
Chapter 4
OWL

Based on slides from Grigoris Antoniou and Frank van Harmelen

TL;DR: What is OWL

OWL uses the syntax of RDF but defines
new classes and properties, making it
more expressive as knowledge
representation language

Outline

1. Introduction
2. Basic Ideas of OWL
3. The OWL Language
4. Examples
5. The OWL Namespace
6. OWL 2

Brief History of OWL

l Builds on RDF to “represent rich and complex
knowledge about things, groups of things, and relations
between things”

l Draws on decades of experience with systems for
representing and reasoning with knowledge

l Based on a 2001 DAML+OIL specification
l OWL became a W3C recommendation in 2004,

extended as OWL 2 in 2012
l Well defined RDF/XML serializations
l Formal semantics based on first order logic
l Good tools, both opensource and commercial

https://en.wikipedia.org/wiki/DARPA_Agent_Markup_Language
https://www.w3.org/TR/owl-features/
https://www.w3.org/TR/owl2-overview/

Outline

1. Introduction
2. Basic Ideas of OWL
3. The OWL Language
4. Examples
5. The OWL Namespace
6. OWL 2

Ontology and Data

lPhilosophy: Ontologies are models of what
exists in the world (kinds of things, relations,
events, properties, etc.)
– Information systems: a schema for info. or data
–KR languages: model of classes & relations/properties

& associated axioms, e.g., subPropertyOf is transitive

lData is information about individual instances
expressed with terms in the ontology
–Some instances might be considered part of the

ontology (e.g., God, George Washington, Baltimore)

https://en.wikipedia.org/wiki/Ontology

Requirements for Ontology Languages

l Ontology languages let users write explicit,
formal conceptualizations of domain models

l Requirements:
– well-defined syntax
– efficient reasoning support
– formal semantics
– sufficient expressive power
– convenience of expression

Expressive Power vs. Efficient Reasoning

l Always a tradeoff between expressive power
and efficient reasoning support

l The richer the language, the more inefficient the
reasoning support becomes (in general)

l Reasoning can be undecidable or semi-decidable
and even if decidable can be exponentially hard

l We need a compromise between:
– Language supported by reasonably efficient reasoners
– Language that can express large classes of ontologies

and knowledge

https://en.wikipedia.org/wiki/Undecidable_problem
https://en.wikipedia.org/wiki/Decidability_(logic)

Kinds of Reasoning about Knowledge

l Class membership
If x is an instance of a class C, and C is a subclass of D, then we
can infer that x is an instance of D

l Equivalence of classes
If class A is equivalent to class B, and class B is equivalent to
class C, then A is equivalent to C, too

l Consistency
– X is an instance of classes A and B, but A and B are disjoint
– This is an indication of an error in the ontology or data

l Classification
Certain property-value pairs are a sufficient condition for
membership in a class A; if an individual x satisfies such
conditions, we conclude that x must be an instance of A

Uses for Reasoning

l Reasoning support is important for
– Deriving new relations and properties
– Automatically classifying instances in classes
– Checking consistency of ontology and knowledge
– checking for unintended relationships between

classes

l Checks like these are valuable for
– designing large ontologies, where multiple authors are

involved
– integrating and sharing ontologies from various

sources

Reasoning Support for OWL

l Semantics is a prerequisite for reasoning support
l Formal semantics and reasoning support usually

provided by
– mapping an ontology language to known logical

formalism
– using automated reasoners that already exist for

those formalisms
l OWL is (partially) mapped to a description logic

DLs are a subset of logic for which efficient reasoning
support is possible

https://en.wikipedia.org/wiki/Description_logic

RDFS’s Expressive Power Limitations

l Local scope of properties
– rdfs:range defines range of a property (e.g.,

eats) for all instances of a class
– In RDF Schema we can’t declare range

restrictions that apply to only some
– E.g., animals eat living_things but cows only

eat plants
– :eat rdfs:domain :animal; range :living_thing

:eat rdfs:domain :cow; range :plant

RDFS’s Expressive Power Limitations

l Disjointness of classes
– Sometimes we wish to say that classes are disjoint

(e.g., male and female)

l Boolean combinations of classes
– We may want to define new classes by combining

other classes using union, intersection, and
complement

– E.g., person equals union of male and female classes
– E.g., weekdays equals set {:Monday, … :Sunday}

RDFS’s Expressive Power Limitations

l Cardinality restrictions
– E.g., a person has exactly two parents, a course is

taught by at least one lecturer

l Special characteristics of properties
– Transitive property (e.g., hasAncestor)
– Symmetric property (e.g., sibling)
– Unique property (e.g., hasMother)
– A property is the inverse of another property (e.g.,
eats and eatenBy

Combining OWL with RDF Schema

l Ideally, OWL would extend RDF Schema
Consistent with the layered architecture of the
Semantic Web

l But simply extending RDF Schema works
against obtaining expressive power and
efficient reasoning
Combining RDF Schema with logic leads to
uncontrollable computational properties

l OWL uses RDF and most of RDFS

Three Species of OWL 1

l W3C’sWeb Ontology Working Group defined
OWL as three different sublanguages:
– OWL Full
– OWL DL (DL for Description Logic)
– OWL Lite

l Each sublanguage geared toward fulfilling
different aspects of requirements

OWL Full

l It uses all the OWL languages primitives
l It allows the combination of these primitives in

arbitrary ways with RDF and RDF Schema
l OWL Full is fully upward-compatible with RDF,

both syntactically and semantically
l OWL Full is so powerful that its reasoning is

undecidable

Soundness and completeness

lA sound reasoner only makes conclusions that
logically follow from the input, i.e., all of its
conclusions are correct
– We typically require our reasoners to be sound

lA complete reasoner can make all conclusions
that logically follow from the input
– We cannot guarantee complete reasoners for full

FOL and many subsets
– So, we can’t do it for OWL Full

OWL DL

l OWL DL (Description Logic) is a sublanguage of
OWL Full that restricts application of the
constructors from OWL and RDF
– Application of OWL’s constructors to each other is

disallowed
– It corresponds to a well studied description logic

l OWL DL permits efficient reasoning support
l But we lose full compatibility with RDF
– Not every RDF document is a legal OWL DL document
– Every legal OWL DL document is a legal RDF document

OWL Lite

l An even further restriction limits OWL DL to a
subset of the language constructors
– E.g., OWL Lite excludes enumerated classes,

disjointness statements, and arbitrary cardinality

l The advantage of this is a language that is
easier to
– grasp, for users
– implement, for tool builders

l The disadvantage is restricted expressivity

OWL Compatibility with RDF Schema

l All varieties of OWL use
RDF for their syntax

l Instances are declared
as in RDF, using RDF
descriptions

l OWL constructors are
specializations of their
RDF counterparts

l OWL classes and
properties have
additional constraints

rdfs:Resource

rdfs:Class

owl:DatatypeProperty

owl:ObjectProperty

rdf:Property

owl:Class

