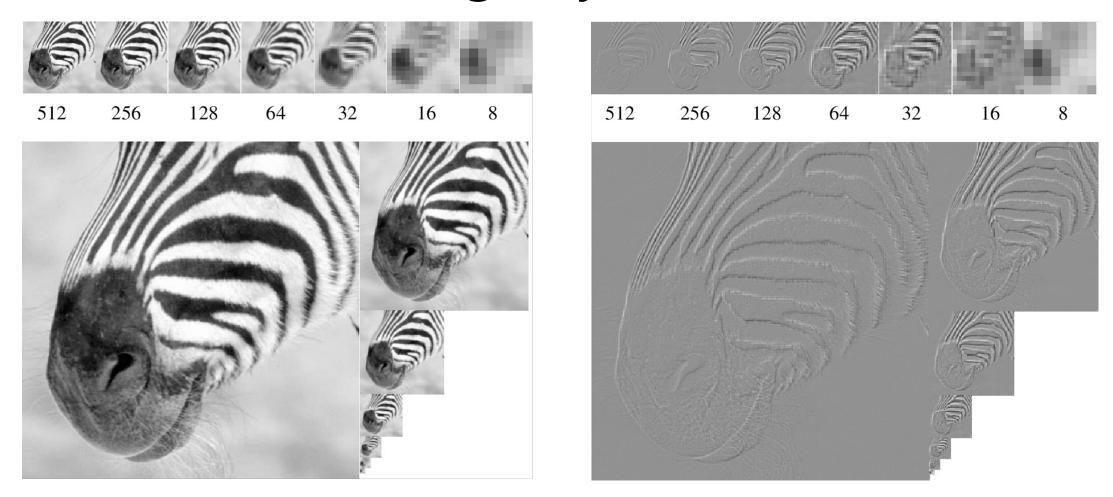
Simple Masked Summation vs. Laplacian Pyramid



Source: A. Efros

Photo credit: Chris Cameron

Image Pyramids



And many more: steerable filters, wavelets, ... convolutional networks!