Class Website

https://redirect.cs.umbc.edu/courses/graduate/691cv/

Lecture Slides will be uploaded *after* the lecture (usually in 1-2 days)

Access to Google Chat

We will wait until the Waitlist Deadline (Friday) ©

After that, the TA will add you.

Sign-Up for Scribing \rightarrow

- All students are required to scribe at least **twice** during the semester.
 - You can sign-up for a preferred week
- Scribing = high-quality detailed notes during the lectures in that week, typeset using Overleaf/LaTeX
 - Template is on the class website. Hand-drawn figures are allowed.
- Notes for Monday lectures are due before class next Monday
- Notes for Wednesday lectures are due before class next Wednesday

Email your notes as PDF, with subject: "[Scribing Submission] <lecture-date>" to gokhale@umbc.edu AND ssaha2@umbc.edu</lecture-date>												
We may deviate a bit from the planned topics listed below.												
to sign-up, enter your name below in an empty slot do not overwrite your classmates' entries!												
Lecture Date Day	Planned Topic	Notes Due	Scribe 1	Scribe 2	Scribe 3	Lecture Date	Day	Planned Topic	Notes Due	Scribe 1	Scribe 2	Scribe 3
29-Jan M	Intro	5-Feb	Olivia Amaral			31-Jan	w	Image Formation				
5-Feb M	Filtering I	12-Feb	Olivia Amaral			7-Feb	w	Filtering II				
12-Feb M	Features I	19-Feb	Jabril Hall			14-Feb	w	Features II				
19-Feb M	Features III	26-Feb				21-Feb	W	no scribing				
26-Feb M	no scribing					28-Feb	w	ML for CV				
4-Mar M	ML for CV (NN)	11-Mar				6-Mar	w	ML for CV (GD)				
11-Mar M	Pytorch Tutorial	18-Mar				13-Mar	w	Object Detection				
18-Mar M	no scribing (Spring Break)					20-Mar	w	no scribing (Spring Break)				
25-Mar M	Image Transformations	1-Apr				27-Mar	w	Homographies				
1-Apr M	no scribing (Midterm)					3-Apr	w	Camera Models				
8-Apr M	Epipolar Geometry	15-Apr				10-Apr	w	Stereo				
15-Apr M	V&L	22-Apr				17-Apr	w	Image Synthesis				
22-Apr M	Robustness	29-Apr				24-Apr	w	buffer				
29-Apr M	no scribing (Guest Lecture I)					1-May	w	no scribing (Guest Lecture II)				
6-May M	no scribing (Guest Lecture III)					8-May	w	no scribing (Project Presentations)				
13-May M	no scribing (Project Presentations)											

The LaTeX template has been released on the class website.

Please create an account on <u>https://overleaf.com</u> (it is free!)

For a tutorial on how to use LaTeX with Overleaf, visit: https://www.overleaf.com/learn/latex/Learn LaTeX in 30 minutes (this link is on the website)

PPR Seminar

Advances in Perception, Prediction, and Reasoning

Dr. Yezhou Yang

Associate Professor, School of Computing & AI, Arizona State University

https://yezhouyang.engineering.asu.edu/

Visual Concept Learning Beyond Appearances: Modernizing a Couple of Classic Ideas

February 8, 2024 3:30 – 4:30 PM ITE 325-B or Webex: <u>https://umbc.webex.com/meet/gokhale</u>

Lecture 2

Image Formation

Some slides from Jayasuriya, Turaga, Szeliski, Brown

Pinhole imaging

real-world object

> copy of real-world object (inverted and scaled)

Each scene point contributes to only one sen

Recap Pinhole camera terms

real-world object

Pinhole size

What happens as we change the pinhole diameter?

real-world object

Pinhole size

Focal length

What happens as we change the focal length?

real-world object

Magnification depends on focal length

Photograph made with small pinhole

Photograph made with larger pinhole

Problems with Pinholes

- Pinhole size (aperture) must be "very small" to obtain a clear image.
- However, as pinhole size is made smaller, less light is received by image plane.
- If pinhole is comparable to wavelength λ of incoming light, DIFFRACTION blurs the image!
- Sharpest image is obtained when:

pinhole diameter $d = 2\sqrt{f' \lambda}$

Example: If f' = 50mm,

- = 600nm (red),
- d = 0.36mm

Fig. 5.96 The pinhole camera. Note the variation in image clarity as the hole diameter decreases. [Photos courtesy Dr. N. Joel, UNESCO.]

Pinhole camera

2. Signal-to-noise ratio is high. 2. Signal-to-noise ratio is low.

1.

Almost, by using lenses

Lenses map "bundles" of rays from points on the scene to the sensor.

How does this mapping work exactly?

Thin lens model

Simplification of geometric optics for well-designed lenses.

Two assumptions:

- 1. Rays passing through lens center are unaffected.
- 2. Parallel rays converge to a single point located on focal plane.

Can we verify the thin lens model?

From Gauss's ray construction to the Gaussian lens formula

Exercise: Derive Relationship between s_o , s_i , f

From Gauss's ray construction to the Gaussian lens formula

Exercise: Derive Relationship between s_o , s_i , f

Hint: Similar Triangles

From Gauss's ray construction to the Gaussian lens formula

Depth of Field (effect of varying aperture diameter)

Smaller aperture: larger DoF

Field of View

Slide by A. Efros

Field of View (effect of varying focal length)

The Eye is a Camera

• Iris

colored annulus with radial muscles

• Pupil

- the hole (aperture)
- size is controlled by the iris
- What's the "film"?

Digital Images

Subjective terms to describe color

Hue

Name of the color (yellow, red, blue, green, . . .)

Value/Lightness/Brightness

How light or dark a color is.

Saturation/Chroma/Color Purity How "strong" or "pure" a color is.

Image from Benjamin Salley A page from a Munsell Student Color

Where do "color sensations" come from?

Generally, wavelengths from 380 to 720nm are visible to most individuals

Biology of color sensations

• Our eye has three receptors (cone cells) that respond to visible light and give the sensation of color

Spectral power distribution (SPD)

- We rarely see monochromatic light in real world scenes
- Instead, objects reflect a wide range of wavelengths.
- This can be described by a spectral power distribution (SPD)
- The SPD plot shows the relative amount of each wavelength reflected over the visible spectrum.

Tristimulus color theory (Grassman's Law)

Source color can be matched by a linear combination of three independent "primaries".

If we combined source lights 1 & 2 to get a new source light 3 The amount of each primary needed to match the new light #3 is the sum of the weights that matched lights sources #1 & #2.

This may seem obvious now, but discovering that light obeys the laws of linear algebra was a huge and useful discovery.

RGB in Cameras

RGB in Cameras - Bayer Pattern

25% pixels see Red25% pixels see Blue50% pixels see Green

RGB in Cameras - Bayer Pattern

Then how do we get *all colors* at *all pixels?*

Original (High Resolution)

Bayer (120x80) Intensities

Bayer Color-Coded

After Interpolation

RGB in Cameras -Debayering / Demosaicing

How? \rightarrow Interpolation !

Method 1: nearest-neighbor interpolation

 For each pixel, for the missing channel, assign the value of the closest pixel with that channel available

Method 2: Bi-Linear Interpolation

- Red-value of a non-red pixel
 - = avg of 2 or 4 adjacent reds
- Similar for green and blue

More Advanced Methods ...

Finally ! Digital RGB images!

What we see

What the camera stores

Computer Vision

"understanding" the visual world by processing (RGB) images

Point Processing vs Image Filtering

Point Operation

point processing

Neighborhood Operation

Implement these? Examples of point processing

original

lower contrast

non-linear lower contrast

How would you implement these? Examples of point processing

original

x

x - 128

lower contrast

 $\frac{x}{2}$

non-linear lower contrast

1/3 $\frac{x}{255}$ $\times 255$

Implement these? Examples of point processing

original

x

lower contrast

non-linear lower contrast

x

255

x - 128

raise contrast

invert

non-linear raise contrast

 $\times 255$

How would you implement these? original xExamples of point processing darken x = x - 128iower contrast iower contrast

Convolution

Convolution for 1D continuous signals

$$(f * g)(i) = \sum_{j=1}^{m} g(j) \cdot f(i - j + m/2)$$

Convolution for 1D *discrete* signals

Definition of filtering as convolution:

$$(f * g)(i) = \sum_{j=1}^{m} g(j) \cdot f(i - j + m/2)$$

1D Convolution. Example

Suppose our input 1D image is:

$$f = \begin{bmatrix} 10 & 50 & 60 & 10 & 20 & 40 & 30 \end{bmatrix}$$

and our kernel is:

$$g = \boxed{1/3} 1/3 1/3$$

Let's call the output image h. What is the value of h(3)?

1D Convolution. Example

$$h = \begin{bmatrix} 20 & 40 & 40 & 30 & 20 & 30 & 23.333 \end{bmatrix}$$

Convolution for 2D discrete signals

Definition of filtering as convolution: $(f*g)(x,y) = \sum_{i,j=-\infty}^{\infty} f(i,j)I(x-i,y-j)$ filtered image

Convolution for 2D discrete signals

If the filter $\,f(i,j)$ is non-zero only within $-1\leq i,j\leq 1$, then

$$(f * g)(x, y) = \sum_{i,j=-1}^{1} f(i,j)I(x-i, y-j)$$

The kernel we saw earlier is the 3x3 matrix representation of f(i,j) .

3	5	2	8	1
9	7	5	4	3
2	0	6	1	6
6	3	7	9	2
1	4	9	5	1

What's the output?

Convolutional Filter

flipped

Convolution vs correlation

Definition of discrete 2D convolution:

$$(f * g)(x, y) = \sum_{i, j = -\infty}^{\infty} f(i, j) I(x - i, y - j)$$
 notice the flip

Definition of discrete 2D correlation:

notice the lack of a flip

$$(f * g)(x, y) = \sum_{i, j = -\infty}^{\infty} f(i, j)I(x + i, y + j)$$

- Most of the time won't matter, because our kernels will be symmetric.
- Will be important when we discuss frequency-domain filtering

The Gaussian filter

$$f(i,j) = \frac{1}{2\pi\sigma^2} e^{-\frac{i^2+j^2}{2\sigma^2}}$$

• named (like many other things) after Carl Friedrich Gauss

- weight falls off with distance from center pixel
- theoretically infinite, in practice truncated to some maximum distance

3x3 Gaussian kernel

If you do a CS PhD in US/UK/EU Gauss is your ancestor (in most cases)

The Gaussian filter

$$f(i,j) = \frac{1}{2\pi\sigma^2} e^{-\frac{i^2+j^2}{2\sigma^2}}$$

• named (like many other things) after Carl Friedrich Gauss

- weight falls off with distance from center pixel
- theoretically infinite, in practice truncated to some maximum distance

3x3 Gaussian kernel

Gaussian filtering example

Scale

Slide from Antonio Torralba

Gaussian vs box filtering

original

Which blur do you like better?

7x7 Gaussian

How would you create a soft shadow effect?

Gaussian blur

Quiz! (Bring Answers to Next Class)

Write an Equation to generate X_{out} using X, appropriate filters, point operators, etc.

