Class Website

https://redirect.cs.umbc.edu/courses/graduate/691cv/

Lecture Slides will be uploaded after the lecture (usually in 1-2 days)

Access to Google Chat

We will wait until the Waitlist Deadline (Friday) ©

After that, the TA will add you.

Sign-Up for Scribing \rightarrow

- All students are required to scribe at least twice during the semester.
- You can sign-up for a preferred week
- Scribing = high-quality detailed notes during the lectures in that week, typeset using Overleaf/LaTeX
- Template is on the class website. Hand-drawn figures are allowed.
- Notes for Monday lectures are due before class next Monday
- Notes for Wednesday lectures are due before class next Wednesday

Email your notes as PDF, with subject: "[Scribing Submission] <lecture-date>" to gokhale@umbc.edu AND ssaha2@umbc.edu We may deviate a bit from the planned topics listed below.

Lecture Date Day	Planned Topic	Notes Due	Scribe 1	Scribe 2	Scribe 3	Lecture Date		Planned Topic	Notes Due	Scribe 1	Scribe 2	Scribe 3
$29-\tan$ M	Intro	5-Feb	Olivia Amaral			31-Jan	w	Image Formation				
5-Feb M	Filtering 1	12-Feb	Olivia Amaral			7-Feb	w	Filtering II				
12-Feb M	Features 1	19-Feb	Jabril Hall			14-Feb	w	Features II				
19 -Feb M	Features III	26-Feb				21-Feb	w	no scribing				
26 -Feb M	no scribing					28 -Feb	w	ML for CV				
4-Mar M	ML for CV (NN)	11-Mar				6-Mar	w	ML for CV (GD)				
11-Mar M	Pytorch Tutorial	18-Mar				13-Mar	w	Object Detection				
18-Mar M	no scribing (Spring Break)					20-Mar	w	no scribing (Spring Break)				
25-Mar M	Image Transformations	1-Apr				27-Mar	w	Homographies				
1-Apr M	no scribing (Midterm)					3-Apr	w	Camera Models				
8-Apr M	Epipolar Geometry	15-Apr				10-Apr	w	Stereo				
15-Apr M	V\&L	22-Apr				17-Apr	w	Image Synthesis				
22-Apr M	Robustness	29-Apr				24-Apr	w	buffer				
29-Apr M	no scribing (Guest Lecture I)					1-May	w	no scribing (Guest Lecture II)				
6-May M	no scribing (Guest Lecture III)					8 -May	w					
13-May M	no scribing (Project Presentations)											

The LaTeX template has been released on the class website.
Please create an account on https://overleaf.com (it is free!)
For a tutorial on how to use LaTeX with Overleaf, visit: https://www.overleaf.com/learn/latex/Learn LaTeX in 30 minutes (this link is on the website)

PPR Seminar

Advances in Perception, Prediction, and Reasoning

Dr. Yezhou Yang

Associate Professor,
School of Computing \& AI, Arizona State University
https://yezhouyang.engineering.asu.edu/
Visual Concept Learning Beyond Appearances: Modernizing a Couple of Classic Ideas

February 8, 2024 3:30-4:30 PM
ITE 325-B or Webex: https://umbc.webex.com/meet/gokhale

Lecture 2

Image Formation

Recap

Pinhole imaging

Recap Pinhole camera terms

Pinhole size

What happens as we change the pinhole diameter?

Pinhole size

object projection becomes blurrier

Focal length

What happens as we change the focal length?

Magnification depends on focal length

 real-worldobject

focal length 2 f

Photograph made with small pinhole

Photograph made with larger pinhole

Problems with Pinholes

Recap

- Pinhole size (aperture) must be "very small" to obtain a clear image.
- However, as pinhole size is made smaller, less light is received by image plane.
- If pinhole is comparable to wavelength of incoming light, DIFFRACTION blurs the image!
- Sharpest image is obtained when:

pinhole diameter \quad| Example: If f^{\prime} | $=50 \mathrm{~mm}$, |
| ---: | :--- |
| | $=600 \mathrm{~nm}(\mathrm{red})$, |
| d | $=0.36 \mathrm{~mm}$ |

Fig. 5.96 The pinhole camera. Note the variation in image clarity as the hole diameter decreases. [Photos courtesy Dr. N. Joel, UNESCO.]

Pinhole camera

Large pinhole:

1. Image is blurry.
2. Signal-to-noise ratio is high.

Small (ideal) pinhole:

1. Image is sharp.

Best of Both Worlds?

2. Signal-to-noise ratio is low.

Almost, by using lenses

Lenses map "bundles" of rays from points on the scene to the sensor.

How does this mapping work exactly?

Thin lens model

Simplification of geometric optics for well-designed lenses.

Two assumptions:

1. Rays passing through lens center are unaffected.
2. Parallel rays converge to a single point located on focal plane.

Can we verify the thin lens model?

From Gauss's ray construction to the Gaussian lens formula

Exercise: Derive Relationship between $\boldsymbol{s}_{\boldsymbol{o}}, \mathbf{s}_{\mathbf{i}}, \mathbf{f}$

From Gauss's ray construction to the Gaussian lens formula

Exercise: Derive Relationship between $s_{o}, \mathrm{~s}_{\mathrm{i}}, \mathrm{f}$
Hint: Similar Triangles

From Gauss's ray construction to the Gaussian lens formula

Depth of Field (effect of varying aperture diameter)

Smaller aperture: larger DoF

Field of View

Field of View (effect of varying focal length)

Smaller $f \rightarrow$ larger DoF

$$
\alpha=2 \arctan \frac{d}{2 f}
$$

The Eye is a Camera

- Iris
- colored annulus with radial muscles
- Pupil
- the hole (aperture)
- size is controlled by the iris
- What's the "film"?

Digital Images

Subjective terms to describe color

Hue

Name of the color (yellow, red, blue, green, ...)

Value/Lightness/Brightness

 How light or dark a color is.
Saturation/Chroma/Color Purity

 How "strong" or "pure" a color is.

Image from Benjamin Salley A page from a Munsell Student Color

Where do "color sensations" come from?

Generally, wavelengths from 380 to 720 nm are visible to most individuals

Biology of color sensations

- Our eye has three receptors (cone cells) that respond to visible light and give the sensation of color

Spectral power distribution (SPD)

- We rarely see monochromatic light in real world scenes

- Instead, objects reflect a wide range of wavelengths.
- This can be described by a spectral power distribution (SPD)
- The SPD plot shows the relative amount of each wavelength reflected over the visible spectrum.

Tristimulus color theory (Grassman’s Law)

Source color can be matched by a linear combination of three independent "primaries".

Source light \#1

If we combined source lights 1 \& 2 to get a new source light 3

The amount of each primary needed to match the new light \#3 is the sum of the weights that matched lights sources \#1 \& \#2.

Source light \#3

This may seem obvious now, but discovering that light obeys the laws of linear algebra was a huge and useful discovery.

RGB in Cameras

Millions of light sensors

RGB in Cameras - Bayer Pattern

25\% pixels see Red 25% pixels see Blue 50\% pixels see Green

RGB in Cameras - Bayer Pattern

Pesulting pattern

RGB in Cameras Debayering / Demosaicing

$$
\text { How? } \rightarrow \text { Interpolation! }
$$

Method 1: nearest-neighbor interpolation

- For each pixel, for the missing channel, assign the value of the closest pixel with that channel available

Method 2: Bi-Linear Interpolation

- Red-value of a non-red pixel

$$
=\text { avg of } 2 \text { or } 4 \text { adjacent reds }
$$

- Similar for green and blue

What we see

Finally!

 Digital RGB images!What the camera stores

Computer Vision

"understanding" the visual world by processing (RGB) images

Point Processing vs Image Filtering

Point Operation

point processing

Neighborhood Operation

"filtering"
original

Examples of point processing
darken lower contrast

How would you implement these?
original

x

Examples of point processing
darken

$x-128$
lower contrast

$\frac{x}{2}$
non-linear lower contrast

How would you implement these?
original

x

Examples of point processing
invert

$x-128$
lighten

lower contrast

$\frac{x}{2}$
raise contrast

non-linear lower contrast

$$
\left(\frac{x}{255}\right)^{1 / 3} \times 255
$$

non-linear raise contrast

How would you implement these?
original

x

$255-x$

Examples of point processing

$x-128$
lower contrast

$\frac{x}{2}$
raise contrast

$x \times 2$
non-linear lower contrast

$$
\left(\frac{x}{255}\right)^{1 / 3} \times 255
$$

non-linear raise contrast

$\left(\frac{x}{255}\right)^{2} \times 255$

Convolution

Convolution for 1D continuous signals

Definition of filtering as convolution:

filtered signal $(f * g)(x)=\int_{-\infty}^{\infty} f(y) g(x-y) d y$

$$
(f * g)(i)=\sum_{j=1}^{m} g(j) \cdot f(i-j+m / 2)
$$

Convolution for 1D discrete signals

Definition of filtering as convolution:

$$
(f * g)(i)=\sum_{j=1}^{m} g(j) \cdot f(i-j+m / 2)
$$

1D Convolution. Example

Suppose our input 1D image is:

$$
f=\begin{array}{|l|l|l|l|l|l|l|}
\hline 10 & 50 & 60 & 10 & 20 & 40 & 30 \\
\hline
\end{array}
$$

and our kernel is:

$$
g=\begin{array}{|l|l|l|}
\hline 1 / 3 & 1 / 3 & 1 / 3 \\
\hline
\end{array}
$$

Let's call the output image h. What is the value of $h(3)$?

1D Convolution. Example

Suppose our input 1D image is:

$$
f=\begin{array}{|l|l|l|l|l|l|l|}
\hline 10 & 50 & 60 & 10 & 20 & 40 & 30 \\
\hline
\end{array}
$$

and our kernel is:
"Box" Filter that causes "Blur" or "Smoothing"

$$
g=\begin{array}{|l|l|l|}
\hline 1 / 3 & 1 / 3 & 1 / 3 \\
\hline
\end{array}
$$

Let's call the output image h. What is the value of $h(3)$?

$$
h=\begin{array}{|l|l|l|l|l|l|l|}
\hline 20 & 40 & 40 & 30 & 20 & 30 & 23.333 \\
\hline
\end{array}
$$

Convolution for 2D discrete signals

Definition of filtering as convolution:

Convolution for 2D discrete signals

Definition of filtering as convolution:

If the filter $f(i, j)$ is non-zero only within $-1 \leq i, j \leq 1$, then

$$
(f * g)(x, y)=\sum_{i, j=-1}^{1} f(i, j) I(x-i, y-j)
$$

The kernel we saw earlier is the 3×3 matrix representation of $f(i, j)$.

3	5	2	8	1
9	7	5	4	3
2	0	6	1	6
6	3	7	9	2
1	4	9	5	1

Convolutional Filter

1	0	0
1	1	0
0	0	1

What's the output?

0	0	I
0	I	I
Γ	0	0

flipped

Convolution vs correlation

Definition of discrete 2D convolution:

$$
(f * g)(x, y)=\sum_{i, j=-\infty}^{\infty} f(i, j) I(x-i, y-j)
$$

Definition of discrete 2D correlation:

$$
(f * g)(x, y)=\sum_{i, j=-\infty}^{\infty} f(i, j) I(x+i, y+j)
$$

- Most of the time won't matter, because our kernels will be symmetric.
- Will be important when we discuss frequency-domain filtering

Image Convolution Examples

Image Convolution Examples

Original (f)

Image Convolution Examples

Sharpening filter (accentuates edges)

The Gaussian filter

$$
f(i, j)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{i^{2}+j^{2}}{2 \sigma^{2}}}
$$

- named (like many other things) after Carl Friedrich Gauss

Gaussian kernel

$$
G_{\sigma}=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{\left(x^{2}+y^{2}\right)}{2 \sigma^{2}}}
$$

- weight falls off with distance from center pixel
- theoretically infinite, in practice truncated to some maximum distance

$\frac{1}{16}$| 1 | 2 | 1 |
| :--- | :--- | :--- |
| 2 | 4 | 2 |
| 1 | 2 | 1 |

If you do a CS PhD in US/UK/EU Gauss is your ancestor (in most cases)

The Gaussian filter

$$
f(i, j)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{i^{2}+j^{2}}{2 \sigma^{2}}}
$$

- named (like many other things) after Carl Friedrich Gauss

Gaussian kernel

$$
G_{\sigma}=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{\left(x^{2}+y^{2}\right)}{2 \sigma^{2}}}
$$

- weight falls off with distance from center pixel
- theoretically infinite, in practice truncated to some maximum distance

$\frac{1}{16}$| 1 | 2 | 1 |
| :--- | :--- | :--- |
| 2 | 4 | 2 |
| 1 | 2 | 1 |

Gaussian filtering example

Scale

Gaussian vs box filtering

original

Which blur do you like better?

7x7 Gaussian

7×7 box

How would you create a soft shadow effect?

CMU

 overlay

Gaussian blur

Quiz! (Bring Answers to Next Class)

Write an Equation to generate $X_{\text {out }}$ using X, appropriate filters, point operators, etc.

X

$X_{\text {out }}$

